Surface-Enhanced Raman Scattering (SERS)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Passively Q-Switched KTA Cascaded Raman Laser with 234 and 671 Cm−1 Shifts
applied sciences Article Passively Q-Switched KTA Cascaded Raman Laser with 234 and 671 cm−1 Shifts Zhi Xie 1,2, Senhao Lou 2, Yanmin Duan 2, Zhihong Li 2, Limin Chen 1, Hongyan Wang 3, Yaoju Zhang 2 and Haiyong Zhu 2,* 1 College of Mechanical and Electronic Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China; [email protected] (Z.X.); [email protected] (L.C.) 2 Wenzhou Key Laboratory of Micro-Nano Optoelectronic Devices, Wenzhou University, Wenzhou 325035, China; [email protected] (S.L.); [email protected] (Y.D.); [email protected] (Z.L.); [email protected] (Y.Z.) 3 Crystech Inc., Qingdao 266100, China; [email protected] * Correspondence: [email protected] Abstract: A compact KTA cascaded Raman system driven by a passively Q-switched Nd:YAG/Cr4+:YAG laser at 1064 nm was demonstrated for the first time. The output spectra with different cavity lengths were measured. Two strong lines with similar intensity were achieved with a 9 cm length cavity. One is the first-Stokes at 1146.8 nm with a Raman shift of 671 cm−1, and the other is the Stokes at 1178.2 nm with mixed Raman shifts of 234 cm−1 and 671 cm−1. At the shorter cavity length of 5 cm, the output Stokes lines with high intensity were still at 1146.8 nm and 1178.2 nm, but the intensity of 1178.2 nm was higher than that of 1146.8 nm. The maximum average output power of 540 mW was obtained at the incident pump power of 10.5 W with the pulse repetition frequency of 14.5 kHz and the pulse width around 1.1 ns. -
Understanding the Application of Raman Spectroscopy to the Detection of Traces of Life
ASTROBIOLOGY Volume 10, Number 2, 2010 ª Mary Ann Liebert, Inc. DOI: 10.1089=ast.2009.0344 Understanding the Application of Raman Spectroscopy to the Detection of Traces of Life Craig P. Marshall,1 Howell G.M. Edwards,2 and Jan Jehlicka3 Abstract Investigating carbonaceous microstructures and material in Earth’s oldest sedimentary rocks is an essential part of tracing the origins of life on our planet; furthermore, it is important for developing techniques to search for traces of life on other planets, for example, Mars. NASA and ESA are considering the adoption of miniaturized Raman spectrometers for inclusion in suites of analytical instrumentation to be placed on robotic landers on Mars in the near future to search for fossil or extant biomolecules. Recently, Raman spectroscopy has been used to infer a biological origin of putative carbonaceous microfossils in Early Archean rocks. However, it has been demonstrated that the spectral signature obtained from kerogen (of known biological origin) is similar to spectra obtained from many poorly ordered carbonaceous materials that arise through abiotic processes. Yet there is still confusion in the literature as to whether the Raman spectroscopy of carbonaceous materials can indeed delineate a signature of ancient life. Despite the similar nature in spectra, rigorous structural interrogation between the thermal alteration products of biological and nonbiological organic materials has not been undertaken. There- fore, we propose a new way forward by investigating the second derivative, deconvolution, and chemometrics of the carbon first-order spectra to build a database of structural parameters that may yield distinguishable characteristics between biogenic and abiogenic carbonaceous material. -
DXR Raman Microscope
Thermo Scientific DXR Raman Microscope Put high performance to work for you DXR Raman microscope Rethinking Raman for industry and applied research We’ve completely redefined the Raman microscope so that it lets you focus on your work rather than the tools you use to do it. Without sacrificing performance, we’ve built an instrument family around reliability, confidence, and usability. Furthermore, we’ve solved practical application problems with innovations that improve your ability to get to good information quickly. We’ve put expertise under the hood, real world problem solving into the design, and support everywhere in the world. Welcome to Thermo Scientific DXR Raman spectroscopy, Raman that works for you rather than the other way around. Packaging Forensics Fibers Gems/Geology Art Restoration Focus on your project or problem, not