Femtosecond Time-Resolved Four-Wave Mixing Applied to the Investigation of Excited State Dynamics

Total Page:16

File Type:pdf, Size:1020Kb

Femtosecond Time-Resolved Four-Wave Mixing Applied to the Investigation of Excited State Dynamics Femtosecond Time-Resolved Four-Wave Mixing Applied to the Investigation of Excited State Dynamics by Vinu V. Namboodiri A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Physics Approved by the thesis Committee: (Prof. Dr. Arnulf Materny) (Prof. Dr. Ulrich Kleinekathöfer) (PD Dr. Michael Schmitt) Date of Defence: May 18, 2010 School of Engineering and Science Femtosecond Time-Resolved Four-Wave Mixing Applied to the Investigation of Excited State Dynamics Dedicated to my family, friends and Sreeappan Abstract Laser spectroscopy in the frequency domain has, very early, developed into a pow- erful tool for the analysis of structural properties of molecules. The development of ultrafast lasers added a new dimension to conventional spectroscopy by rendering time resolved measurements possible. The high time resolution offered by picosecond and femtosecond laser pulses enabled the real time observation of extremely fast pro- cesses, such as vibrations and rotations of molecules. With pulses of duration about 100 fs, it is now possible to monitor processes such as internal conversion, vibrational relaxation, and many other processes occurring in the excited electronic states which leads to reactive or energy transfer pathways. The work presented in this thesis fo- cuses on the study of molecular dynamics in these excited electronic states using time- resolved four-wave mixing (FWM) techniques. It is demonstrated that, by combining the FWM process with an excitation pulse, it is possible to study molecular dynamics in the excited states of gaseous and condensed phase samples. The advantages of the four-wave mixing technique over the commonly used time-resolved fluorescence and pump-probe techniques are also discussed. The pump-FWM method is applied to simple molecules in the gas phase as well as to complex molecular systems where in- ternal conversion processes dominate the ultrafast dynamics. The thesis also presents preliminary studies on the effect of the surface enhancement effect of the nonlinear optical process coherent anti-Stokes Raman scattering (CARS) in presence of colloidal metal particles. vii Contents 1 Introduction 1 2 Theory 5 2.1 Femtosecond Time Resolved Spectroscopy . 5 2.2 Perturbation theory for time resolved spectroscopy . 5 2.2.1 First order polarisation . 8 2.2.2 Second order polarization . 10 2.2.3 Third order polarization . 11 2.3 Pump-Probe Spectroscopy . 13 2.4 Coherent anti-Stokes Raman Scattering (CARS) . 15 2.5 Degenerate Four Wave Mixing (DFWM) . 18 3 Experimental Setup 21 3.1 Femtosecond Laser System . 21 3.2 Optical Parametric Amplifiers . 23 3.3 Pulse Characterization . 23 3.4 Experimental Setup . 24 3.5 Phase Matching in Four-Wave Mixing . 26 4 Excited State Dynamics in Molecular Iodine 29 4.1 Molecular states of Iodine . 30 4.2 Experimental . 32 4.3 Pump-Degenerate Four-Wave Mixing in Iodine . 33 4.4 Summary . 39 5 Excited State Dynamics in b-Carotene 41 5.1 Introduction . 41 5.2 b-Carotene Photophysics . 42 5.2.1 S2 State . 42 5.2.2 S1 State . 43 ix x 5.2.3 Vibrational Relaxation . 44 5.3 pump-Four Wave Mixing (pump-FWM) on b-Carotene . 45 5.4 Experimental Setup for pump-FWM . 46 5.5 Molecular Dynamics Using pump-DFWM . 47 5.5.1 Kinetic Analysis . 51 5.5.2 Comparison between results from two-pulse pump-probe and pump-DFWM experiments . 52 5.6 Ground and Excited State Dynamics Using pump-CARS . 56 5.7 Summary . 58 6 Surface Enhanced Coherent Anti-Stokes Raman Scattering 59 6.1 Surface enhanced CARS (SE-CARS) . 61 6.1.1 Experimental . 62 6.1.2 Preparation of Silver sol . 62 6.1.3 CARS Experiment . 63 6.2 Discussion on SE-CARS . 65 6.3 Summary . 67 7 Conclusion and Outlook 69 References 73 Acknowledgment 79 List of Publications 81 Appendix 83 1 Introduction Optical spectroscopy is the most suitable experimental technique for understanding molecular structure and dynamics due to its speed and sensitivity. A careful study of the processes, such as absorption, emission, scattering, linear and circular dichroism, that occur when a light field interacts with a molecule can provide us with impor- tant information about the energy, concentration, conformation, and dynamics of the molecule. The invention of the laser, which can provide intense, coherent and tun- able radiation, revolutionized the field of spectroscopy. The increase in power of the radiation provided by lasers along with the ability to produce short pulses gave rise to a completely new nonlinear optical effects, where the absorbed radiation power depends nonlinearly on the incident power. Thereafter, nonlinear interaction of light with matter became an important field of study, which found applications in various fields including spectroscopy. Development of ultrafast laser systems brought about another breakthrough in the field of spectroscopy. Time resolved spectroscopy using picosecond (10¡12) and femtosecond (10¡15) lasers