Endangered Species Status for Five Poecilotheria Tarantula Species
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Birth of Maria Sibylla Merian Naturalist and Artist Maria Sibylla Merian Was Born on April 2, 1647, in Frankfurt-Am- Main, Germany
This Day in History… April 2, 1647 Birth of Maria Sibylla Merian Naturalist and artist Maria Sibylla Merian was born on April 2, 1647, in Frankfurt-am- Main, Germany. Merian spent her life studying insects and plants and capturing them in beautifully detailed paintings and drawings. Merian’s father was an engraver and publisher, but he died when she was three. Her mother remarried artist Jacob Marrel in 1651 and he encouraged her to paint and draw. When she was 13, Merian did her first painting of plants and insects based on live specimens she collected. She was fascinated by caterpillars and collected all she could find so she could witness how they changed into beautiful butterflies and moths. Merian married her stepfather’s apprentice, Johann Andreas Graff, in 1665 and they moved to Nuremberg in 1670. She The set of four Merian Botanicals stamps were continued to paint and design embroidery. She also gave drawing issued for Women’s lessons to the daughters of wealthy families. This helped raise her History Month in 1997. social standing while also giving her access to some of the area’s finest gardens, where she could continue to collect and study insects. While other female artists included insects in their paintings of flowers, few others bred or studied them like Merian did. She published her first book on insects in 1679, which focused on their metamorphosis. At the time, little was known about this process. Some This stamp pictures a people wrote about it, but most people believed they were “born of flowering pineapple mud” – having been born spontaneously. -
Norsk Lovtidend
Nr. 7 Side 1067–1285 NORSK LOVTIDEND Avd. I Lover og sentrale forskrifter mv. Nr. 7 Utgitt 30. juli 2015 Innhold Side Lover og ikrafttredelser. Delegering av myndighet 2015 Juni 19. Ikrafts. av lov 19. juni 2015 nr. 60 om endringer i helsepersonelloven og helsetilsynsloven (spesialistutdanningen m.m.) (Nr. 674) ................................................................1079................................ Juni 19. Ikrafts. av lov 19. juni 2015 nr. 77 om endringar i lov om Enhetsregisteret m.m. (registrering av sameigarar m.m.) (Nr. 675) ................................................................................................1079 ..................... Juni 19. Deleg. av Kongens myndighet til Helse- og omsorgsdepartementet for fastsettelse av forskrift for å gi helselover og -forskrifter hel eller delvis anvendelse på Svalbard og Jan Mayen (Nr. 676) ................................................................................................................................1080............................... Juni 19. Ikrafts. av lov 19. juni 2015 nr. 59 om endringer i helsepersonelloven mv. (vilkår for autorisasjon) (Nr. 678) ................................................................................................................................1084 ..................... Juni 19. Ikrafts. av lov 13. mars 2015 nr. 12 om endringer i stiftelsesloven (stiftelsesklagenemnd) (Nr. 679) ................................................................................................................................................................1084 -
Abundance and Community Composition of Arboreal Spiders: the Relative Importance of Habitat Structure
AN ABSTRACT OF THE THESIS OF Juraj Halaj for the degree of Doctor of Philosophy in Entomology presented on May 6, 1996. Title: Abundance and Community Composition of Arboreal Spiders: The Relative Importance of Habitat Structure. Prey Availability and Competition. Abstract approved: Redacted for Privacy _ John D. Lattin, Darrell W. Ross This work examined the importance of structural complexity of habitat, availability of prey, and competition with ants as factors influencing the abundance and community composition of arboreal spiders in western Oregon. In 1993, I compared the spider communities of several host-tree species which have different branch structure. I also assessed the importance of several habitat variables as predictors of spider abundance and diversity on and among individual tree species. The greatest abundance and species richness of spiders per 1-m-long branch tips were