your instrumentation Instrumentation used in solving analytical challenges and characterizing materials in today’s fast paced, results-driven world is very different than what is required in advanced spectroscopic experiments. We designed the Thermo Scientific™ DXR™ Raman system for users who are trying to solve an engineering problem, characterize a novel material, defend a patent, or tackle a backlog of evidence. We designed an instrument that is not only powerful but considers your need for reliability, repeatability, ease of use, and assurance in results. If your analysis is a means to an end that simply requires answers quickly and confidently, the DXR microscope is without question the right Raman for your laboratory. Nanotechnology DXR Raman designed for real world problems... DXR Raman and Materials Characterization Unprecedented laser power control and patented* three path alignment assure that you are getting the best results from the right part of your material. -
Simplified Near-Degenerate Four-Wave-Mixing Microscopy
molecules Article Simplified Near-Degenerate Four-Wave-Mixing Microscopy Jianjun Wang 1,† , Xi Zhang 1,†, Junbo Deng 1, Xing Hu 1, Yun Hu 1, Jiao Mao 1, Ming Ma 1, Yuhao Gao 1, Yingchun Wei 1, Fan Li 1, Zhaohua Wang 1, Xiaoli Liu 1, Jinyou Xu 2,* and Liqing Ren 1,* 1 School of Energy Engineering, Yulin University, Yulin 719000, China; [email protected] (J.W.); [email protected] (X.Z.); [email protected] (J.D.); [email protected] (X.H.); [email protected] (Y.H.); [email protected] (J.M.); [email protected] (M.M.); [email protected] (Y.G.); [email protected] (Y.W.); [email protected] (F.L.); [email protected] (Z.W.); [email protected] (X.L.) 2 South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China * Correspondence: [email protected] (J.X.); [email protected] (L.R.) † These authors contribute equally. Abstract: Four-wave-mixing microscopy is widely researched in both biology and medicine. In this paper, we present a simplified near-degenerate four-wave-mixing microscopy (SNDFWM). An ultra-steep long-pass filter is utilized to produce an ultra-steep edge on the spectrum of a femtosecond pulse, and a super-sensitive four-wave-mixing (FWM) signal can be generated via an ultra-steep short-pass filter. Compared with the current state-of-the-art FWM microscopy, this SNDFWM microscopy has the advantages of simpler experimental apparatus, lower cost, and easier operation. We demonstrate that this SNDFWM microscopy has high sensitivity and high spatial resolution in both nanowires and biological tissues. -
Raman Microscope
COMPACT AND FULLY AUTOMATED RAMAN MICROSCOPE RM5 EDINBURGH INSTRUMENTS Edinburgh Instruments has been providing high performance instrumentation in the Molecular Spectroscopy market for almost 50 years. Our commitment to offering the highest quality, highest sensitivity instruments for our customers has now expanded to include the best Raman microscopes for all research and analytical requirements. As always, Edinburgh Instruments provides world-class customer support and service throughout the lifetime of our instruments. MOLECULAR SPECTROSCOPY SINCE 1971 CIRCLE Photoluminescence CIRCLE Raman CIRCLE UV-Vis CIRCLE Transient Absorption BIOSCIENCES PHARMACEUTICALS CHEMICALS POLYMERS NANO-MATERIALS RM5 RAMAN MICROSCOPE The RM5 is a compact and fully automated Raman microscope for analytical and research purposes. The truly confocal design of the RM5 is unique to the market and offers uncompromised spectral resolution, spatial resolution, and sensitivity. The RM5 builds on the expertise of robust and proven building blocks, combined with modern optical design considerations; and a focus on function, precision and speed. The result is a modern Raman microscope that stands alone in both specifications and ease of use. KEY FEATURES Truly Confocal – with variable slit and multiple position adjustable pinhole for higher image definition, better fluorescence rejection and application optimisation A MODERN RAMAN MICROSCOPE THAT Integrated Narrowband Raman Lasers – up to 3 computer- STANDS ALONE IN controlled lasers for ease of use, enhanced stability -
Tip-Enhanced Raman Spectroscopic Detection of Aptamers