provided a new window for spectroscopists to investigate molecular dynamics, such as vibrations and rotations of molecules. Ahmed Zewail was awarded Nobel prize for his pioneering work in femtochemistry, which demon- strated the use of femtosecond pulses for real time probing of chemical reaction dy- namics. The observation of coherent dynamics resulting from the excitation of molecu- lar systems by femtosecond lasers is the heart of femtochemistry. The new insight into the dynamical aspects of molecules in short time scales brought great advances in the field of molecular physics. Several nonlinear optical techniques were then used along with ultra short pulses to probe different aspects of molecular dynamics occurring in pico and femtosecond time scales. The high peak intensities of ultrafast lasers often lead to different optical nonlin- earities. Among different nonlinear optical processes, third order nonlinear optical effects, due to the many degrees of freedom they offer, have proven to be ideal candi- 1 2 Introduction dates for time resolved spectroscopy to address different aspects of dynamics occur- ing in molecules [1, 2]. Most commonly used third order nonlinear optical processes are the pump-probe and four wave mixing (FWM). The pump-probe technique was used extensively by Zewail for his works on the ultrafast dynamics of the chemical bond [3]. Their works showed that the key to obtaining spectral and structural infor- mation in ultrafast time resolved measurements is based on the generation and detec- tion of wavepackets [3,4]. Transient absorption techniques was the primary technique used to gain information about the ultrafast primary processes in photosynthesis and vision [5–10]. In recent years four wave mixing spectroscopy has rapidly been devel- oped to study the dynamics of molecules in condensed, liquid and vapor phases. Four wave mixing technique using ultrashort pulses can be used in a variety of different forms such as coherent anti-Stokes Raman scattering (CARS), degenerate four wave mixing (DFWM), transient grating (TG), photon echo (PE) etc. to ad- dress different aspects of molecular dynamics. Coherent anti-Stokes Raman scatter- ing (CARS) was first used by the groups of Lauberau, Zinth and Kaiser to moni- tor vibrational dynamics of molecules occurring in a femtosecond time scale [11–13]. Materny and co-workers time resolved femtosecond CARS and DFWM processes to observe wavepacket dynamics occuring on the ground and excited states of iodine vapour [14, 15]. By varying the time delay of one of the incident pulses and keeping the other two overlapped in time, they were able to observe wavepacket dynamics in both the ground and excited electronic states. Zewail and co-workers used pump- degenerate four wave mixing (DFWM) to investigate molecular dynamics. Here the pump pulse initiates the molecular dynamics and the DFWM process is used as a probe [16]. Dietzek et. al. used femtosecond time resolved four wave mixing for studying excited state dynamics in different systems [17, 18]. Brown et. al. used off resonant transient grating (TG) technique for the study of molecular dynamics in gas- phase systems ranging from single atoms to large polyatomic molecules [19]. Ultrafast energy transfer and solvation dynamics has been extensively investigated by Fleming et. al. using photon echo (PE) techniques [6,20,21]. Femtosecond nonlinear techniques such as PE and TG have also been used to investigate primary processes in photosyn- thesis [22–24]. Femtosecond stimulated Raman technique using a narrow band pump laser and a broad band probe laser has gained much interest in recent years. It can give vibrational structural information with high temporal and spectral resolution [25–28]. The work presented in this thesis is divided into two parts. One part of the work uses time resolved four wave mixing techniques using femtosecond laser pulses to in- vestigate molecular dynamics taking place in the excited states of simple and complex 3 molecules. The degenerate four wave mixing technique with an additional pump pulse is applied to investigate the vibrational dynamics occurring in the excited states of the diatomic system iodine. Iodine is a much investigated molecule whose excited state properties are well characterized. Using iodine as a model system, the applicability of such time resolved nonlinear techniques in investigating higher lying excited states can be verified. The technique will then be extended to a more complex molecule. The photosynthetic pigment molecule b-carotene was chosen as the other system for investigation. Studies on the excited states of this molecule are important due to the important role it plays in plant photosynthesis [29]. Time resolved third order nonlinear optical processes are used in order to understand population and vibrational dynamics occurring in the excited states of b-carotene. The population dynamics af- ter photo excitation is probed using a pump-DFWM scheme, where the pump pulse promotes population into the excited state and the subsequent flow of population is monitored using a DFWM process as probe.
