Characterization of Native Protein Complexes and Protein Isoform Variation Using Size- Fractionation-Based Quantitative Proteomics*□S

Total Page:16

File Type:pdf, Size:1020Kb

Characterization of Native Protein Complexes and Protein Isoform Variation Using Size- Fractionation-Based Quantitative Proteomics*□S Research Author’s Choice © 2013 by The American Society for Biochemistry and Molecular Biology, Inc. This paper is available on line at http://www.mcponline.org Characterization of Native Protein Complexes and Protein Isoform Variation Using Size- fractionation-based Quantitative Proteomics*□S Kathryn J. Kirkwood‡§, Yasmeen Ahmad‡§, Mark Larance‡§, and Angus I. Lamond‡¶ Proteins form a diverse array of complexes that mediate The majority of proteins function as part of multiprotein cellular function and regulation. A largely unexplored fea- complexes and not as isolated polypeptides. These protein ture of such protein complexes is the selective participa- complexes range from simple homodimers to large structures tion of specific protein isoforms and/or post-translation- composed of many different polypeptides. Protein complexes ally modified forms. In this study, we combined native vary in their size and shape from small globular dimers, such size-exclusion chromatography (SEC) with high-through- as 14-3-3 proteins, to large elongated filaments of variable put proteomic analysis to characterize soluble protein length, such as microtubules. The wide variety of possible complexes isolated from human osteosarcoma (U2OS) protein–protein interactions within multiprotein complexes cells. Using this approach, we have identified over 71,500 contributes to the diversity of functions that are involved in peptides and 1,600 phosphosites, corresponding to over cellular processes and regulatory mechanisms. 8,000 proteins, distributed across 40 SEC fractions. This Another important source of functional diversity and regu- represents >50% of the predicted U2OS cell proteome, lation is the large number of protein isoforms that may be identified with a mean peptide sequence coverage of 27% generated from each gene. Functionally and structurally dis- per protein. Three biological replicates were performed, tinct isoforms can arise via multiple mechanisms, including allowing statistical evaluation of the data and demonstrat- alternative splicing, post-translational modification (PTM),1 ing a high degree of reproducibility in the SEC fraction- ation procedure. Specific proteins were detected interact- and proteolytic cleavage. Distinct isoforms can exhibit radi- ing with multiple independent complexes, as typified by cally different properties. For example, including or excluding the separation of distinct complexes for the MRFAP1- individual exons can either create or remove protein–protein MORF4L1-MRGBP interaction network. The data also re- interaction interfaces for binding specific interaction partners. vealed protein isoforms and post-translational modifica- Similarly, phosphorylation, and other PTMs, can either create tions that selectively associated with distinct subsets of or remove binding sites for interacting proteins, substrates, or protein complexes. Surprisingly, there was clear enrich- ligands. PTMs can also promote structural changes in pro- ment for specific Gene Ontology terms associated with teins and affect catalytic activity. differential size classes of protein complexes. This study The association of protein isoforms and post-translationally demonstrates that combined SEC/MS analysis can be used modified factors in multiprotein complexes can influence their for the system-wide annotation of protein complexes and to subcellular location, activity, and substrate specificity. This predict potential isoform-specific interactions. All of these can be dynamically regulated to modulate protein complex SEC data on the native separation of protein complexes composition, and hence localization and function, to allow have been integrated within the Encyclopedia of Proteome cells to respond to spatial and temporal stimuli. It is therefore Dynamics, an online, multidimensional data-sharing resource important to characterize protein complexes at the level of the available to the