found on structurally more complex tree species, including Douglas-fir, Pseudotsuga menziesii (Mirbel) Franco and noble fir, Abies procera Rehder. Spider densities, species richness and diversity positively correlated with the amount of foliage, branch twigs and prey densities on individual tree species. The amount of branch twigs alone explained almost 70% of the variation in the total spider abundance across five tree species. In 1994, I experimentally tested the importance of needle density and branching complexity of Douglas-fir branches on the abundance and community structure of spiders and their potential prey organisms. This was accomplished by either removing needles, by thinning branches or by tying branches. Tying branches resulted in a significant increase in the abundance of spiders and their prey. Densities of spiders and their prey were reduced by removal of needles and thinning. -
Pet Health and Happiness Is Our Primary Concern
Pet Health and Happiness Is Our Primary Concern CONCISE CARE SHEETS PINK-TOES find more caresheets at nwzoo.com/care AND TREE SPIDERS INTRO QUICK TIPS PSALMOPOEUS The tropics of the New World or Americas are home to many popular The Trinidad Chevron (Psalmopoeus tree-dwelling tarantulas. These include a wide variety of “Pink-toes” of the » 76-82°F with a drop in tem- cambridgei] and Venezuelan Suntiger (P. genus Avicularia, the closely related Antilles “pink-toe” or tree tarantula perature at night (72-76ºF) irminia) are the best known members of (Caribena versicolor), the lightning-fast and agile Tapinauchenius and » Requires 70-80% humidity, a genus popular with tarantula keepers. a handful of species of Psalmopoeus like the Venezuelan Suntiger and but also good ventilation. Both are fairly large (P. cambridgei can Trinidad Chevron. » Most species will eat a reach a legspan of seven inches) and variety of arthropods and make exceptional display subjects for These tarantulas are found in a variety of subtropical and tropical habitats, small vertebrates yet thrive the spacious vertically-oriented forest but their general care is similar enough to cover them all in a single care on roaches or crickets in terrarium. Psalmopoeus tarantulas are sheet. Optimal captive husbandry is focused on providing warm, humid captivity. very hardy and often more forgiving of air in an enclosure that allows for sufficient ventilation. It is a balancing drier conditions than other New World act of sorts, but the conscientious and cautious keeper soon learns to err arboreal tarantulas. Both the Chevron on the side of good airflow as it is easier to add moisture than to correct and Suntiger appreciate a couple of layers of vertical cork bark slabs to overly damp or stagnant conditions. -
Inclusion of All Species in the Genus Poecilotheria in Appendix II
Prop. 11.52 CONVENTION ON INTERNATIONAL TRADE IN ENDANGERED SPECIES OF WILD FAUNA AND FLORA Amendments to Appendices I and II of CITES Eleventh Meeting of the Conference of the Parties Nairobi (Kenya), April 10-20, 2000 A. PROPOSAL Inclusion of all species in the genus Poecilotheria in Appendix II. Poecilotheria spp. are arboreal tarantula spiders that occur in the eastern hemisphere. B. PROPONENT Sri Lanka and the United States of America. C. SUPPORTING STATEMENT 1. Taxonomy 1.1 Class: Arachnida 1.2 Order: Araneae 1.3 Family: Theraphosidae 1.4 Genus and species: Poecilotheria Simon, 1885 (synonym: Scurria C.L. Koch 1851) Poecilotheria fasciata (Latreille, 1804), central Sri Lanka Poecilotheria formosa Pocock, 1899, southern India Poecilotheria hillyardi from the region of Trivandrum, southern India (expected publication and validation in 2000 by P. Kirk) Poecilotheria metallica Pocock, 1899, southwestern India Poecilotheria miranda Pocock, 1900, northeastern India Poecilotheria ornata Pocock, 1899, southern Sri Lanka Poecilotheria pederseni from the region of Yala, southeastern Sri Lanka (expected publication and validation in 2000 by P. Kirk) Poecilotheria regalis Pocock, 1899, southwestern India Poecilotheria rufilata Pocock, 1899, southern India Poecilotheria smithi Kirk, 1996, southcentral Sri Lanka Poecilotheria striata Pocock, 1895, southern India Poecilotheria subfusca Pocock, 1895, southcentral Sri Lanka Poecilotheria uniformis Strand, 1913, Sri Lanka 1.5 Scientific synonyms: P. fasciata Mygale fasciata Latreille, 1804 Avicularia fasciata Lamarck,1818 Theraphosa fasciata Gistel, 1848 Scurria fasciata C.L. Koch, 1851 Lasiodora fasciata Simon, 1864 P. formosa none P. hillyard none Prop. 11.52 – p. 1 P. metallica none P. miranda none P. ornata none P. pederseni none P. -
