Parasitic Infections in Pirarucu Fry, Arapaima Gigas Schinz, 1822 (Arapaimatidae) Kept in a Semi-Intensive Fish Farm in Central

Total Page:16

File Type:pdf, Size:1020Kb

Parasitic Infections in Pirarucu Fry, Arapaima Gigas Schinz, 1822 (Arapaimatidae) Kept in a Semi-Intensive Fish Farm in Central VETERINARSKI ARHIV 79 (5), 499-507, 2009 PParasiticarasitic iinfectionsnfections iinn ppirarucuirarucu ffry,ry, AArapaimarapaima ggigasigas SSchinz,chinz, 11822822 (AArapaimatidae)rapaimatidae) kkeptept iinn a ssemi-intensiveemi-intensive fi sshh ffarmarm iinn CCentralentral AAmazon,mazon, BBrazilrazil CCleusaleusa SSuzanauzana OliveiraOliveira AAraújoraújo1**,, AAnana LLúciaúcia GGomesomes1, MMarcosarcos TTavares-avares- DDiasias2, SSannyanny MMariaaria SSampaioampaio AAndradendrade1, AAndréiandréia BBelem-Costaelem-Costa3, JJoãooão TTitoito BBorgesorges4, MMarietaarieta NNascimentoascimento QQueirozueiroz1, aandnd MegaraMegara BBarbosaarbosa1 1CCentroentro UUniversitárioniversitário NNiltonilton LLinsins ((UNINILTONLINS),UNINILTONLINS), LLaboratórioaboratório ddee ZZoologiaoologia AAplicada,plicada, MManaus,anaus, AAM,M, BBrasilrasil 2EEmbrapambrapa AAmapá.mapá. RRodoviaodovia JJuscelinouscelino KKubitschek,ubitschek, MMacapá,acapá, AAP,P, BBrasilrasil 3UUniversidadeniversidade FFederalederal ddoo AAmazonasmazonas ((UFAM),UFAM), DDepartamentoepartamento ddee CCiênciasiências PPesqueirasesqueiras ( DDEPESCA),EPESCA), CCampusampus UUniversitário,niversitário, SSetoretor SSul,ul, MManaus,anaus, AAM,M, BBrasilrasil 4FFUCAPI,UCAPI, FFundaçãoundação CCentroentro ddee AAnálise,nálise, PPesquisaesquisa e IInovaçãonovação TTecnológica,ecnológica, MManaus,anaus, BBrasilrasil AARAÚJO,RAÚJO, CC.. SS.. OO.,., A.A. L.L. GOMES,GOMES, M.M. TTAVARES-DIAS,AVARES-DIAS, S.S. M.M. SS.. AANDRADE,NDRADE, A.A. BBELEM-COSTA,ELEM-COSTA, JJ.. TT.. BORGES,BORGES, M.M. NN.. QQUEIROZ,UEIROZ, MM.. BARBOSA:BARBOSA PParasiticarasitic iinfectionsnfections iinn ppirarucuirarucu ffry,ry, AArapaimarapaima ggigasigas SSchinz,chinz, 11822822 (AArapaimatidae)rapaimatidae) kkeptept iinn a ssemi-intensiveemi-intensive fi sshh farmfarm inin CentralCentral AAmazon,mazon, BBrazil.razil Vet. arhiv 79, 499-507, 2009. ABSTRACT SStudiestudies rregardingegarding pparasitearasite ffaunaauna iinn ffarmedarmed fi sshh aarere ooff ggreatreat rrelevanceelevance ttoo tthehe kknowledgenowledge ooff tthehe pparasitesarasites sspecies,pecies, aallowingllowing iinterferencenterference iinn ttheirheir pproliferationroliferation iinn oorderrder ttoo aavoidvoid eepizootiespizooties aandnd cconsequently,onsequently, eeconomicalconomical llosses.osses. TThishis sstudytudy wwasas ddesignedesigned ttoo iinvestigatenvestigate tthehe pprevalencerevalence aandnd iintensityntensity ooff pparasitesarasites iinn ffryry AArapaimarapaima ggigasigas mmaintainedaintained iinn ppondsonds ooff a ssemi-intensiveemi-intensive fi sshh ffarmarm iinn AAmazonasmazonas SState,tate, BBrazil.razil. OOnn nnecropsy,ecropsy, 996.0%6.0% ooff AA.. ggigasigas wwereere ffoundound pparasitizedarasitized bbyy DDawestremaawestrema ccycloancistrioidesycloancistrioides, DDawestremaawestrema ccycloancistriumycloancistrium ((Monogenoidea),Monogenoidea), TTrichodinarichodina ssp.,p., IIchthyobodochthyobodo ssp.p. ((Protozoa),Protozoa), CCamallanusamallanus ttridentatusridentatus, TTerranovaerranova sserrataerrata, GGoeziaoezia sspinulosapinulosa ((Nematoda)Nematoda) aandnd