community. Molecular & Cellular Proteom- protein isoforms and post-translationally modified forms they ics 12: 10.1074/mcp.M113.032367, 3851–3873, 2013. contain in order to fully decipher the network of signaling and regulatory pathways within cells. Although many types of protein complexes have been stud- From the ‡Centre for Gene Regulation and Expression, College of ied in detail, in-depth analysis of the composition, dynamics, Life Sciences, University of Dundee, Dow St., Dundee, DD1 5EH, United Kingdom and isoform association of protein complexes formed in either Author’s Choice—Final version full access. Received July 4, 2013, and in revised form, August 24, 2013 1 The abbreviations used are: EPD, Encyclopedia of Proteome Dy- Published, MCP Papers in Press, September 16, 2013, DOI namics; GO, gene ontology; HP1BP3, heterochromatin protein 10.1074/mcp.M113.032367 1–binding protein 3; IP, immunoprecipitation; LDS, lithium dodecyl Author contributions: K.K. and M.L. performed SEC experiments. sulfate; MORF4L1, mortality factor 4-like protein 1; MRFAP1, MORF4 K.K. performed the immunoblotting. Y.A. performed the statistical family-associated protein 1; MRGBP, MRG/MORF4L-binding protein; analysis and created the Encyclopedia of Proteome Dynamics. K.K., PTM, post-translational modification; SEC, size-exclusion chroma- Y.A., M.L., and A.I.L. wrote the paper. A.I.L. mentored the project. tography; TCEP, triscarboxyethylphosphine. Molecular & Cellular Proteomics 12.12 3851 Native Protein Complex Analysis by Quantitative Proteomics human cells or model organisms is still not well documented For system-wide studies of the composition and dynamics at a system-wide level. The CORUM database, compiled us- of protein complexes, alternative methods, in addition to im- ing a variety of information from the literature describing pro- mune-affinity purification, are required for convenient separa- tein interactions and assemblies, currently provides the larg- tion, characterization, and comparison of cellular protein est public dataset of protein complexes (1). CORUM contains complexes. To address this, a number of studies have utilized information relating to ϳ1,970 protein complexes identified in various forms of either column chromatography or native gel human cells. However, these complexes are formed from electrophoresis in combination with mass-spectrometry- proteins encoded by only ϳ16% of the known human protein- based proteomics. For example, protein complexes have coding genes, indicating that many forms of protein com- been separated using techniques including blue native poly- plexes still remain to be identified and characterized (1). Fur- acrylamide gel electrophoresis (18, 19), ion-exchange chro- thermore, the CORUM database does not describe how the matography (20), and size-exclusion chromatography (21, 22) protein compositions of the complexes may vary, either dy- prior to MS analysis of proteins in the fractionated complexes. namically or in different subcellular locations, or how this Size-exclusion chromatography (SEC) is a well-established relates to protein isoforms and PTMs. This illustrates that technique used to separate proteins and protein complexes in there is still a major deficit in our knowledge of the structure solution on the basis of their shape/size (rotational cross- and functions of cellular protein complexes and how they section) (23). SEC has been extensively used as an interme- contribute to biological regulatory mechanisms. diate step in conventional multistep biochemical protein pu- The technique that is now most widely used to identify the rification strategies. In contrast, SEC has been less commonly components of protein complexes is affinity purification of an combined with mass-spectrometry-based proteomics for the individual “bait” protein and subsequent analysis of the co- high-throughput characterization of protein complexes. How- isolated proteins, usually via mass spectrometry (2). Affinity ever, this has been demonstrated in previous studies that purification can use antibodies specific for an endogenous analyzed native protein complexes in plant chloroplasts (22) or large cytosolic complexes in mammalian cells (21). target protein (3, 4), if available, or, alternatively, can utilize a In this study, we combined native SEC with high-throughput genetically constructed, epitope-tagged bait protein. The lat- mass-spectrometry-based proteomic analysis to characterize ter procedure is now widely used and is advantageous in that soluble protein complexes isolated from human osteosarcoma many different complexes can be compared using an identical cells. Herein we demonstrate the utility and reproducibility of antibody, or other affinity-purification method, targeted to the this approach for the system-wide characterization of endoge- tag on the bait (for examples, see Refs. 5–7; for reviews, see nous, untagged protein complexes and show how it can be Refs. 8 and 9). In contrast, it is harder to directly compare the used to identify specific protein isoforms and PTMs associated results from immunoprecipitation of different endogenous with distinct protein complexes. The resulting data are available protein complexes because each specific antibody that is to the community in a convenient format in the Encyclopedia of used has different affinities and properties. Nonetheless, al- Proteome Dynamics (EPD) (www.peptracker.com/encyclopedia though epitope-tag “pull-down” techniques are now com- Information/), a user-friendly, searchable online database. monly used, they also have limitations. Not least, the addition of epitope
Recommended publications
  • Rabbit Anti-SEN1/FITC Conjugated Antibody
    SunLong Biotech Co.,LTD Tel: 0086-571- 56623320 Fax:0086-571- 56623318 E-mail:[email protected] www.sunlongbiotech.com Rabbit Anti-SEN1/FITC Conjugated antibody SL7576R-FITC Product Name: Anti-SEN1/FITC Chinese Name: FITC标记的细胞衰老相关蛋白1抗体 Cell senescence related gene complementation group B; Cellular senescence related protein 1; CSR; CSRB; MORF 4; MORF4; MORF4 protein; Mortality factor 4; SEN 1; Alias: SEN; Senescence (cellular) related 1; Senescence related cellular 1; Transcription factor like protein MORF4; MO4L1_HUMAN; Mortality factor 4-like protein 1; MORF- related gene 15 protein; Protein MSL3-1; Transcription factor-like protein MRG15. Organism Species: Rabbit Clonality: Polyclonal React Species: Human,Mouse,Rat,Dog,Cow,Zebrafish, IF=1:50-200 Applications: not yet tested in other applications. optimal dilutions/concentrations should be determined by the end user. Molecular weight: 27kDa Form: Lyophilized or Liquid Concentration: 1mg/ml immunogen: KLH conjugated synthetic peptide derived from human Mortality factor 4-like protein 1 Lsotype: IgGwww.sunlongbiotech.com Purification: affinity purified by Protein A Storage Buffer: 0.01M TBS(pH7.4) with 1% BSA, 0.03% Proclin300 and 50% Glycerol. Store at -20 °C for one year. Avoid repeated freeze/thaw cycles. The lyophilized antibody is stable at room temperature for at least one month and for greater than a year Storage: when kept at -20°C. When reconstituted in sterile pH 7.4 0.01M PBS or diluent of antibody the antibody is stable for at least two weeks at 2-4 °C. background: Cellular senescence, the terminal nondividing state that normal cells enter following completion of their proliferative potential, is the dominant phenotype in hybrids of Product Detail: normal and immortal cells.
    [Show full text]
  • BMC Genomics Biomed Central
    BMC Genomics BioMed Central Research article Open Access The functional modulation of epigenetic regulators by alternative splicing Sergio Lois1,2, Noemí Blanco1,2, Marian Martínez-Balbás*1,2 and Xavier de la Cruz*2,3 Address: 1Instituto de Biología Molecular de Barcelona. CID. Consejo Superior de Investigaciones Científicas (CSIC); 08028 Barcelona, Spain, 2Institut de Recerca Biomèdica-PCB; 08028 Barcelona, Spain and 3Institució Catalana de Recerca i Estudis Avançats (ICREA); Barcelona, Spain Email: Sergio Lois - [email protected]; Noemí Blanco - [email protected]; Marian Martínez-Balbás* - [email protected]; Xavier de la Cruz* - [email protected] * Corresponding authors Published: 25 July 2007 Received: 24 April 2007 Accepted: 25 July 2007 BMC Genomics 2007, 8:252 doi:10.1186/1471-2164-8-252 This article is available from: http://www.biomedcentral.com/1471-2164/8/252 © 2007 Lois et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Epigenetic regulators (histone acetyltransferases, methyltransferases, chromatin- remodelling enzymes, etc) play a fundamental role in the control of gene expression by modifying the local state of chromatin. However, due to their recent discovery, little is yet known about their own regulation. This paper addresses this point, focusing on alternative splicing regulation, a mechanism already known to play an important role in other protein families, e.g. transcription factors, membrane receptors, etc.