Taxonomical Revision & Cladistic Analysis of Avicularia
Caroline Sayuri Fukushima Taxonomical revision & cladistic analysis of Avicularia Lamarck 1818 (Araneae, Theraphosidae, Aviculariinae). Thesis presented at the Institute of Biosciences of the University of Sao Paulo, to obtain the title of Doctor of Science in the field of Zoology. Adviser (a): Paulo Nogueira-Neto Corrected version Sao Paulo 2011 (the original version is available at the Biosciences Institute at USP) Fukushima, Caroline Sayuri Taxonomical revision & cladistic analysis of Avicularia Lamarck 1818 (Araneae, Theraphosidae, Aviculariinae). 230 Pages Thesis (Ph.D.) - Institute of Biosciences, University of Sao Paulo. Department of Zoology. 1. Avicularia 2. Theraphosidae 3. Araneae I. University of Sao Paulo. Institute of Biosciences. Department of Zoology. Abstract The genus Avicularia Lamarck 1818 contains the oldest mygalomorph species described. It’s taxonomical history is very complex and for the first time it has been revised. A cladistic analysis with 70 characters and 43 taxa were done. The preferred cladogram was obtained using the computer program Pee Wee and concavity 6. The subfamily Aviculariinae contains the genera Stromatopelma, Heteroscodra, Psalmopoeus, Tapinauchenius, Ephebopus, Pachistopelma, Iridopelma, Avicularia, Genus 1 and Gen. nov. 1, Gen. nov. 2, Gen. nov. 3 and Gen. nov.4. Aviculariinae is monophyletic, sharing the presence of spatulated scopulae on tarsi and metatarsi, juveniles with a central longitudinal stripe connected with lateral stripes on dorsal abdomen and arboreal habit. The synapomorphy of Avicularia is the presence of a moderately developed protuberance on tegulum. The genus is constituted by 14 species: A. avicularia (type species), A. juruensis, A. purpurea, A. taunayi, A. variegata status nov., A. velutina, A. rufa, A. aymara, Avicularia sp. -
Paraphysa Sp.)
RESEARCH MEALWORM (TENEBRIO MOLITOR) DIETS RELATIVE TO THE ENERGY REQUIREMENTS OF SMALL MYGALOMORPH SPIDERS (PARAPHYSA SP.) Lucia Canals, Vet Tech, Daniela Figueroa, Dr Vet Sc, Hugo Torres-Contreras, PhD, Claudio Veloso, PhD, and Mauricio Canals, MD, MS Sc, MS Abstract This article describes the basic prey requirements of Paraphysa sp., a small mygalomorph spider from the central Andes. Paraphysa sp. can be maintained in captivity using mealworms (Tenebrio molitor)asits primary food source. During a period of 66 days the prey requirements (larvae/day) were calculated for weight maintenance and compared with findings of previously reported resting and active metabolic rates. The spiders in this study ate at frequencies between 0.18 and 0.59 larvae/day, with an average of 0.43 Ϯ 0.14 larvae/day. From the regression line between frequency of feeding (larvae/day) and weight gain, we determined that 0.31 larvae/day were needed for a weight gain of 0. Thus, for the spiders to increase their weight, they would need to eat more than 1 larva every 3 days. This frequency yields a caloric intake of 0.193 kcal/d, or equivalently, a carbon dioxide production of 0.189 mL CO2/g·h. The findings in this report are greater than the resting metabolic rate at 35°C, and they agree with the active metabolic requirements of this spider in the field. Copyright 2012 Elsevier Inc. All rights reserved. Key words: basal energetic requirements; diet; mealworm; Tenebrio molitor; mygalomorph spider; Paraphysa sp. small mygalomorph spider (Paraphysa sp. Simon, 1892) lives in an area called the Farel- lones (33°21=S, 70°20=W) in the Chilean Andes. -
The History and Influence of Maria Sibylla Merian's Bird-Eating Tarantula: Circulating Images and the Production of Natural Knowledge
