Zootaxa, Araneae, Mygalomorphae, Antrodiaetidae

Total Page:16

File Type:pdf, Size:1020Kb

Zootaxa, Araneae, Mygalomorphae, Antrodiaetidae Zootaxa 872: 1–19 (2005) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA 872 Copyright © 2005 Magnolia Press ISSN 1175-5334 (online edition) Two sympatric species of Antrodiaetus from southwestern North Carolina (Araneae, Mygalomorphae, Antrodiaetidae) BRENT E. HENDRIXSON & JASON E. BOND East Carolina University, Department of Biology, Howell Science Complex N211, Greenville, NC 27858 USA; [email protected], [email protected] Abstract Two sympatric species of Antrodiaetus (Araneae, Mygalomorphae, Antrodiaetidae) are recorded from southwestern North Carolina: A. unicolor (Hentz 1841) and A. microunicolor new species. A neotype for A. unicolor is designated from DeSoto State Park in Alabama and a description is pro- vided. A new species of Antrodiaetus is described from the Coweeta Long Term Ecological Research station in southwestern North Carolina. This new species is sympatric (putatively syn- topic) with the closely related A. unicolor and can be differentiated from that species on the basis of size, setal characters, coloration, selected morphometric ratios, and non-overlapping breeding sea- sons. A brief account on the natural history for both species at Coweeta is presented. Key words: New species, spider taxonomy, temporal isolation, neotype designation Introduction The mygalomorph spider genus Antrodiaetus Ausserer 1871 currently includes 13 species throughout the United States, western Canada, and Japan. These spiders (Fig. 1) build cryptic, silk-lined subterranean burrows that are concealed by a collapsible turret or collar during daylight hours (Figs. 12–14). After dusk, spiders prop open the collar and wait at the burrow entrance to seize passing insects and other prey items. The taxonomy of this group has not received formal attention since Coyle (1971), although the most recent treat- ment of the genus by Miller and Coyle (1996) proposed a species-level phylogeny for Antrodiaetus and Atypoides Pickard-Cambridge 1883. The highest nominal species-level diversity of this genus is in the Pacific Northwest and surrounding areas where at least six species are known (Coyle 1971). In addition, two species are recognized from Japan, another confined to the “mountain islands” of the American Southwest, and the remaining four from the eastern and Midwestern deciduous forests of the United States. Of the latter Accepted by P. Jäger: 10 Feb. 2005; published: 25 Feb. 2005 1.
Recommended publications
  • Abundance and Community Composition of Arboreal Spiders: the Relative Importance of Habitat Structure
    AN ABSTRACT OF THE THESIS OF Juraj Halaj for the degree of Doctor of Philosophy in Entomology presented on May 6, 1996. Title: Abundance and Community Composition of Arboreal Spiders: The Relative Importance of Habitat Structure. Prey Availability and Competition. Abstract approved: Redacted for Privacy _ John D. Lattin, Darrell W. Ross This work examined the importance of structural complexity of habitat, availability of prey, and competition with ants as factors influencing the abundance and community composition of arboreal spiders in western Oregon. In 1993, I compared the spider communities of several host-tree species which have different branch structure. I also assessed the importance of several habitat variables as predictors of spider abundance and diversity on and among individual tree species. The greatest abundance and species richness of spiders per 1-m-long branch tips were found on structurally more complex tree species, including Douglas-fir, Pseudotsuga menziesii (Mirbel) Franco and noble fir, Abies procera Rehder. Spider densities, species richness and diversity positively correlated with the amount of foliage, branch twigs and prey densities on individual tree species. The amount of branch twigs alone explained almost 70% of the variation in the total spider abundance across five tree species. In 1994, I experimentally tested the importance of needle density and branching complexity of Douglas-fir branches on the abundance and community structure of spiders and their potential prey organisms. This was accomplished by either removing needles, by thinning branches or by tying branches. Tying branches resulted in a significant increase in the abundance of spiders and their prey. Densities of spiders and their prey were reduced by removal of needles and thinning.