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Understanding the Role of the Chromosome 15Q25.1 in COPD Through Epigenetics and Transcriptomics
    European Journal of Human Genetics (2018) 26:709–722 https://doi.org/10.1038/s41431-017-0089-8 ARTICLE Understanding the role of the chromosome 15q25.1 in COPD through epigenetics and transcriptomics 1 1,2 1,3,4 5,6 5,6 Ivana Nedeljkovic ● Elena Carnero-Montoro ● Lies Lahousse ● Diana A. van der Plaat ● Kim de Jong ● 5,6 5,7 6 8 9 10 Judith M. Vonk ● Cleo C. van Diemen ● Alen Faiz ● Maarten van den Berge ● Ma’en Obeidat ● Yohan Bossé ● 11 1,12 12 1 David C. Nickle ● BIOS Consortium ● Andre G. Uitterlinden ● Joyce J. B. van Meurs ● Bruno C. H. Stricker ● 1,4,13 6,8 5,6 1 1 Guy G. Brusselle ● Dirkje S. Postma ● H. Marike Boezen ● Cornelia M. van Duijn ● Najaf Amin Received: 14 March 2017 / Revised: 6 November 2017 / Accepted: 19 December 2017 / Published online: 8 February 2018 © The Author(s) 2018. This article is published with open access Abstract Chronic obstructive pulmonary disease (COPD) is a major health burden in adults and cigarette smoking is considered the most important environmental risk factor of COPD. Chromosome 15q25.1 locus is associated with both COPD and smoking. Our study aims at understanding the mechanism underlying the association of chromosome 15q25.1 with COPD through epigenetic and transcriptional variation in a population-based setting. To assess if COPD-associated variants in 1234567890();,: 15q25.1 are methylation quantitative trait loci, epigenome-wide association analysis of four genetic variants, previously associated with COPD (P < 5 × 10−8) in the 15q25.1 locus (rs12914385:C>T-CHRNA3, rs8034191:T>C-HYKK, rs13180: C>T-IREB2 and rs8042238:C>T-IREB2), was performed in the Rotterdam study (n = 1489).
    [Show full text]
  • Molecular and Cellular Mechanisms of the Angiogenic Effect of Poly(Methacrylic Acid-Co-Methyl Methacrylate) Beads
    Molecular and Cellular Mechanisms of the Angiogenic Effect of Poly(methacrylic acid-co-methyl methacrylate) Beads by Lindsay Elizabeth Fitzpatrick A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Institute of Biomaterials and Biomedical Engineering University of Toronto © Copyright by Lindsay Elizabeth Fitzpatrick 2012 Molecular and Cellular Mechanisms of the Angiogenic Effect of Poly(methacrylic acid-co-methyl methacrylate) Beads Lindsay Elizabeth Fitzpatrick Doctorate of Philosophy Institute of Biomaterials and Biomedical Engineering University of Toronto 2012 Abstract Poly(methacrylic acid -co- methyl methacrylate) beads were previously shown to have a therapeutic effect on wound closure through the promotion of angiogenesis. However, it was unclear how this polymer elicited its beneficial properties. The goal of this thesis was to characterize the host response to MAA beads by identifying molecules of interest involved in MAA-mediated angiogenesis (in comparison to poly(methyl methacrylate) beads, PMMA). Using a model of diabetic wound healing and a macrophage-like cell line (dTHP-1), eight molecules of interest were identified in the host response to MAA beads. Gene and/or protein expression analysis showed that MAA beads increased the expression of Shh, IL-1β, IL-6, TNF- α and Spry2, but decreased the expression of CXCL10 and CXCL12, compared to PMMA and no beads. MAA beads also appeared to modulate the expression of OPN. In vivo, the global gene expression of OPN was increased in wounds treated with MAA beads, compared to PMMA and no beads. In contrast, dTHP-1 decreased OPN gene expression compared to PMMA and no beads, but expressed the same amount of secreted OPN, suggesting that the cells decreased the expression of the intracellular isoform of OPN.