Recommended publications
  • DXR Raman Microscope
    Thermo Scientific DXR Raman Microscope Put high performance to work for you DXR Raman microscope Rethinking Raman for industry and applied research We’ve completely redefined the Raman microscope so that it lets you focus on your work rather than the tools you use to do it. Without sacrificing performance, we’ve built an instrument family around reliability, confidence, and usability. Furthermore, we’ve solved practical application problems with innovations that improve your ability to get to good information quickly. We’ve put expertise under the hood, real world problem solving into the design, and support everywhere in the world. Welcome to Thermo Scientific DXR Raman spectroscopy, Raman that works for you rather than the other way around. Packaging Forensics Fibers Gems/Geology Art Restoration Focus on your project or problem, not your instrumentation Instrumentation used in solving analytical challenges and characterizing materials in today’s fast paced, results-driven world is very different than what is required in advanced spectroscopic experiments. We designed the Thermo Scientific™ DXR™ Raman system for users who are trying to solve an engineering problem, characterize a novel material, defend a patent, or tackle a backlog of evidence. We designed an instrument that is not only powerful but considers your need for reliability, repeatability, ease of use, and assurance in results. If your analysis is a means to an end that simply requires answers quickly and confidently, the DXR microscope is without question the right Raman for your laboratory. Nanotechnology DXR Raman designed for real world problems... DXR Raman and Materials Characterization Unprecedented laser power control and patented* three path alignment assure that you are getting the best results from the right part of your material.
    [Show full text]
  • Raman Scattering and Fluorescence
    Fluorescence 01 Raman Scattering and Fluorescence Introduction The existence of such virtual states also explains why the non-resonance Raman effect Raman scattering and Fluorescence emission does not depend on the wavelength of the are two competing phenomena, which have excitation, since no real states are involved in similar origins. Generally, a laser photon this interaction mechanism. In fact, the Raman bounces off a molecule and looses a certain spectrum generally does not depend on the amount of energy that allows the molecule to laser excitation. vibrate (Stokes process). The scattered photon is therefore less energetic and the associated However, when the energy of the excitation light exhibits a frequency shift. The various photon gets close to the transition energy frequency shifts associated with different between two electronic states, one then deals molecular vibrations give rise to a spectrum, with resonance Raman or resonance that is characteristic of a specific compound. fluorescence (fig.1, case (d)). The basic difference between these two processes is In contrast, fluorescence or luminescence related to the time scales involved, as well as emission follows an absorption process. For a with the nature of the so-called intermediate better understanding, one can refer to the states. In contrast with resonant fluorescent, diagram below. relaxed fluorescence results from the emission of a photon from the lowest vibrational level of an excited electronic state, following a direct absorption of the photon and relaxation of the molecule from its vibrationally excited level of the electronic state back to the lowest vibrational level of the electronic state. A fluorescence process typically requires more than 10-9 s.