AArgulidaergulidae. HHowever,owever, DD.. ccycloancistriumycloancistrium, DD.. ccycloancistrioidesycloancistrioides aandnd TTrichodinarichodina ffariaiariai wwereere tthehe pparasitesarasites ooff ggreatestreatest iintensity.ntensity. TThishis sstudytudy iiss tthehe fi rrstst ttoo rreporteport pparasiticarasitic iinfectionsnfections iinn ffarmedarmed AA.. ggigasigas aandnd tthehe rresultsesults iindicatedndicated a hhighigh rrateate ooff iinfectionnfection tthathat mmightight lleadead ttoo iimportantmportant cchangeshanges iinn tthehe hhealthealth ooff tthehe hhosts.osts. KKeyey wwordsords: AAmazon,mazon, AArapaimarapaima ggigasigas, cculture,ulture, iinfections,nfections, pparasitesarasites *Corresponding author: DDr.r. CCleuzaleuza SSuzanauzana ddee OOliveiraliveira AAraújo,raújo, CCentroentro UUniversitárioniversitário NNiltonilton LLins,ins, LLaboratórioaboratório ddee ZZoologiaoologia AAplicada.plicada. AAvenidavenida PProfessorrofessor NNiltonilton LLins,ins, 33259.259. PParquearque ddasas LLaranjeiras,aranjeiras, CCEP:EP: 669058-040,9058-040, MManaus,anaus, AAM,M, BBrasil,rasil, EE-mail:-mail: [email protected]@niltonlins.br ISSN 0372-5480 Printed in Croatia 499 CC.. SS.. OO.. AraújoAraújo eett aal.:l.: PParasiticarasitic iinfectionsnfections iinn ppirarucuirarucu ffry,ry, AArapaimarapaima ggigasigas IIntroductionntroduction TThehe AArapaimarapaima ggigas,igas, kknownnown aass ppirarucu,irarucu, iiss aann Ossteoglossiformeteoglossiforme fi sshh wwithith ddoubleouble bbreathing,reathing, wwhichhich iiss oonlynly ffoundound iinn SSouthouth AAmerica,merica, aandnd iinhabitsnhabits tthehe AAmazonmazon RRiveriver ddrainage,rainage, tthehe wwesternestern OOrinocorinoco aandnd tthehe rriveriver ssystemsystems ooff tthehe GGuianasuianas (QQUEIROZUEIROZ andand CCRAMPTON,RAMPTON, 11999999)).. TThishis fi sshh ccanan rreacheach uupp ttoo tthreehree mmeterseters iinn llengthength aandnd 220000 kkgg iinn mmassass (QQUEIROZUEIROZ aandnd CCRAMPTONRAMPTON, 11999999) aandnd iiss a mmuchuch aappreciatedppreciated sspeciespecies wwithith ggreatreat aacceptancecceptance oonn tthehe BBrazilianrazilian AAmazonianmazonian mmarket,arket, bbeingeing rregardedegarded aass a ffoodood fi sshh ooff tthehe hhighestighest qquality.uality. HHence,ence, iitt iiss oonene ooff tthehe mmostost iimportantmportant sspeciespecies fforor tthehe ddevelopmentevelopment aandnd iimprovementmprovement ooff iintensiventensive aaquaculturequaculture iinn tthehe AAmazonianmazonian rregionegion (OONONO eett aal.,l., 22003003 aandnd 22004004)).. DDespiteespite iitsts ggreatreat iimportancemportance ttoo tthehe AAmazonianmazonian ppeople,eople, llittleittle iiss kknownnown aaboutbout tthehe pparasiticarasitic iinfectionsnfections ooff ffarmedarmed AA.. ggigasigas, bbecauseecause tthesehese sstudiestudies hhaveave bbeeneen ccarriedarried oout,ut, iinn ggeneral,eneral, iinn wwildild fi ssh.h. TThehe ppresenceresence ooff 2200 sspeciespecies ooff tthehe pparasitesarasites fforor ppirarucuirarucu hhaveave bbeeneen rreported.eported. TThreehree pparasitesarasites sspeciespecies aarere MMonogenoideas,onogenoideas, tthehe DDawestremaawestrema ccycloancistriumycloancistrium ((PricePrice aandnd NNowlin,owlin, 11967),967), DD.. ccycloancistrioidesycloancistrioides ((Kritsky,Kritsky, BBoegeroeger aandnd TThatcher,hatcher, 11985)985) aandnd DD.. ppunctatumunctatum, ((Kritsky,Kritsky, BoegerBoeger aandnd TThatcher,hatcher, 11985).985). SSixix sspeciespecies aarere NNematoda,ematoda, tthehe GGoeziaoezia