Biology Faculty Publications Biology 2016 The History and Influence of Maria Sibylla Merian's Bird-Eating Tarantula: Circulating Images and the Production of Natural Knowledge Kay Etheridge Gettysburg College Follow this and additional works at: https://cupola.gettysburg.edu/biofac Part of the Biology Commons, and the Illustration Commons Share feedback about the accessibility of this item. Recommended Citation Etheridge, K. "The History and Influence of Maria Sibylla Merian’s Bird-Eating Tarantula: Circulating Images and the Production of Natural Knowledge." Global Scientific Practice in the Age of Revolutions, 1750 – 1850. P. Manning and D. Rood, eds. (Pittsburgh, University of Pittsburgh Press. 2016). 54-70. This is the publisher's version of the work. This publication appears in Gettysburg College's institutional repository by permission of the copyright owner for personal use, not for redistribution. Cupola permanent link: https://cupola.gettysburg.edu/biofac/54 This open access book chapter is brought to you by The Cupola: Scholarship at Gettysburg College. It has been accepted for inclusion by an authorized administrator of The Cupola. For more information, please contact [email protected]. The History and Influence of Maria Sibylla Merian's Bird-Eating Tarantula: Circulating Images and the Production of Natural Knowledge Abstract Chapter Summary: A 2009 exhibition at the Fitzwilliam Museum on the confluence of science and the visual arts included a plate from a nineteenth-century encyclopedia owned by Charles Darwin showing a tarantula poised over a dead bird (figure 3.1).1 The genesis of this startling scene was a work by Maria Sibylla Merian (German, 1647–1717), and the history of this image says much about how knowledge of the New World was obtained, and how it was transmitted to the studies and private libraries of Europe, and from there into popular works like Darwin’s encyclopedia. -
Tarantulas and Social Spiders
Tarantulas and Social Spiders: A Tale of Sex and Silk by Jonathan Bull BSc (Hons) MSc ICL Thesis Presented to the Institute of Biology of The University of Nottingham in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy The University of Nottingham May 2012 DEDICATION To my parents… …because they both said to dedicate it to the other… I dedicate it to both ii ACKNOWLEDGEMENTS First and foremost I would like to thank my supervisor Dr Sara Goodacre for her guidance and support. I am also hugely endebted to Dr Keith Spriggs who became my mentor in the field of RNA and without whom my understanding of the field would have been but a fraction of what it is now. Particular thanks go to Professor John Brookfield, an expert in the field of biological statistics and data retrieval. Likewise with Dr Susan Liddell for her proteomics assistance, a truly remarkable individual on par with Professor Brookfield in being able to simplify even the most complex techniques and analyses. Finally, I would really like to thank Janet Beccaloni for her time and resources at the Natural History Museum, London, permitting me access to the collections therein; ten years on and still a delight. Finally, amongst the greats, Alexander ‘Sasha’ Kondrashov… a true inspiration. I would also like to express my gratitude to those who, although may not have directly contributed, should not be forgotten due to their continued assistance and considerate nature: Dr Chris Wade (five straight hours of help was not uncommon!), Sue Buxton (direct to my bench creepy crawlies), Sheila Keeble (ventures and cleans where others dare not), Alice Young (read/checked my thesis and overcame her arachnophobia!) and all those in the Centre for Biomolecular Sciences. -
Systematics of the Californian Euctenizine Spider Genus Apomastus
CSIRO PUBLISHING www.publish.csiro.au/journals/is Invertebrate Systematics, 2004, 18, 361–376 Systematics of the Californian euctenizine spider genus Apomastus (Araneae:Mygalomorphae:Cyrtaucheniidae): the relationship between molecular and morphological taxonomy Jason E. Bond East Carolina University, Department of Biology, Howell Science Complex–N211, Greenville, NC 27858, USA. Email: [email protected] Abstract. The genus Apomastus Bond & Opell is a relatively small group of mygalomorph spiders with a limited geographic distribution. Restricted to the Los Angeles Basin, San Juan Mountains, and San Joaquin Hills, Apomastus occupies a fragile habitat rapidly succumbing to urban encroachment. Although originally described as monotypic, the genus was hypothesised to contain at least one additional species. However, females of the two reputed species are morphologically indistinguishable and the authors were unable confidently to assign specific status to populations for which they lacked male specimens. Using an approach that combines geographic, morphological and molecular data, all known populations are assigned to one of two hypothesised species. Mitochondrial DNA cytochrome c oxidase I sequences are used to infer population phylogeny, providing the