    [Show full text]
  • Simplified Near-Degenerate Four-Wave-Mixing Microscopy
    molecules Article Simplified Near-Degenerate Four-Wave-Mixing Microscopy Jianjun Wang 1,† , Xi Zhang 1,†, Junbo Deng 1, Xing Hu 1, Yun Hu 1, Jiao Mao 1, Ming Ma 1, Yuhao Gao 1, Yingchun Wei 1, Fan Li 1, Zhaohua Wang 1, Xiaoli Liu 1, Jinyou Xu 2,* and Liqing Ren 1,* 1 School of Energy Engineering, Yulin University, Yulin 719000, China; [email protected] (J.W.); [email protected] (X.Z.); [email protected] (J.D.); [email protected] (X.H.); [email protected] (Y.H.); [email protected] (J.M.); [email protected] (M.M.); [email protected] (Y.G.); [email protected] (Y.W.); [email protected] (F.L.); [email protected] (Z.W.); [email protected] (X.L.) 2 South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China * Correspondence: [email protected] (J.X.); [email protected] (L.R.) † These authors contribute equally. Abstract: Four-wave-mixing microscopy is widely researched in both biology and medicine. In this paper, we present a simplified near-degenerate four-wave-mixing microscopy (SNDFWM). An ultra-steep long-pass filter is utilized to produce an ultra-steep edge on the spectrum of a femtosecond pulse, and a super-sensitive four-wave-mixing (FWM) signal can be generated via an ultra-steep short-pass filter. Compared with the current state-of-the-art FWM microscopy, this SNDFWM microscopy has the advantages of simpler experimental apparatus, lower cost, and easier operation. We demonstrate that this SNDFWM microscopy has high sensitivity and high spatial resolution in both nanowires and biological tissues.
    [Show full text]
  • Raman Microscope
    COMPACT AND FULLY AUTOMATED RAMAN MICROSCOPE RM5 EDINBURGH INSTRUMENTS Edinburgh Instruments has been providing high performance instrumentation in the Molecular Spectroscopy market for almost 50 years. Our commitment to offering the highest quality, highest sensitivity instruments for our customers has now expanded to include the best Raman microscopes for all research and analytical requirements. As always, Edinburgh Instruments provides world-class customer support and service throughout the lifetime of our instruments. MOLECULAR SPECTROSCOPY SINCE 1971 CIRCLE Photoluminescence CIRCLE Raman CIRCLE UV-Vis CIRCLE Transient Absorption BIOSCIENCES PHARMACEUTICALS CHEMICALS POLYMERS NANO-MATERIALS RM5 RAMAN MICROSCOPE The RM5 is a compact and fully automated Raman microscope for analytical and research purposes. The truly confocal design of the RM5 is unique to the market and offers uncompromised spectral resolution, spatial resolution, and sensitivity. The RM5 builds on the expertise of robust and proven building blocks, combined with modern optical design considerations; and a focus on function, precision and speed. The result is a modern Raman microscope that stands alone in both specifications and ease of use. KEY FEATURES Truly Confocal – with variable slit and multiple position adjustable pinhole for higher image definition, better fluorescence rejection and application optimisation A MODERN RAMAN MICROSCOPE THAT Integrated Narrowband Raman Lasers – up to 3 computer- STANDS ALONE IN controlled lasers for ease of use, enhanced stability
    [Show full text]
  • Tip-Enhanced Raman Spectroscopic Detection of Aptamers
    Tip-enhanced Raman spectroscopic detection of aptamers Siyu He1,2, Hongyuan Li1,2, Zhe He1, and Dmitri V. Voronine1,3 1 Texas A&M University, College Station, TX 77843, USA 2 Xi’an Jiaotong University, Xi’an 710049, China 3 Baylor University, Waco, TX 76798, USA Abstract Single molecule detection, sequencing and conformational mapping of aptamers are important for improving medical and biosensing technologies and for better understanding of biological processes at the molecular level. We obtain vibrational signals of single aptamers immobilized on gold substrates using tip-enhanced Raman spectroscopy (TERS). We compare topographic and optical signals and investigate the fluctuations of the position- dependent TERS spectra. TERS mapping provides information about the chemical composition and conformation of aptamers, and paves the way to future single-molecule label-free sequencing. 1 1. Introduction Surface- and tip-enhanced Raman scattering can be used to reveal the molecular bonds as well as the functional components in biomaterials, which was applied to few and single molecule sensing1,2,3,4. Surface-enhanced Raman scattering (SERS) utilizes plasmonic resonances of metallic nanostructures to enhance Raman signals of biomolecules5. Weak Raman signals of complex biomolecules could be challenging for measurements at the single molecule level6,7. SERS can be used boost the Raman signals at the plasmonic resonance condition. Tip-enhanced Raman spectroscopy (TERS) is scanning probe microscope combined with the plasmonic enhancement of SERS and provides nanoscale label-free, direct chemical imaging method due to high lateral resolution and possibility of simultaneous imaging and sensing at the single-molecule level4,8. Recently, several DNA sensing methods have emerged in various fields of research as subjects of intense studies9,10.