sspinulosapinulosa DDiesing,iesing, 11939;939; PPhilometrahilometra ssenticosaenticosa BBaylis,aylis, 11927;927; CCamallanusamallanus ttridentatusridentatus DDrasche,rasche, 11884;884; GGnatostomanatostoma ggracilisracilis DDiesing,iesing, 11838;838; RRumaiumai rrumaiumai TTravassos,ravassos, 11960;960; TTerranovaerranova sserrataerrata DDrasche,rasche, 11884.884. TTwowo sspeciespecies aarere AAcantocephala,cantocephala, tthehe PPolyacanthorhynchusolyacanthorhynchus mmacrorhynchusacrorhynchus DDiesing,iesing, 11851851 aandnd PPolyacanthorhynchusolyacanthorhynchus rrhopalorhynchushopalorhynchus DDiesing,iesing, 11851.851. TTwowo sspeciespecies aarere CCestoda,estoda, SSchizochoeruschizochoerus lliguloidesiguloides DDiesing,iesing, 11850850 aandnd NNesolecithusesolecithus jjanickianicki PPoche,oche, 11922.922. TThreehree sspeciespecies aarere TTrematoda,rematoda, tthehe CCaballerotremaaballerotrema bbrasilienserasiliense PPrudhoe,rudhoe, 11960,960, CC.. aarapaimenseerapaimensee, TThatcher,hatcher, 11980980 aandnd HHimasthlaimasthla ppiscicolaiscicola SStunkard,tunkard, 11960.960. OOtherther ttwowo sspeciespecies aarere BBranchiura,ranchiura, tthehe DDolopsolops ddiscoidalisiscoidalis BBouvier,ouvier, 11899899 aandnd AArgulusrgulus ssp.,p., wwhilehile oonene ootherther sspeciespecies iiss CCopepoda,opepoda, tthehe EErgasilusrgasilus ssp.p. aandnd aanothernother iiss PPentastomidae,entastomidae, tthehe SSebekiaebekia sspp. (BBAYLIS,AYLIS, 11927;927; KKRITSKYRITSKY eett aal.,l., 11985;985; TTHATCHERHATCHER, 11980980 aandnd 22006;006; GGOMESOMES, 22006006)).. MModernodern fi sshh ffarmingarming wwithith hhighigh sstocktock fi sshh ddensitiesensities aandnd iintensiventensive pproductionroduction uunitsnits pproviderovide iidealdeal cconditionsonditions fforor tthehe iinvasionnvasion aandnd ppersistenceersistence ooff a rrangeange ooff ppathogensathogens aandnd pparasitesarasites (MMARTINSARTINS eett aal.,l., 22002;002; PPIAZZAIAZZA eett aall., 22006;006; LLEMOSEMOS eett aal.,l., 22007007)).. IInfectionsnfections bbyy tthesehese ddisease-causingisease-causing aagentsgents rreduceeduce tthehe ssurvivalurvival ooff fi ssh,h, ccausingausing eeconomicalconomical llossesosses ttoo ffarmers.armers. HHence,ence, fi sshh ssusceptibilityusceptibility ttoo pparasitesarasites iiss a cconstantonstant cconcernoncern ooff ffarmersarmers wwhoho nneedeed ttoo ddecreaseecrease tthesehese pproblemsroblems aandnd iincreasencrease pproduction.roduction. TThehe iincrementncrement ooff pparasiticarasitic iinfectionsnfections iinn tthehe ccultureulture eenvironmentnvironment hhasas aalsolso bbeeneen aassociatedssociated wwithith tthehe llowow qqualityuality ooff wwaterater aandnd iinadequatenadequate mmanagement.anagement. AAllll tthesehese eenvironmentalnvironmental ffactorsactors hhaveave bbeeneen rresponsibleesponsible fforor hhighigh iinfectionnfection bbyy mmonogeneanonogenean ((72.9%),72.9%), PPiscinoodiniumiscinoodinium ppillulareillulare
Recommended publications
  • A Guide to Culturing Parasites, Establishing Infections and Assessing Immune Responses in the Three-Spined Stickleback