    [Show full text]
  • Aneuploidy: Using Genetic Instability to Preserve a Haploid Genome?
    Health Science Campus FINAL APPROVAL OF DISSERTATION Doctor of Philosophy in Biomedical Science (Cancer Biology) Aneuploidy: Using genetic instability to preserve a haploid genome? Submitted by: Ramona Ramdath In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomedical Science Examination Committee Signature/Date Major Advisor: David Allison, M.D., Ph.D. Academic James Trempe, Ph.D. Advisory Committee: David Giovanucci, Ph.D. Randall Ruch, Ph.D. Ronald Mellgren, Ph.D. Senior Associate Dean College of Graduate Studies Michael S. Bisesi, Ph.D. Date of Defense: April 10, 2009 Aneuploidy: Using genetic instability to preserve a haploid genome? Ramona Ramdath University of Toledo, Health Science Campus 2009 Dedication I dedicate this dissertation to my grandfather who died of lung cancer two years ago, but who always instilled in us the value and importance of education. And to my mom and sister, both of whom have been pillars of support and stimulating conversations. To my sister, Rehanna, especially- I hope this inspires you to achieve all that you want to in life, academically and otherwise. ii Acknowledgements As we go through these academic journeys, there are so many along the way that make an impact not only on our work, but on our lives as well, and I would like to say a heartfelt thank you to all of those people: My Committee members- Dr. James Trempe, Dr. David Giovanucchi, Dr. Ronald Mellgren and Dr. Randall Ruch for their guidance, suggestions, support and confidence in me. My major advisor- Dr. David Allison, for his constructive criticism and positive reinforcement.
    [Show full text]
  • MRFAP1 (NM 033296) Human Tagged ORF Clone – RG206815
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for RG206815 MRFAP1 (NM_033296) Human Tagged ORF Clone Product data: Product Type: Expression Plasmids Product Name: MRFAP1 (NM_033296) Human Tagged ORF Clone Tag: TurboGFP Symbol: MRFAP1 Synonyms: PAM14; PGR1 Vector: pCMV6-AC-GFP (PS100010) E. coli Selection: Ampicillin (100 ug/mL) Cell Selection: Neomycin ORF Nucleotide >RG206815 representing NM_033296 Sequence: Red=Cloning site Blue=ORF Green=Tags(s) TTTTGTAATACGACTCACTATAGGGCGGCCGGGAATTCGTCGACTGGATCCGGTACCGAGGAGATCTGCC GCCGCGATCGCC ATGCGGCCCCTGGACATCGTCGAGCTGGCGGAACCGGAGGAAGTGGAGGTGCTGGAGCCCGAGGAGGATT TCGAGCAGTTTCTGCTCCCGGTCATCAACGAGATGCGCGAGGACATCGCGTCGCTGACGCGCGAGCACGG GCGGGCGTACCTGCGGAACCGGAGCAAGCTGTGGGAGATGGACAATATGCTCATCCAGATCAAAACGCAG GTGGAGGCCTCGGAGGAGAGCGCCCTCAACCACCTCCAGAACCCGGGCGACGCGGCCGAGGGCCGGGCGG CCAAGAGGTGCGAGAAGGCCGAGGAGAAGGCCAAGGAGATTGCGAAGATGGCAGAGATGCTGGTGGAGCT GGTCCGGCGGATAGAGAAGAGCGAGTCGTCG ACGCGTACGCGGCCGCTCGAG - GFP Tag - GTTTAA Protein Sequence: >RG206815 representing NM_033296 Red=Cloning site Green=Tags(s) MRPLDIVELAEPEEVEVLEPEEDFEQFLLPVINEMREDIASLTREHGRAYLRNRSKLWEMDNMLIQIKTQ VEASEESALNHLQNPGDAAEGRAAKRCEKAEEKAKEIAKMAEMLVELVRRIEKSESS TRTRPLE - GFP Tag - V Restriction Sites: SgfI-MluI This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville,
    [Show full text]
  • Open Data for Differential Network Analysis in Glioma
    International Journal of Molecular Sciences Article Open Data for Differential Network Analysis in Glioma , Claire Jean-Quartier * y , Fleur Jeanquartier y and Andreas Holzinger Holzinger Group HCI-KDD, Institute for Medical Informatics, Statistics and Documentation, Medical University Graz, Auenbruggerplatz 2/V, 8036 Graz, Austria; [email protected] (F.J.); [email protected] (A.H.) * Correspondence: [email protected] These authors contributed equally to this work. y Received: 27 October 2019; Accepted: 3 January 2020; Published: 15 January 2020 Abstract: The complexity of cancer diseases demands bioinformatic techniques and translational research based on big data and personalized medicine. Open data enables researchers to accelerate cancer studies, save resources and foster collaboration. Several tools and programming approaches are available for analyzing