    [Show full text]
  • Article Intends to Provide a for the Necessary Virtual Electronic Brief Overview of the Differences and Transition
    ADVANCES IN RAMAN TECHNIQUES Laser requirements and advances for Raman techniques Andreas Isemann Laser Quantum GmbH, 78467 Konstanz, Germany INTRODUCTION 473 nm and 1064 nm, a narrow Raman scattering as a probe of bandwidth output of few tens of GHz vibrational transitions has made or below 1 MHz if needed within the leaps and bounds since its discovery, linewidth of vibrational transitions and various schemes based on this for high resolution, low noise (less phenomenon have been developed than 0.02%) and excellent beam with great success. quality (fundamental transversal Applications range from basic electromagnetic mode TEM00) scientific research, to medical and provides optimised performance industrial instrumentation. Some for the resolution of the Raman schemes utilise linear Raman measurement needed. scattering, whilst others take advantage The wavelength is chosen based of high peak-power fields to probe on the sample under investigation, nonlinear Raman responses. with 532 nm being commonly used This article intends to provide a for the necessary virtual electronic brief overview of the differences and transition. In the following section, benefits, together with the laser source four examples from different areas of requirements and the advancements Raman applications show the diverse in techniques enabled by recent applications of linear Raman and what developments in lasers. advances have been achieved. An example of studying a real-world LINEAR RAMAN application, the successful control of Figure 1 An example of the RR microfluidic device counting of The advent of the laser in providing a food quality using Raman spectroscopy photosynthetic microorganisms. As the cells of the model strain high-intensity coherent light source and multivariate analysis, is described Synechocystis sp.
    [Show full text]
  • High Performance Raman Spectroscopy with Simple Optical Components ͒ ͒ W
    High performance Raman spectroscopy with simple optical components ͒ ͒ W. R. C. Somerville, E. C. Le Ru,a P. T. Northcote, and P. G. Etchegoinb The MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington, New Zealand ͑Received 6 December 2009; accepted 19 April 2010͒ Several simple experimental setups for the observation of Raman scattering in liquids and gases are described. Typically these setups do not involve more than a small ͑portable͒ CCD-based spectrometer ͑without scanning͒, two lenses, and a portable laser. A few extensions include an inexpensive beam-splitter and a color filter. We avoid the use of notch filters in all of the setups. These systems represent some of the simplest but state-of-the-art Raman spectrometers for teaching/ demonstration purposes and produce high quality data in a variety of situations; some of them traditionally considered challenging ͑for example, the simultaneous detection of Stokes/anti-Stokes spectra or Raman scattering from gases͒. We show examples of data obtained with these setups and highlight their value for understanding Raman spectroscopy. We also provide an intuitive and nonmathematical introduction to Raman spectroscopy to motivate the experimental findings. © 2010 American Association of Physics Teachers. ͓DOI: 10.1119/1.3427413͔ I. INTRODUCTION and finish with a higher energy than the original one. This case corresponds to anti-Stokes Raman scattering. The Raman effect was discovered in 1928 by Raman1 and In reality, the photon is usually provided by a laser, which is now a major research tool with applications in physics, has a well defined frequency.