    [Show full text]
  • Systematics of the Californian Euctenizine Spider Genus Apomastus
    CSIRO PUBLISHING www.publish.csiro.au/journals/is Invertebrate Systematics, 2004, 18, 361–376 Systematics of the Californian euctenizine spider genus Apomastus (Araneae:Mygalomorphae:Cyrtaucheniidae): the relationship between molecular and morphological taxonomy Jason E. Bond East Carolina University, Department of Biology, Howell Science Complex–N211, Greenville, NC 27858, USA. Email: [email protected] Abstract. The genus Apomastus Bond & Opell is a relatively small group of mygalomorph spiders with a limited geographic distribution. Restricted to the Los Angeles Basin, San Juan Mountains, and San Joaquin Hills, Apomastus occupies a fragile habitat rapidly succumbing to urban encroachment. Although originally described as monotypic, the genus was hypothesised to contain at least one additional species. However, females of the two reputed species are morphologically indistinguishable and the authors were unable confidently to assign specific status to populations for which they lacked male specimens. Using an approach that combines geographic, morphological and molecular data, all known populations are assigned to one of two hypothesised species. Mitochondrial DNA cytochrome c oxidase I sequences are used to infer population phylogeny, providing the evolutionary framework necessary to resolve population and species identity issues. Conflicts between the parsimony and Bayesian analyses raise questions about species delineation, species paraphyly, and the application of molecular taxonomy to these taxa. Issues relevant to the conservation of Apomastus species are discussed in light of the substantive intraspecific species divergence observed in the mtDNA data. The type species, Apomastus schlingeri Bond & Opell, is redescribed and a second species, Apomastus kristenae, sp. nov., is described. Additional keywords: conservation genetics, cytochrome oxidase, molecular systematics, molecular taxonomy, phylogeography, species paraphyly, spider taxonomy.
    [Show full text]
  • Systematic Revision of Hoggicosa Roewer, 1960, the Australian 'Bicolor' Group of Wolf Spiders (Araneae: Lycosidae)Zoj 545 83
    Zoological Journal of the Linnean Society, 2010, 158, 83–123. With 25 figures Systematic revision of Hoggicosa Roewer, 1960, the Australian ‘bicolor’ group of wolf spiders (Araneae: Lycosidae)zoj_545 83..123 PETER R. LANGLANDS1* and VOLKER W. FRAMENAU1,2 1School of Animal Biology, University of Western Australia, Crawley, WA, 6009, Australia 2Department of Terrestrial Zoology, Western Australian Museum, Locked bag 49, Welshpool DC, WA, 6986, Australia Received 16 September 2008; accepted for publication 3 November 2008 The Australian wolf spider genus Hoggicosa Roewer, 1960 with the type species Hoggicosa errans (Hogg, 1905) is revised to include ten species: Hoggicosa alfi sp. nov.; Hoggicosa castanea (Hogg, 1905) comb. nov. (= Lycosa errans Hogg, 1905 syn. nov.; = Lycosa perinflata Pulleine, 1922 syn. nov.; = Lycosa skeeti Pulleine, 1922 syn. nov.); Hoggicosa bicolor (McKay, 1973) comb. nov.; Hoggicosa brennani sp. nov.; Hoggicosa duracki (McKay, 1975) comb. nov.; Hoggicosa forresti (McKay, 1973) comb. nov.; Hoggicosa natashae sp. nov.; Hoggicosa snelli (McKay, 1975) comb. nov.; Hoggicosa storri (McKay, 1973) comb. nov.; and Hoggicosa wolodymyri sp. nov. The Namibian Hoggicosa exigua Roewer, 1960 is transferred to Hogna, Hogna exigua (Roewer, 1960) comb. nov. A phylogenetic analysis including nine Hoggicosa species, 11 lycosine species from Australia and four from overseas, with Arctosa cinerea Fabricius, 1777 as outgroup, supported the monophyly of Hoggicosa, with a larger distance between the epigynum anterior pockets compared to the width of the posterior transverse part. The analysis found that an unusual sexual dimorphism for wolf spiders (females more colourful than males), evident in four species of Hoggicosa, has evolved multiple times. Hoggicosa are burrowing lycosids, several constructing doors from sand or debris, and are predominantly found in semi-arid to arid regions of Australia.