data, including annotation, clustering, comparison and extrapolation, merging, enrichment, functional association and statistics. We exploit openly available data via cancer gene expression analysis, we apply refinement as well as enrichment analysis via gene ontology and conclude with graph-based visualization of involved protein interaction networks as a basis for signaling. The different databases allowed for the construction of huge networks or specified ones consisting of high-confidence interactions only. Several genes associated to glioma were isolated via a network analysis from top hub nodes as well as from an outlier analysis. The latter approach highlights a mitogen-activated protein kinase next to a member of histondeacetylases and a protein phosphatase as genes uncommonly associated with glioma. Cluster analysis from top hub nodes lists several identified glioma-associated gene products to function within protein complexes, including epidermal growth factors as well as cell cycle proteins or RAS proto-oncogenes.
    [Show full text]
  • WO 2012/174282 A2 20 December 2012 (20.12.2012) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2012/174282 A2 20 December 2012 (20.12.2012) P O P C T (51) International Patent Classification: David [US/US]; 13539 N . 95th Way, Scottsdale, AZ C12Q 1/68 (2006.01) 85260 (US). (21) International Application Number: (74) Agent: AKHAVAN, Ramin; Caris Science, Inc., 6655 N . PCT/US20 12/0425 19 Macarthur Blvd., Irving, TX 75039 (US). (22) International Filing Date: (81) Designated States (unless otherwise indicated, for every 14 June 2012 (14.06.2012) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, English (25) Filing Language: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, Publication Language: English DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, (30) Priority Data: KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, 61/497,895 16 June 201 1 (16.06.201 1) US MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, 61/499,138 20 June 201 1 (20.06.201 1) US OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, 61/501,680 27 June 201 1 (27.06.201 1) u s SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, 61/506,019 8 July 201 1(08.07.201 1) u s TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
    [Show full text]
  • Zimmer Cell Calcium 2013 Mammalian S100 Evolution.Pdf
    Cell Calcium 53 (2013) 170–179 Contents lists available at SciVerse ScienceDirect Cell Calcium jo urnal homepage: www.elsevier.com/locate/ceca Evolution of the S100 family of calcium sensor proteins a,∗ b b,1 b Danna B. Zimmer , Jeannine O. Eubanks , Dhivya Ramakrishnan , Michael F. Criscitiello a Center for Biomolecular Therapeutics and Department of Biochemistry & Molecular Biology, University of Maryland School of Medicine, 108 North Greene Street, Baltimore, MD 20102, United States b Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843-4467, United States a r t i c l e i n f o a b s t r a c t 2+ Article history: The S100s are a large group of Ca sensors found exclusively in vertebrates. Transcriptomic and genomic Received 4 October 2012 data from the major radiations of mammals were used to derive the evolution of the mammalian Received in revised form 1 November 2012 S100s genes. In human and mouse, S100s and S100 fused-type proteins are in a separate clade from Accepted 3 November 2012 2+ other Ca sensor proteins, indicating that an ancient bifurcation between these two gene lineages Available online 14 December 2012 has occurred. Furthermore, the five genomic loci containing S100 genes have remained largely intact during the past 165 million years since the shared ancestor of egg-laying and placental mammals. Keywords: Nonetheless, interesting births and deaths of S100 genes have occurred during mammalian evolution. Mammals The S100A7 loci exhibited the most plasticity and phylogenetic analyses clarified relationships between Phylogenetic analyses the S100A7 proteins encoded in the various mammalian genomes.