    [Show full text]
  • Coherent Anti-Stokes Raman Scattering with Single-Molecule Sensitivity Using a Plasmonic Fano Resonance
    ARTICLE Received 13 Jan 2014 | Accepted 16 Jun 2014 | Published 14 Jul 2014 DOI: 10.1038/ncomms5424 Coherent anti-Stokes Raman scattering with single-molecule sensitivity using a plasmonic Fano resonance Yu Zhang1,2, Yu-Rong Zhen1,2, Oara Neumann2,3, Jared K. Day2,3, Peter Nordlander1,2,3 & Naomi J. Halas1,2,3 Plasmonic nanostructures are of particular interest as substrates for the spectroscopic detection and identification of individual molecules. Single-molecule sensitivity Raman detection has been achieved by combining resonant molecular excitation with large electromagnetic field enhancements experienced by a molecule associated with an inter- particle junction. Detection of molecules with extremely small Raman cross-sections (B10 À 30 cm2 sr À 1), however, has remained elusive. Here we show that coherent anti-Stokes Raman spectroscopy (CARS), a nonlinear spectroscopy of great utility and potential for molecular sensing, can be used to obtain single-molecule detection sensitivity, by exploiting the unique light harvesting properties of plasmonic Fano resonances. The CARS signal is enhanced by B11 orders of magnitude relative to spontaneous Raman scattering, enabling the detection of single molecules, which is verified using a statistically rigorous bi-analyte method. This approach combines unprecedented single-molecule spectral sensitivity with plasmonic substrates that can be fabricated using top-down lithographic strategies. 1 Department of Physics and Astronomy, Rice University, Houston, Texas 77005, USA. 2 Laboratory for Nanophotonics, Rice University, Houston, Texas 77005, USA. 3 Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, USA. Correspondence and requests for materials should be addressed to N.J.H. (email: [email protected]).
    [Show full text]
  • Labram Series Fields of Application
    Follow the Experts LabRAM Series Fields of Application Polymers The advantages of Raman spectroscopy • Non destructive • Non-invasive • No need for sample preparation • Information rich • Highly specific chemical fingerprints A chemical image of four micro-spheres using the LabRAM ARAMIS Raman microscope showing, the high spatial resolution possible with this technique. Whether the goal is qualitative or quantitative data, Raman spectroscopy can provide key information, easily and quickly, detailing the chemical composition and the structure of the Geology / Mineralogy / Gemmology investigated material. Pharmaceuticals and Cosmetics High resolution Raman mapped image of a mineral sample, showing Metamictisation of ZrSiO4 by self irradiation due to radioactive decay of Uranium and Thorium incorporated in zircon crystals. (Data courtesy of Dr. L. Nasdala, University of Mainz, Germany) Raman chemical image of pharmaceutical tablet showing Life Science distribution of the three major constituents. Semiconductors 3D image of single cell bacteria on a substrate. The high spatial resolution enables single cells to be characterized and studied in great detail. (Data courtesy of Dr Wei Huang, CEH Oxford, UK) Confocality and spatial resolution is pushed to the sub-micron limit. Applications This example shows 250 nm features of a semiconductor structure resolved using our confocal micro Raman system. Art • Biomedical • Carbon • Catalysis (Data courtesy of ATMEL Rousset Université Paul Cezanne, France) Chemistry • Forensics • Geology • Materials Pharmaceuticals • Physics • Polymers Process • Semiconductors 3 Raman Spectroscopy World leaders in Raman Performance through spectroscopy innovative technology The HORIBA Jobin Yvon Raman Division is the world leader in The Raman microscope has become an invaluable analytical tool Raman spectroscopy. We have designed and manufactured state- for many different applications including pharmaceuticals, of-the-art Raman systems for over four decades, and introduced polymers, semiconductors, forensics and even life science.
    [Show full text]
  • Raman Spectroscopy of Graphene and the Determination of Layer Thickness
    Application Note: 52252 The Raman Spectroscopy of Graphene and the Determination of Layer Thickness Mark Wall, Ph.D., Thermo Fisher Scientific, Madison, WI, USA Currently, a tremendous amount of activity is being directed Key Words towards the study of graphene. This interest is driven by the novel properties that graphene possesses and its potential • DXR Raman for use in a variety of application areas that include but Microscope are not limited to: electronics, heat transfer, bio-sensing, • 2D Band membrane technology, battery technology and advanced composites. Graphene exists as a transparent two dimen- • D Band sional network of carbon atoms. It can exist as a single • G Band atomic layer thick material or it can be readily stacked to form stable moderately thick samples containing millions • Graphene of layers, a form generally referred to as graphite. The • Layer Thickness interesting properties exhibited by graphene (exceptionally large electrical and thermal conductivity, high mechanical strength, high optical transparency, etc…), however, are only observed for graphene films that contain only one or a few layers. Therefore, developing technologies and devices based upon graphene’s unusual properties requires within the carbon lattice are present). These differences, accurate determination of the layer thickness for materials although they appear subtle, supply very important infor- under investigation. Raman spectroscopy can be employed mation when scrutinized closely. There are differences in to provide a fast, non destructive means of determining the band positions and the band shapes of the G band layer thickness for graphene thin films. 2D bands and the relative intensity of these bands are also significantly different.