    [Show full text]
  • Araneae (Spider) Photos
    Araneae (Spider) Photos Araneae (Spiders) About Information on: Spider Photos of Links to WWW Spiders Spiders of North America Relationships Spider Groups Spider Resources -- An Identification Manual About Spiders As in the other arachnid orders, appendage specialization is very important in the evolution of spiders. In spiders the five pairs of appendages of the prosoma (one of the two main body sections) that follow the chelicerae are the pedipalps followed by four pairs of walking legs. The pedipalps are modified to serve as mating organs by mature male spiders. These modifications are often very complicated and differences in their structure are important characteristics used by araneologists in the classification of spiders. Pedipalps in female spiders are structurally much simpler and are used for sensing, manipulating food and sometimes in locomotion. It is relatively easy to tell mature or nearly mature males from female spiders (at least in most groups) by looking at the pedipalps -- in females they look like functional but small legs while in males the ends tend to be enlarged, often greatly so. In young spiders these differences are not evident. There are also appendages on the opisthosoma (the rear body section, the one with no walking legs) the best known being the spinnerets. In the first spiders there were four pairs of spinnerets. Living spiders may have four e.g., (liphistiomorph spiders) or three pairs (e.g., mygalomorph and ecribellate araneomorphs) or three paris of spinnerets and a silk spinning plate called a cribellum (the earliest and many extant araneomorph spiders). Spinnerets' history as appendages is suggested in part by their being projections away from the opisthosoma and the fact that they may retain muscles for movement Much of the success of spiders traces directly to their extensive use of silk and poison.
    [Show full text]
  • Notes on the Jumping Spiders (Araneae: Salticidae) of Nicaragua, with Some Other Records from Central America
    Rev Rev. Nica. Ent., (1993) 26:31-37. NOTES ON THE JUMPING SPIDERS (ARANEAE: SALTICIDAE) OF NICARAGUA, WITH SOME OTHER RECORDS FROM CENTRAL AMERICA. David B. RICHMAN.* RESUMEN Una colección de arañas Salticidae, principalmente de Nicaragua, se identificó y los resultados se presentan en una lista. Es la primera publicación sobre Salticidae de Nicaragua, los datos publicados anteriormente son mencionados en la introducción. ABSTRACT A collection of salticids, mostly from Nicaragua, was identified and an annotated list of these is presented here. This appears to be one of the first publications primarily on Nicaraguan salticid spiders and indicates a major lack of information on this large family in a country which undoubtly has an extensive fauna. file:///C|/My%20Documents/REVISTA/REV%2026/26%20Richman%20-%20Salticidae.htm (1 of 7) [10/11/2002 05:43:10 p.m.] Rev * Department of Entomology, Plant Pathology and Weed Science, New Mexico State University, Las Cruces, NM 88003, USA. INTRODUCTION The salticid spider fauna of Central America is still poorly known. Only Panama has had an extensive faunal study published (Chickering, 1946). Most of the other records in the literature are from either Honduras, Guatemala, Costa Rica or El Salvador (Peckham & Peckham, 1896; Pickard-Cambridge, 1901; Banks, 1909; Kraus, 1955). In fact, there are no records of Nicaraguan salticids in the major spider catalogs (Roewer, 1954; Brignoli, 1983; Platnick, 1989), or in Pickard-Cambridge (1901), although some records are listed with range data from a country to the north and the south of Nicaragua or from "Central America" generally. One article (Cutler, 1981) contains one record for Paradamoetas formicina Peckham & Peckham from Musawas, Zelaya and another (Galiano, 1982) one record for Nycerella delecta (Peckham & Peckham) from San Marcos, Carazo.