evolutionary framework necessary to resolve population and species identity issues. Conflicts between the parsimony and Bayesian analyses raise questions about species delineation, species paraphyly, and the application of molecular taxonomy to these taxa. Issues relevant to the conservation of Apomastus species are discussed in light of the substantive intraspecific species divergence observed in the mtDNA data. The type species, Apomastus schlingeri Bond & Opell, is redescribed and a second species, Apomastus kristenae, sp. nov., is described. Additional keywords: conservation genetics, cytochrome oxidase, molecular systematics, molecular taxonomy, phylogeography, species paraphyly, spider taxonomy. -
Hemolymph and Hemocytes of Tarantula Spiders: Physiological Roles and Potential As Sources of Bioactive Molecules
In: Advances in Animal Science and Zoology. Volume 8 ISBN: 978-1-63483-552-7 Editor: Owen P. Jenkins © 2015 Nova Science Publishers, Inc. No part of this digital document may be reproduced, stored in a retrieval system or transmitted commercially in any form or by any means. The publisher has taken reasonable care in the preparation of this digital document, but makes no expressed or implied warranty of any kind and assumes no responsibility for any errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of information contained herein. This digital document is sold with the clear understanding that the publisher is not engaged in rendering legal, medical or any other professional services. Chapter 8 HEMOLYMPH AND HEMOCYTES OF TARANTULA SPIDERS: PHYSIOLOGICAL ROLES AND POTENTIAL AS SOURCES OF BIOACTIVE MOLECULES Tatiana Soares, Thiago H. Napoleão, Felipe R. B. Ferreira and Patrícia M. G. Paiva∗ Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Cidade Universitária, Recife, Pernambuco, Brazil ABSTRACT Arachnids compose the most important and numerous group of chelicerates and include spiders, scorpions, mites and ticks. Some arachnids have a worldwide distribution and can live for more than two decades. This is in part due to their efficient defense system, with an innate immunity that acts as a first line of protection against bacterial, fungal and viral pathogens. The adaptive success of the spiders stimulates the study of their defense mechanisms at cellular and molecular levels with both biological and biotechnological purposes. The hemocytes (plasmatocytes, cyanocytes, granulocytes, prohemocytes, and leberidocytes) of spiders are responsible for phagocytosis, nodulation, and encapsulation of pathogens as well as produce substances that mediate humoral mechanisms such as antimicrobial peptides and factors involved in the coagulation of hemolymph and melanization of microorganisms. -
Assessment of Species Listing Proposals for CITES Cop18
VKM Report 2019: 11 Assessment of species listing proposals for CITES CoP18 Scientific opinion of the Norwegian Scientific Committee for Food and Environment Utkast_dato Scientific opinion of the Norwegian Scientific Committee for Food and Environment (VKM) 15.03.2019 ISBN: 978-82-8259-327-4 ISSN: 2535-4019 Norwegian Scientific Committee for Food and Environment (VKM) Po 4404 Nydalen N – 0403 Oslo Norway Phone: +47 21 62 28 00 Email: [email protected] vkm.no vkm.no/english Cover photo: Public domain Suggested citation: VKM, Eli. K Rueness, Maria G. Asmyhr, Hugo de Boer, Katrine Eldegard, Anders Endrestøl, Claudia Junge, Paolo Momigliano, Inger E. Måren, Martin Whiting (2019) Assessment of Species listing proposals for CITES CoP18. Opinion of the Norwegian Scientific Committee for Food and Environment, ISBN:978-82-8259-327-4, Norwegian Scientific Committee for Food and Environment (VKM), Oslo, Norway. VKM Report 2019: 11 Utkast_dato Assessment of species listing proposals for CITES CoP18 Note that this report was finalised and submitted to the Norwegian Environment Agency on March 15, 2019. Any new data or information published after this date has not been included in the species assessments. Authors of the opinion VKM has appointed a project group consisting of four members of the VKM Panel on Alien Organisms and Trade in Endangered Species (CITES), five external experts, and one project leader from the VKM secretariat to answer the request from the Norwegian Environment Agengy. Members of the project group that contributed to the drafting of the opinion (in alphabetical order after chair of the project group): Eli K.