    [Show full text]
  • Inline Holographic Coherent Anti-Stokes Raman Microscopy
    Inline holographic coherent anti-Stokes Raman microscopy Qian Xu, 1 Kebin Shi, 1 Haifeng Li, 1 Kerkil Choi, 2 Ryoichi Horisaki, 2 David Brady, 2 Demetri Psaltis, 3 and Zhiwen Liu 1,* 1Department of Electrical Engineering, the Pennsylvania State University, University Park, PA 16802 USA 2Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708 USA 3School of Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland *[email protected] Abstract: We demonstrate a simple approach for inline holographic coherent anti-Stokes Raman scattering (CARS) microscopy, in which a layer of uniform nonlinear medium is placed in front of a specimen to be imaged. The reference wave created by four-wave mixing in the nonlinear medium can interfere with the CARS signal generated in the specimen to result in an inline hologram. We experimentally and theoretically investigate the inline CARS holography and show that it has chemical selectivity and can allow for three-dimensional imaging. ©2010 Optical Society of America OCIS codes: (180.0180) Microscopy; (090.0090) Holography; (300.6230) Spectroscopy, coherent anti-Stokes Raman scattering. References and links 1. S. A. Benton, and V. M. Bove, Jr., Holographic Imaging (Wiley-Interscience, Hoboken, NJ, USA, 2008). 2. H. J. Coufal, D. Psaltis, G. T. Sincerbox, A. M. Glass, and M. J. Cardillo, Holographic Data Storage (Springer, New York, NY, USA, 2003). 3. B. W. Schilling, T. C. Poon, G. Indebetouw, B. Storrie, K. Shinoda, Y. Suzuki, and M. H. Wu, “Three- dimensional holographic fluorescence microscopy,” Opt. Lett. 22 (19), 1506–1508 (1997). 4. J. Rosen, and G. Brooker, “Non-scanning motionless fluorescence three-dimensional holographic microscopy,” Nat.
    [Show full text]
  • 22 DE88 014566 Introduction
    Influence of stimulated Raman scattering on the CONF-880435 — 22 conversion efficiency in four wave mixing DE88 014566 Rainer Wunderlich Max-Planck-Institut fur Kernphysik D6900 Heidelberg l.FRG M. A. Moore, W. R. Garrett and M. G. Payne Chemical Physics Section, Oak Ridge National Laboratory Oak Ridge ,TN 37831 USA Abstract: Secondary nonlinear optical effects following parametric four wave mixing in •odium vapor are investigated. The generated ultraviolet radiation induces stimulated Raman scattering and other four wave mixing process. Population transfer due to Raman transitions strongly influences the phase matching conditions for the primary mixing process. Pulse shortening and a reduction in conversion efficiency are observed. Introduction Tunable light sources in the ultraviolet (UV) and vacuum ultraviolet (VUV) region of the optical spectrum are important tools for the resonant excitation and ionisation of atoms and moleculs whose lowest excited states have energies above 6eV. Below 200nm tunable VUV light is most often produced by four wave mixing (FWM) in phase matched ga» mixtures. The tuning range has been extended belcw lQOnm (Hilber et. al 1987) using Kr as nonlinear medium. The efficiency of UV generation is increased by choosing an active medium with resonance enhancement of the third order nonlinear susceptibilty ,x (wc/v)> at the particular wavelength. Here we are concerned with loss processes of the generated UV due to further nonlinear processes like stimulated electronic Raman scattering and four wave mixing processes initiated by the UV which do not directly involve the generation of the UV itself. Processes which directly limit UV generation depend on the resonance structure of x*3* [uuv) • In case of a two photon resonance pump depletion due to two photon absorption and ionisation, bleaching of x^3' («i/v") due to population transfer (Heinrich et al 1983) and population transfer induced index changes (Puell et al 1980) limit the UV generation.
    [Show full text]