    [Show full text]
  • A New Species of Pionothele from Gobabeb, Namibia (Araneae, Mygalomorphae, Nemesiidae)
    A peer-reviewed open-access journal ZooKeysA new 851: 17–25species (2019) of Pionothele from Gobabeb, Namibia (Araneae, Mygalomorphae, Nemesiidae) 17 doi: 10.3897/zookeys.851.31802 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research A new species of Pionothele from Gobabeb, Namibia (Araneae, Mygalomorphae, Nemesiidae) Jason E. Bond1, Trip Lamb2 1 Department of Entomology & Nematology, University of California Davis, Davis, California, USA 2 Department of Biology, East Carolina University, Greenville, North Carolina, USA Corresponding author: Jason E. Bond ([email protected]) Academic editor: Chris Hamilton | Received 20 November 2018 | Accepted 2 February 2019 | Published 3 June 2019 http://zoobank.org/894CD479-72A2-412D-B983-7CE7C2A54E88 Citation: Bond JE, Lamb T (2019) A new species of Pionothele from Gobabeb, Namibia (Araneae, Mygalomorphae, Nemesiidae). ZooKeys 851: 17–25. https://doi.org/10.3897/zookeys.851.31802 Abstract The mygalomorph spider genusPionothele Purcell, 1902 comprises two nominal species known only from South Africa. We describe here a new species, Pionothele gobabeb sp. n., from Namibia. This new species is currently only known from a very restricted area in the Namib Desert of western Namibia. Keywords Biodiversity, New species, Spider taxonomy, Pionothele, Nemesiidae, Mygalomorphae Introduction The nemesiid genus Pionothele Purcell, 1902 is a poorly known taxon comprising only two species described from southwestern South Africa. In Zonstein’s (2016) review of the genus, he redescribed and illustrated P. straminea Purcell, 1902 and described a second, new species P. capensis Zonstein, 2016. Similarities between female specimens of Pionothele and those in the genus Spiroctenus Simon 1889a suggest that some spe- cies described as the latter may be misidentified as the former (Zonstein 2016); con- sequently, Pionothele may be more widespread and diverse than is currently known.
    [Show full text]
  • Molecular Systematics of the Wolf Spider Genus Lycosa (Araneae: Lycosidae) in the Western Mediterranean Basin
    Molecular Phylogenetics and Evolution 67 (2013) 414–428 Contents lists available at SciVerse ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Molecular systematics of the wolf spider genus Lycosa (Araneae: Lycosidae) in the Western Mediterranean Basin ⇑ Enric Planas a, Carmen Fernández-Montraveta b, Carles Ribera a, a Institut de Recerca de la Biodiversitat (IRBio), Departament de Biologia Animal, Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain b Departamento de Psicología Biológica y de la Salud, Universidad Autónoma de Madrid, Canto Blanco, 28049 Madrid, Spain article info abstract Article history: In this study, we present the first molecular phylogeny of the wolf spider genus Lycosa Latreille, 1804 in Received 2 January 2013 the Western Mediterranean Basin. With a wide geographic sampling comprising 90 localities and includ- Revised 2 February 2013 ing more than 180 individuals, we conducted species delimitation analyses with a Maximum Likelihood Accepted 7 February 2013 approach that uses a mixed Yule-coalescent model to detect species boundaries. We estimated molecular Available online 15 February 2013 phylogenetic relationships employing Maximum Likelihood and Bayesian Inference methods using mito- chondrial and nuclear sequences. We conducted divergence time analyses using a relaxed clock model Keywords: implemented in BEAST. Our results recovered 12 species that form four groups: Lycosa tarantula group Phylogeny comprising L. tarantula the type species of the genus, L. hispanica and L. bedeli; Lycosa oculata group com- Species delimitation Taxonomy posed of L. oculata, L. suboculata and three putative new species; Lycosa baulnyi group formed by the mag- Biogeography hrebian L. baulnyi and L. vachoni and Lycosa fasciiventris group that includes two widespread species, L.