    ARTICLE IN PRESS Hook, Line and Infection: A Guide to Culturing Parasites, Establishing Infections and Assessing Immune Responses in the Three-Spined Stickleback Alexander Stewart*, Joseph Jacksonx, Iain Barber{, Christophe Eizaguirrejj, Rachel Paterson*, Pieter van West#, Chris Williams** and Joanne Cable*,1 *Cardiff University, Cardiff, United Kingdom x University of Salford, Salford, United Kingdom { University of Leicester, Leicester, United Kingdom jj Queen Mary University of London, London, United Kingdom #Institute of Medical Sciences, Aberdeen, United Kingdom **National Fisheries Service, Cambridgeshire, United Kingdom 1Corresponding author: E-mail: [email protected] Contents 1. Introduction 3 2. Stickleback Husbandry 7 2.1 Ethics 7 2.2 Collection 7 2.3 Maintenance 9 2.4 Breeding sticklebacks in vivo and in vitro 10 2.5 Hatchery 15 3. Common Stickleback Parasite Cultures 16 3.1 Argulus foliaceus 17 3.1.1 Introduction 17 3.1.2 Source, culture and infection 18 3.1.3 Immunology 22 3.2 Camallanus lacustris 22 3.2.1 Introduction 22 3.2.2 Source, culture and infection 23 3.2.3 Immunology 25 3.3 Diplostomum Species 26 3.3.1 Introduction 26 3.3.2 Source, culture and infection 27 3.3.3 Immunology 28 Advances in Parasitology, Volume 98 ISSN 0065-308X © 2017 Elsevier Ltd. http://dx.doi.org/10.1016/bs.apar.2017.07.001 All rights reserved. 1 j ARTICLE IN PRESS 2 Alexander Stewart et al. 3.4 Glugea anomala 30 3.4.1 Introduction 30 3.4.2 Source, culture and infection 30 3.4.3 Immunology 31 3.5 Gyrodactylus Species 31 3.5.1 Introduction 31 3.5.2 Source, culture and infection 32 3.5.3 Immunology 34 3.6 Saprolegnia parasitica 35 3.6.1 Introduction 35 3.6.2 Source, culture and infection 36 3.6.3 Immunology 37 3.7 Schistocephalus solidus 38 3.7.1 Introduction 38 3.7.2 Source, culture and infection 39 3.7.3 Immunology 43 4.
    [Show full text]
  • Review and Meta-Analysis of the Environmental Biology and Potential Invasiveness of a Poorly-Studied Cyprinid, the Ide Leuciscus Idus
    REVIEWS IN FISHERIES SCIENCE & AQUACULTURE https://doi.org/10.1080/23308249.2020.1822280 REVIEW Review and Meta-Analysis of the Environmental Biology and Potential Invasiveness of a Poorly-Studied Cyprinid, the Ide Leuciscus idus Mehis Rohtlaa,b, Lorenzo Vilizzic, Vladimır Kovacd, David Almeidae, Bernice Brewsterf, J. Robert Brittong, Łukasz Głowackic, Michael J. Godardh,i, Ruth Kirkf, Sarah Nienhuisj, Karin H. Olssonh,k, Jan Simonsenl, Michał E. Skora m, Saulius Stakenas_ n, Ali Serhan Tarkanc,o, Nildeniz Topo, Hugo Verreyckenp, Grzegorz ZieRbac, and Gordon H. Coppc,h,q aEstonian Marine Institute, University of Tartu, Tartu, Estonia; bInstitute of Marine Research, Austevoll Research Station, Storebø, Norway; cDepartment of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Lodz, Łod z, Poland; dDepartment of Ecology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia; eDepartment of Basic Medical Sciences, USP-CEU University, Madrid, Spain; fMolecular Parasitology Laboratory, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston-upon-Thames, Surrey, UK; gDepartment of Life and Environmental Sciences, Bournemouth University, Dorset, UK; hCentre for Environment, Fisheries & Aquaculture Science, Lowestoft, Suffolk, UK; iAECOM, Kitchener, Ontario, Canada; jOntario Ministry of Natural Resources and Forestry, Peterborough, Ontario, Canada; kDepartment of Zoology, Tel Aviv University and Inter-University Institute for Marine Sciences in Eilat, Tel Aviv,
    [Show full text]
  • Factors Affecting Parasite Assemblages in Fish Hosts Is Presented