Tip-enhanced Raman spectroscopic detection of aptamers Siyu He1,2, Hongyuan Li1,2, Zhe He1, and Dmitri V. Voronine1,3 1 Texas A&M University, College Station, TX 77843, USA 2 Xi’an Jiaotong University, Xi’an 710049, China 3 Baylor University, Waco, TX 76798, USA Abstract Single molecule detection, sequencing and conformational mapping of aptamers are important for improving medical and biosensing technologies and for better understanding of biological processes at the molecular level. We obtain vibrational signals of single aptamers immobilized on gold substrates using tip-enhanced Raman spectroscopy (TERS). We compare topographic and optical signals and investigate the fluctuations of the position- dependent TERS spectra. TERS mapping provides information about the chemical composition and conformation of aptamers, and paves the way to future single-molecule label-free sequencing. 1 1. Introduction Surface- and tip-enhanced Raman scattering can be used to reveal the molecular bonds as well as the functional components in biomaterials, which was applied to few and single molecule sensing1,2,3,4. Surface-enhanced Raman scattering (SERS) utilizes plasmonic resonances of metallic nanostructures to enhance Raman signals of biomolecules5. Weak Raman signals of complex biomolecules could be challenging for measurements at the single molecule level6,7. SERS can be used boost the Raman signals at the plasmonic resonance condition. Tip-enhanced Raman spectroscopy (TERS) is scanning probe microscope combined with the plasmonic enhancement of SERS and provides nanoscale label-free, direct chemical imaging method due to high lateral resolution and possibility of simultaneous imaging and sensing at the single-molecule level4,8. Recently, several DNA sensing methods have emerged in various fields of research as subjects of intense studies9,10. -
New Exploratory Experiments for Raman Laser Spectroscopy
5 Lasers for Science Facility Programme I Chemistry New exploratory experiments for Raman laser spectroscopy M. Hippler and C. Mohr Department of Chemistry, University of Sheffield, Sheffield, S3 7HF, UK Main contact email address [email protected] Introduction using a modification of the optophone detection [3,4] The analysis of high-resolution rovibrational spectra is introduced by Zare and coworkers. We will also introduce a relevant because it allows the study of the structure and first application, the study of the anharmonic and Coriolis dynamics of molecules and molecular association, and how resonance system of cyclo-propane (C3H6) in the CH- this changes under vibrational excitation. Topics in this stretching region near 3000 cm-1 [5] and present first tentative context are the determination of equilibrium geometries of assignments. [6] isolated molecules and of complexes, the study of the coupling of vibrations, intramolecular vibrational energy Discussion redistribution (IVR), tunnelling and rearrangement To set-up a stimulated laser Raman experiment, a strong processes (for a recent overview, see ref. [1]. Raman Raman pump source at fixed wavelength and a tuneable spectroscopy is an important technique in these studies, stimulating Raman source are required. For this purpose, because it can provide complimentary information which is we modified a Nd:YAG pumped dye laser system not available by IR spectroscopy due to different selection (Continuum Sirah PrecisionScan, NSL4 on loan from the rules and experimental difficulties -
Coherent Anti-Stokes Raman Scattering with Single-Molecule Sensitivity Using a Plasmonic Fano Resonance
ARTICLE Received 13 Jan 2014 | Accepted 16 Jun 2014 | Published 14 Jul 2014 DOI: 10.1038/ncomms5424 Coherent anti-Stokes Raman scattering with single-molecule sensitivity using a plasmonic Fano resonance Yu Zhang1,2, Yu-Rong Zhen1,2, Oara Neumann2,3, Jared K. Day2,3, Peter Nordlander1,2,3 & Naomi J. Halas1,2,3 Plasmonic nanostructures are of particular interest as substrates for the spectroscopic detection and identification of individual molecules. Single-molecule sensitivity Raman detection has been achieved by combining resonant molecular excitation with large electromagnetic field enhancements experienced by a molecule associated with an inter- particle junction. Detection of molecules with extremely small Raman cross-sections (B10 À 30 cm2 sr À 1), however, has remained elusive. Here we show that coherent anti-Stokes Raman spectroscopy (CARS), a nonlinear spectroscopy of great utility and potential for molecular sensing, can be used to obtain single-molecule detection sensitivity, by exploiting the unique light harvesting properties of plasmonic Fano resonances. The CARS signal is enhanced by B11 orders of magnitude relative to spontaneous Raman scattering, enabling the detection of single molecules, which is verified using a statistically rigorous bi-analyte method. This approach combines unprecedented single-molecule spectral sensitivity with plasmonic substrates that can be fabricated using top-down lithographic strategies. 