    [Show full text]
  • Common Spiders of the Chicago Region 1 the Field Museum – Division of Environment, Culture, and Conservation
    An Introduction to the Spiders of Chicago Wilderness, USA Common Spiders of the Chicago Region 1 The Field Museum – Division of Environment, Culture, and Conservation Produced by: Jane and John Balaban, North Branch Restoration Project; Rebecca Schillo, Conservation Ecologist, The Field Museum; Lynette Schimming, BugGuide.net. © ECCo, The Field Museum, Chicago, IL 60605 USA [http://fieldmuseum.org/IDtools] [[email protected]] version 2, 2/2012 Images © Tom Murray, Lynette Schimming, Jane and John Balaban, and others – Under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License (non-native species listed in red) ARANEIDAE ORB WEAVERS Orb Weavers and Long-Jawed Orb Weavers make classic orb webs made famous by the book Charlotte’s Web. You can sometimes tell a spider by its eyes, most have eight. This chart shows the orb weaver eye arrangement (see pg 6 for more info) 1 ARANEIDAE 2 Argiope aurantia 3 Argiope trifasciata 4 Araneus marmoreus Orb Weaver Spider Web Black and Yellow Argiope Banded Argiope Marbled Orbweaver ORB WEAVERS are classic spiders of gardens, grasslands, and woodlands. The Argiope shown here are the large grassland spiders of late summer and fall. Most Orb Weavers mature in late summer and look slightly different as juveniles. Pattern and coloring can vary in some species such as Araneus marmoreus. See the link for photos of its color patterns: 5 Araneus thaddeus 6 Araneus cingulatus 7 Araneus diadematus 8 Araneus trifolium http://bugguide.net/node/view/2016 Lattice Orbweaver Cross Orbweaver Shamrock Orbweaver 9 Metepeira labyrinthea 10 Neoscona arabesca 11 Larinioides cornutus 12 Araniella displicata 13 Verrucosa arenata Labyrinth Orbweaver Arabesque Orbweaver Furrow Orbweaver Sixspotted Orbweaver Arrowhead Spider TETRAGNATHIDAE LONG-JAWED ORB WEAVERS Leucauge is a common colorful spider of our gardens and woodlands, often found hanging under its almost horizontal web.
    [Show full text]
  • Diversity and Distribution of Pisauridae (Araneae: Araneomorphae: Arachnida) in India
    International Journal of Entomology Research ISSN: 2455-4758; Impact Factor: RJIF 5.24 Received: 11-12-2020; Accepted: 13-01-2021; Published: 17-02-2021 www.entomologyjournals.com Volume 6; Issue 1; 2021; Page No. 119-125 Diversity and distribution of Pisauridae (Araneae: Araneomorphae: Arachnida) in India Ajeet Kumar Tiwari1, Rajendra Singh2* 1 Department of Zoology, Buddha PG College, Kushinagar, Uttar Pradesh, India 2 Department of Zoology, Deendayal Upadhyay University of Gorakhpur, Uttar Pradesh, India Abstract The present article deals with the faunal diversity and distribution of one of the spider family Pisauridae (Araneae: Arachnida), commonly known as nursery web spider, raft spider, fishing spider, in different Indian states and union territories and provides an update checklist based on the literature published up to January 31, 2021. It includes 29 species of spiders described under 11 genera in 18 states and 3 union territories (Andaman and Nicobar Islands, Jammu and Kashmir and Puducherry), out of which 12 species are endemic. The records demonstrated that only 3 species of these spiders are distributed widely: Dendrolycosa gitae (Tikader, 1970) (11 Indian states, 1 union territory), Nilus albocinctus (Doleschall, 1859) (8 Indian states, 1 union territories), and Perenethis venusta L. Koch, 1878 (8 Indian states). Maximum 13 species of these spiders were recorded in Maharashtra followed by 10 species in Tamil Nadu. Keywords: pisauridae, nursery web spider, raft spider, fishing spider, faunal diversity, and checklist Introduction nursery web until their second moult while the female The members of the order Araneae (Arachnida: Chelicerata: stands guard over it. These spiders are moderately large Arthropoda) are commonly known as spiders and ranks (above 10 mm) with long legs.
    [Show full text]
  • Araneae: Salticidae)
    ZOOLOGÍA Doi: https://dx.doi.org/10.1544 6/caldasia.v39n2.60499 http://www.revistas.unal.edu.co/index.php/cal Caldasia 39(2):239-246.2017 Description of the female of Lyssomanes miniaceus, with a new distribution record for L. belgranoi (Araneae: Salticidae) Descripción de la hembra de Lyssomanes miniaceus, con un nuevo registro de distribución para L. belgranoi (Araneae: Salticidae) GONZALO D. RUBIO CONICET, Estación Experimental Agropecuaria Cerro Azul (EEA Cerro Azul, INTA), Cerro Azul, Misiones, Argentina. [email protected] WILLIAM GALVIS Laboratorio de Aracnología & Miriapodología (LAM-UN), Instituto de Ciencias Naturales, Departamento de Biología, Universidad Nacional de Colombia, Sede Bogotá, Colombia. [email protected] MARÍA F. NADAL Laboratorio de Biología de los Artrópodos, Universidad Nacional del Nordeste (FaCENA-UNNE), Corrientes, Argentina. [email protected] ABSTRACT Numerous new spider species are waiting to be described, and in many cases knowledge is incomplete because species are known from a single sex. In this contribution the female of the jumping spider Lyssomanes miniaceus is described and its morphology is illustrated. Females are distinguished by having spherical, slightly oval spermathecae, the copulatory openings towards the back, and sparse white hairs ventrally on femora I and II; the last character could be a unique trait shared by both sexes. Additionally, a new southernmost record plus new illustration of the little-known species L. belgranoi are given. Key words. Argentina, jumping spider, taxonomy. RESUMEN Gran número de especies nuevas de arañas están a la espera de ser descritas, y en muchos casos el conocimiento es incompleto porque se conoce un solo sexo.