    Bio-Research, 7(2): 561 – 570 561 Parasite Assemblages in Fish Hosts 1Iyaji, F. O., 2Etim. L. and 1Eyo, J. E. 1Department of Zoology, University of Nigeria, Nsukka, Enugu State, Nigeria 2Department of Fisheries, University of Uyo, Uyo, Akwa Ibom State, Nigeria Corresponding Author: Iyaji, F. O. Department of Zoology, University of Nigeria, Nsukka. Email: [email protected] Abstract A review of various factors affecting parasite assemblages in fish hosts is presented. These factors are broadly divided into two: Biotic and abiotic factors. Biotic factors such as host age and size, host size and parasites size, host specificity, host diet and host sex and their influence on the abundance and distribution of parasites are considered and highlighted. Equally, seasonality and other environmental factors that may facilitate the establishment and proliferations of parasites in host populations are also highlighted. Keywords: Parasite, Factors, Assemblages, Fish hosts Introduction Results and Discussion There are numerous biotic and abiotic factors that affect parasite assemblages (Bauer, 1959; Esch, Host age and size: Generally, standard length of 1982; Kennedy, 1995). The term assemblages is fish is directly related to age (Shotter, 1973) and used here to refer to all microhabitat, in fish body size. Age has often been found to be (gastrointestinal) or on (external surfaces) the fish positively associated with the prevalence and/or hosts (Poulin, 2004). These factors include the intensity of parasitic infection (Betterton, 1974; following: physiological condition of the fish host, Madhavi and Rukmini, 1991; Chandler et al., 1995) host diet, host size, evolutionary history and (Table 1). Poulin (2000) stated that in fish environmental factors, such as season of the year, population, parasitic infection tends to increase with size and type of water body, altitude, temperature, increasing host age and size.
    [Show full text]
  • THE LARGER ANIMAL PARASITES of the FRESH-WATER FISHES of MAINE MARVIN C. MEYER Associate Professor of Zoology University of Main
    THE LARGER ANIMAL PARASITES OF THE FRESH-WATER FISHES OF MAINE MARVIN C. MEYER Associate Professor of Zoology University of Maine PUBLISHED BY Maine Department of Inland Fisheries and Game ROLAND H. COBB, Commissioner Augusta, Maine 1954 THE LARGER ANIMAL PARASITES OF THE FRESH-WATER FISHES OF MAINE PART ONE Page I. Introduction 3 II. Materials 8 III. Biology of Parasites 11 1. How Parasites are Acquired 11 2. Effects of Parasites Upon the Host 12 3. Transmission of Parasites to Man as a Result of Eating Infected Fish 21 4. Control Measures 23 IV. Remarks and Recommendations 27 V. Acknowledgments 30 PART TWO VI. Groups Involved, Life Cycles and Species En- countered 32 1. Copepoda 33 2. Pelecypoda 36 3. Hirudinea 36 4. Acanthocephala 37 5. Trematoda 42 6. Cestoda 53 7. Nematoda 64 8. Key, Based Upon External Characters, to the Adults of the Different Groups Found Parasitizing Fresh-water Fishes in Maine 69 VII. Literature on Fish Parasites 70 VIII. Methods Employed 73 1. Examination of Hosts 73 2. Killing and Preserving 74 3. Staining and Mounting 75 IX. References 77 X. Glossary 83 XI. Index 89 THE LARGER ANIMAL PARASITES OF THE FRESH-WATER FISHES OF MAINE PART ONE I. INTRODUCTION Animals which obtain their livelihood at the expense of other animals, usually without killing the latter, are known as para- sites. During recent years the general public has taken more notice of and concern in the parasites, particularly those occur- ring externally, free or encysted upon or under the skin, or inter- nally, in the flesh, and in the body cavity, of the more important fresh-water fish of the State.