    [Show full text]
  • 2017 Bhaloo Shirin Ethesis
    This electronic thesis or dissertation has been downloaded from the King’s Research Portal at https://kclpure.kcl.ac.uk/portal/ Vascular Stem Cell Migration in Response to Dkk3 in Vascular Diseases The emergence of a novel chemokine-like protein Bhaloo, Shirin Issa Awarding institution: King's College London The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without proper acknowledgement. END USER LICENCE AGREEMENT Unless another licence is stated on the immediately following page this work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International licence. https://creativecommons.org/licenses/by-nc-nd/4.0/ You are free to copy, distribute and transmit the work Under the following conditions: Attribution: You must attribute the work in the manner specified by the author (but not in any way that suggests that they endorse you or your use of the work). Non Commercial: You may not use this work for commercial purposes. No Derivative Works - You may not alter, transform, or build upon this work. Any of these conditions can be waived if you receive permission from the author. Your fair dealings and other rights are in no way affected by the above. Take down policy If you believe that this document breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 09. Oct. 2021 Vascular Stem Cell Migration in Response to Dkk3 in Vascular Diseases The emergence of a novel chemokine-like protein By Shirin Issa Bhaloo A thesis submitted to King’s College London for the degree of Doctor of Philosophy Cardiovascular Division Faculty of Life Sciences & Medicine King’s College London May 2017 0 In dedication to my Family 1 Acknowledgements I wish to express my sincere gratitude to Professor Qingbo Xu for giving me the opportunity to pursue a PhD degree in his laboratory at King’s College London.
    [Show full text]
  • Integrative Framework for Identification of Key Cell Identity Genes Uncovers
    Integrative framework for identification of key cell PNAS PLUS identity genes uncovers determinants of ES cell identity and homeostasis Senthilkumar Cinghua,1, Sailu Yellaboinaa,b,c,1, Johannes M. Freudenberga,b, Swati Ghosha, Xiaofeng Zhengd, Andrew J. Oldfielda, Brad L. Lackfordd, Dmitri V. Zaykinb, Guang Hud,2, and Raja Jothia,b,2 aSystems Biology Section and dStem Cell Biology Section, Laboratory of Molecular Carcinogenesis, and bBiostatistics Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709; and cCR Rao Advanced Institute of Mathematics, Statistics, and Computer Science, Hyderabad, Andhra Pradesh 500 046, India Edited by Norbert Perrimon, Harvard Medical School and Howard Hughes Medical Institute, Boston, MA, and approved March 17, 2014 (received for review October 2, 2013) Identification of genes associated with specific biological pheno- (mESCs) for genes essential for the maintenance of ESC identity types is a fundamental step toward understanding the molecular resulted in only ∼8% overlap (8, 9), although many of the unique basis underlying development and pathogenesis. Although RNAi- hits in each screen were known or later validated to be real. The based high-throughput screens are routinely used for this task, lack of concordance suggest that these screens have not reached false discovery and sensitivity remain a challenge. Here we describe saturation (14) and that additional genes of importance remain a computational framework for systematic integration of published to be discovered. gene expression data to identify genes defining a phenotype of Motivated by the need for an alternative approach for iden- interest. We applied our approach to rank-order all genes based on tification of key cell identity genes, we developed a computa- their likelihood of determining ES cell (ESC) identity.
    [Show full text]