    [Show full text]
  • A Few Common Spiders At
    A few of the Common Spiders at BLP The following spider notes are specific to BLP, but may also be useful throughout coastal California. The best beginning book on spiders is Spiders and their kin by a Harvard professor and his wife, Herbert and Lorna Levi. The book is in the library and is available at the bookstore. The notes below often refer to that book by page number. These notes were slightly rewritten by Greg de Nevers from an earlier version by Mary Anne Saddler and Ann Christensen. They were further slightly modified by David Herlocker and subsequently modified by Gwen Heistand. GENERALITIES. Male spiders are generally smaller than females, and often more cryptic. Females have bigger abdomens (full of eggs). Mature males have a pair of enlarged palps that look like boxing gloves in front of their face, females never do. Virtually every web you see has a spider on or near it. Look for them! They often hide where a radial strut attaches to a plant near the top of the web. There are no records (specimens) of brown recluse spiders from the Bay Area. ORB WEAVERS. Orb weavers (a family – Araneidae – with many genera) are the classic spiders, like Charlotte, making a wagon-wheel shaped web. They are the most numerous and diverse group of spiders. With a life span of one year or less, they emerge from their egg sacs in spring as tiny spiderlings. They balloon away from their birthplace, grow through the summer, and lay eggs in the fall. Orb weavers are the only spiders known to write in English.
    [Show full text]
  • Endangered Species Status for Five Poecilotheria Tarantula Species
    Federal Register / Vol. 83, No. 147 / Tuesday, July 31, 2018 / Rules and Regulations 36755 [FR Doc. 2018–16266 Filed 7–30–18; 8:45 am] What this document does. This rule warranted, (2) requested from the public BILLING CODE 6560–50–P will add the following five tarantula scientific and commercial data and species to the List of Endangered and other information regarding the species, Threatened Wildlife in title 50 of the and (3) notified the public that at the DEPARTMENT OF THE INTERIOR Code of Federal Regulations (50 CFR conclusion of our review of the status of 17.11(h)) as endangered species: these species, we would issue a 12- Fish and Wildlife Service Poecilotheria fasciata, P. ornata, P. month finding on the petition, as smithi, P. subfusca, and P. vittata. provided in section 4(b)(3)(B) of the Act. 50 CFR Part 17 The basis for our action. Under the We published a 12-month finding and Act, we use the best available scientific proposed rule for listing the five [Docket No. FWS–HQ–ES–2016–0076; and commercial data to determine Poecilotheria species that are endemic 4500030115] whether a species meets the definition to Sri Lanka (Poecilotheria fasciata, P. RIN 1018–BC82 of a ‘‘threatened species’’ or an ornata, P. pederseni, P. smithi, and P. ‘‘endangered species’’ because of any subfusca) on December 14, 2016 (81 FR Endangered and Threatened Wildlife one or more of the following five factors 90297). In our 12-month finding and and Plants; Endangered Species or the cumulative effects thereof: (A) proposed rule we determined that these Status for Five Poecilotheria Tarantula The present or threatened destruction, five species were in danger of extinction Species From Sri Lanka modification, or curtailment of its throughout their ranges and proposed habitat or range; (B) Overutilization for listing them as endangered under the AGENCY: Fish and Wildlife Service, commercial, recreational, scientific, or Interior.
    [Show full text]