    [Show full text]
  • (Branchiura, Argulidae) in Japan: a Review
    THE BIOLOGY OF ARGULUS SPP. (BRANCHIURA, ARGULIDAE) IN JAPAN: A REVIEW BY KAZUYA NAGASAWA1) Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, 739-8528 Japan ABSTRACT Branchiurans of the genus Argulus are ectoparasites of freshwater and marine fishes. A total of nine species of this genus has been reported from Japan: four freshwater species (A. americanus, A. coregoni, A. japonicus,andA. lepidostei) and five marine species (A. caecus, A. kusafugu, A. matuii, A. onodai,andA. scutiformis). This paper reviews various aspects of the biology of these nine Argulus species, particularly A. japonicus and A. coregoni, in Japan. A. japonicus is usually found on cyprinid fishes, while A. coregoni prefers salmonid fishes. These species usually overwinter as eggs, and after hatching in spring, they abundantly infect their hosts from spring to fall. These species can cause disease problems in fish farms. INTRODUCTION Branchiurans of the genus Argulus Müller, 1785 (Arguloidea: Argulidae) are ectoparasites of freshwater and marine fishes (Yamaguti, 1963). This genus comprises more than 120 species, which accounts for about 85% of the known species in the subclass Branchiura (Kabata, 1988). Argulid branchiurans can cause disease problems and mortality of fishes in aquaculture and aquaria. This paper reviews various aspects of the biology of Argulus spp. in Japan, especially A. japonicus and A. coregoni that have been well studied there. Due to limited restrictions, many papers cannot be not cited in this review, and as such, Nagasawa (2009) should be consulted for further information on the literature. The fish names used here are those recommended by Nakabo (2002).
    [Show full text]
  • And Argulus Sp
    生物圏科学 Biosphere Sci. 54:71-74 (2015) Lernaea cyprinacea (Copepoda: Lernaeidae) and Argulus sp. (Branchiura: Argulidae) parasitic on the freshwater goby Rhinogobius sp. TO endemic to Japan 1) 2) Kazuya NAGASAWA * and Ryo-ichi TORII 1) Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8528, Japan 2) Mikawa Freshwater Life Network, B101 Plaza Verde, 1-3-1 Fudaki, Hekinan, Aichi, 447-0088, Japan Abstract The freshwater goby, Rhinogobius sp. TO, is endemic to Japan and occurs only in the Tokai District, central Honshu, Japan. The lernaeid copepod, Lernaea cyprinacea Linnaeus, 1758, and the argulid branchiuran, Argulus sp., were collected from specimens of this goby in Aichi Prefecture. These crustaceans are the first parasites found from Rhinogobius sp. TO. Key words: Argulus sp., Branchiura, Copepoda, fish parasite, Lernaea cyprinacea, Rhinogobius sp. TO INTRODUCTION The genus Rhinogobius (Perciformes: Gobioidei) is a specious gobiid group and currently consists of 17 valid species in Japan (Akihito et al., 2013). Some species of this genus, however, have not yet been identified at specific level, and tentative scientific names have been used for them. Rhinogobius sp. TO is an example of such use, and “TO” is used because the distribution of the species is restricted to the Tokai District, central Honshu (Suzuki and Sakamoto, 2005), where it occurs in four prefectures (Gifu, Mie, Aichi, and Shizuoka) (Suzuki and Mukai, 2010; Akihito et al., 2013). To date, no parasite has been reported from this goby. Recently, two species of crustacean parasites, Lernaea cyprinacea Linnaeus, 1758 (Copepoda: Lernaeidae) and Argulus sp.
    [Show full text]
  • Water Quality Guidelines
    S O U T H A F R I C A N WATER QUALITY GUIDELINES VOLUME 6 AGRICULTURAL USE: AQUACULTURE Department of Water Affairs and Forestry Second Edition 1996 SOUTH AFRICAN WATER QUALITY GUIDELINES Volume 6: Agricultural Water Use: Aquaculture Second Edition, 1996 I would like to receive future versions of this document (Please supply the information required below in block letters and mail to the given address) Name:......................................................................................................................... Organisation:............................................................................................................... Address:...................................................................................................................... ......................................................................................................................... ......................................................................................................................... ......................................................................................................................... Postal Code:............................................................................................................... Telephone No.:............................................................................................................ E-Mail:......................................................................................................................... Mail reply to: Director: Water Quality
    [Show full text]
  • A Review of Argulus Spp. Occurring in UK Freshwaters
    A review of Argulus spp. occurring in UK freshwaters Science Report SC990019/SR1 SCHO0705BJIK-E-P The Environment Agency is the leading public body protecting and improving the environment in England and Wales. It’s our job to make sure that air, land and water are looked after by everyone in today’s society, so that tomorrow’s generations inherit a cleaner, healthier world. Our work includes tackling flooding and pollution incidents, reducing industry’s impacts on the environment, cleaning up rivers, coastal waters and contaminated land, and improving wildlife habitats. This report is the result of research commissioned and funded by the Environment Agency’s Science Programme. Research Contractor: Published by: Institute of Aquaculture, University of Stirling, Stirling, FK12 5HA, Environment Agency, Rio House, Waterside Drive, Aztec West, Scotland , UK Almondsbury, Bristol, BS32 4UD Tel: 01786 473171 Tel: 01454 624400 Fax: 01454 624409 www.environment-agency.gov.uk Project Manager: Chris Williams, Brampton Office ISBN 1 84432 465 6 Collaborator(s): © Environment Agency July 2005 Association of Stillwater Game Fisheries Managers Sec: Beverly Winram, Packington Hall, Packington Estate, All rights reserved. This document may be reproduced with prior Meriden, Coventry , CV7 7HF permission of the Environment Agency. Tel: 01676 522754 E-mail:[email protected] The views expressed in this document are not necessarily those of the Environment Agency. Association of Scottish Stillwater Fisheries Sec: Jim Boyd, 20 Kelvin Drive, Kirkintilloch ,G66 1BS This report is printed on Cyclus Print, a 100% recycled stock, E-mail: [email protected] which is 100% post consumer waste and is totally chlorine free.
    [Show full text]
  • Parasite Fauna of Bream Abramis Brama and Roach Rutilus Rutilus from a Man-Made Waterway and a Freshwater Habitat in Northern Germany
    DISEASES OF AQUATIC ORGANISMS Vol. 74: 225–233, 2007 Published March 13 Dis Aquat Org Parasite fauna of bream Abramis brama and roach Rutilus rutilus from a man-made waterway and a freshwater habitat in northern Germany Sonja Rückert1, 2,*, Sven Klimpel1, Harry Wilhelm Palm1 1Heinrich-Heine-University Düsseldorf, Institute of Zoomorphology, Cell Biology and Parasitology, Universitätsstr. 1, 40225 Düsseldorf, Germany 2Center for Tropical Marine Ecology (ZMT), Fahrenheitstr. 6, 28359 Bremen, Germany ABSTRACT: Fifty specimens each of bream Abramis brama and roach Rutilus rutilus were examined for metazoan parasite fauna and trichodinid ciliates; 25 specimens of each species were collected from the Kiel Canal, a man-made waterway, and a nearby freshwater lake, the Dieksee. This is the first detailed parasitological examination of A. brama and R. rutilus at these locations: 30 parasite species were found, comprising 4 protozoans, 4 myxozoans, 5 digeneans, 3 monogeneans, 2 cestodes, 6 nematodes, 2 acanthocephalans, 3 crustaceans and 1 hirudinean. The crustacean Caligus lacustris occurred in both habitats while 2 other crustacean species, 2 acanthocephalans and 1 hirudinean were recorded exclusively for the lake habitat. Larval as well as adult stages of the different parasite species were found, indicating that both fish species act as intermediate and final hosts in both habi- tats. The Kiel Canal (total of 17 parasite species) showed a lower parasite species richness for A. brama and R. rutilus (14 and 10 parasite species, respectively) than the lake (25 parasite species). A. brama had a higher parasite richness (22 species) than R. rutilus (16 species) in the lake habitat. Most parasites collected were of freshwater origin.
    [Show full text]
  • The Three-Lips, Opsariichthys Uncirostris Uncirostris (Cyprinidae), a New Host of Argulus Japonicus (Branchiura: Argulidae)
    RESEARCH ARTICLES Nature of Kagoshima Vol. 48 The three-lips, Opsariichthys uncirostris uncirostris (Cyprinidae), a new host of Argulus japonicus (Branchiura: Argulidae), with its first host record from Lake Biwa, Japan Kazuya Nagasawa1,2, Yuma Fujino3 and Hikaru Nakano4 1Graduate School of Integrated Sciences for Life, Hiroshima University, 1–4–4 Kagamiyama, Higashi-Hiroshima, Hiroshima 739–8528, Japan 2Aquaparasitology Laboratory, 365–61 Kusanagi, Shizuoka 424–0886, Japan 3Tsunai-cho, Tsuruga, Fukui 914–0056, Japan 4Fukui Prefecture Inland Waters Fisheries Cooperative Association, 34–10 Nakanogo-cho, Fukui 910–0816, Japan Abstract identified as an unidentified crucian carp, Carrassius Lake Biwa is the largest and ancient lake in Japan. sp. (Nagasawa, 2009). Grygier’s and several other The parasite fauna of aquatic animals of the lake has specimens of A. japonicus were actually examined been extensively studied, but little information is during a parasite workshop held in May 1998 at the available on the biology of fish-parasitic branchiurans. Lake Biwa Museum (Nagasawa, 2011a), and the spec- Two adult males of the argulid branchiuran Argulus ja- imens had been collected from the common carp (Na- ponicus Thiele, 1900 were collected from the body gasawa, 2009, 2011a, reported as Cyprinus carpio surface of an individual of the three-lips, Opsariich- haematopterus Marten, 1876 in Nagasawa, 2011a), the thys uncirostris uncirostris (Temminck and Schlegel, bighead carp, Hypophthalmichthysn nobilis (Ricahrd- 1846), in Lake Biwa. This represents a new host record son, 1845) (Nagasawa, 2009, as Aristichthys nobilis), for A. japonicus and its first host record from the lake. and two nominal and an unidentified species of crucian carps [Carassius cuvieri Temminck and Schlegel, Introduction 1846 (Nagasawa, 2011a), Carassius langsdorfii Tem- minck and Schlegel, 1846 (Nagasawa, 2009, 2011a, as Lake Biwa is the largest (670 km2) lake in Japan C.
    [Show full text]
  • Expression of Infection-Related Immune Response in European Sea Bass
    Fish and Shellfish Immunology 84 (2019) 62–72 Contents lists available at ScienceDirect Fish and Shellfish Immunology journal homepage: www.elsevier.com/locate/fsi Full length article Expression of infection-related immune response in European sea bass (Dicentrarchus labrax) during a natural outbreak from a unique T dinoflagellate Amyloodinium ocellatum ∗ Omkar Byadgi , Paola Beraldo, Donatella Volpatti, Michela Massimo, Chiara Bulfon, Marco Galeotti Section of Animal and Veterinary Sciences, Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, 33100, Udine, Italy ARTICLE INFO ABSTRACT Keywords: In the Mediterranean area, amyloodiniosis represents a major hindrance for marine aquaculture, causing high Natural infection mortalities in lagoon-type based rearing sites during warm seasons. Amyloodinium ocellatum (AO) is the most Amyloodinium ocellatum common and important dinoflagellate parasitizing fish, and is one of the few fish parasites that can infest several European sea bass fish species living within its ecological range. In the present study, A. ocellatum was recorded and collected from Immune response infected European sea bass (Dicentrarchus labrax) during a summer 2017 outbreak in north east Italy. Immune related genes Histological observation of infected ESB gill samples emphasized the presence of round or pear-shaped trophonts anchored to the oro-pharingeal cavity. Molecular analysis for small subunit (SSU) rDNA of A. ocellatum from gill genomic DNA amplified consistently and yielded 248 bp specific amplicon of A. ocellatum, that was also con- firmed using sequencing and NCBI Blast analysis. Histological sections of ESB gill samples were addressed to immunohistochemical procedure for the labelling of ESB igm, inos, tlr2, tlr4, pcna and cytokeratin.
    [Show full text]
  • Macroparasite Infections of Amphibians: What Can They Tell Us?
    EcoHealth DOI: 10.1007/s10393-012-0785-3 Ó 2012 International Association for Ecology and Health Review Macroparasite Infections of Amphibians: What Can They Tell Us? Janet Koprivnikar,1 David J. Marcogliese,2 Jason R. Rohr,3 Sarah A. Orlofske,4 Thomas R. Raffel,5 and Pieter T. J. Johnson4 1Department of Biology, Brandon University, 270 18th Street, Brandon, MB R7A6A9, Canada 2Fluvial Ecosystem Research Section, Aquatic Ecosystem Protection Research Division, Water Science and Technology Directorate, Science and Technology Branch, Environment Canada, Montreal, QC H2Y 2E7, Canada 3Department of Integrative Biology, University of South Florida, Tampa, FL 33620 4Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309 5Biology Department, Dickinson College, Carlisle, PA 17013 Abstract: Understanding linkages between environmental changes and disease emergence in human and wildlife populations represents one of the greatest challenges to ecologists and parasitologists. While there is considerable interest in drivers of amphibian microparasite infections and the resulting consequences, com- paratively little research has addressed such questions for amphibian macroparasites. What work has been done in this area has largely focused on nematodes of the genus Rhabdias and on two genera of trematodes (Ribeiroia and Echinostoma). Here, we provide a synopsis of amphibian macroparasites, explore how macroparasites may affect amphibian hosts and populations, and evaluate the significance of these parasites in larger community and ecosystem contexts. In addition, we consider environmental influences on amphibian–macroparasite interactions by exploring contemporary ecological factors known or hypothesized to affect patterns of infec- tion. While some macroparasites of amphibians have direct negative effects on individual hosts, no studies have explicitly examined whether such infections can affect amphibian populations.
    [Show full text]