1 Department of Physics and Astronomy, Rice University, Houston, Texas 77005, USA. 2 Laboratory for Nanophotonics, Rice University, Houston, Texas 77005, USA. 3 Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, USA. Correspondence and requests for materials should be addressed to N.J.H. (email: [email protected]). -
Labram Series Fields of Application
Follow the Experts LabRAM Series Fields of Application Polymers The advantages of Raman spectroscopy • Non destructive • Non-invasive • No need for sample preparation • Information rich • Highly specific chemical fingerprints A chemical image of four micro-spheres using the LabRAM ARAMIS Raman microscope showing, the high spatial resolution possible with this technique. Whether the goal is qualitative or quantitative data, Raman spectroscopy can provide key information, easily and quickly, detailing the chemical composition and the structure of the Geology / Mineralogy / Gemmology investigated material. Pharmaceuticals and Cosmetics High resolution Raman mapped image of a mineral sample, showing Metamictisation of ZrSiO4 by self irradiation due to radioactive decay of Uranium and Thorium incorporated in zircon crystals. (Data courtesy of Dr. L. Nasdala, University of Mainz, Germany) Raman chemical image of pharmaceutical tablet showing Life Science distribution of the three major constituents. Semiconductors 3D image of single cell bacteria on a substrate. The high spatial resolution enables single cells to be characterized and studied in great detail. (Data courtesy of Dr Wei Huang, CEH Oxford, UK) Confocality and spatial resolution is pushed to the sub-micron limit. Applications This example shows 250 nm features of a semiconductor structure resolved using our confocal micro Raman system. Art • Biomedical • Carbon • Catalysis (Data courtesy of ATMEL Rousset Université Paul Cezanne, France) Chemistry • Forensics • Geology • Materials Pharmaceuticals • Physics • Polymers Process • Semiconductors 3 Raman Spectroscopy World leaders in Raman Performance through spectroscopy innovative technology The HORIBA Jobin Yvon Raman Division is the world leader in The Raman microscope has become an invaluable analytical tool Raman spectroscopy. We have designed and manufactured state- for many different applications including pharmaceuticals, of-the-art Raman systems for over four decades, and introduced polymers, semiconductors, forensics and even life science. -
Raman Spectroscopy of Graphene and the Determination of Layer Thickness
Application Note: 52252 The Raman Spectroscopy of Graphene and the Determination of Layer Thickness Mark Wall, Ph.D., Thermo Fisher Scientific, Madison, WI, USA Currently, a tremendous amount of activity is being directed Key Words towards the study of graphene. This interest is driven by the novel properties that graphene possesses and its potential • DXR Raman for use in a variety of application areas that include but Microscope are not limited to: electronics, heat transfer, bio-sensing, • 2D Band membrane technology, battery technology and advanced composites. Graphene exists as a transparent two dimen- • D Band sional network of carbon atoms. It can exist as a single • G Band atomic layer thick material or it can be readily stacked to form stable moderately thick samples containing millions • Graphene of layers, a form generally referred to as graphite. The • Layer Thickness interesting properties exhibited by graphene (exceptionally large electrical and thermal conductivity, high mechanical strength, high optical transparency, etc…), however, are only observed for graphene films that contain only one or a few layers. Therefore, developing technologies and devices based upon graphene’s unusual properties requires within the carbon lattice are present). These differences, accurate determination of the layer thickness for materials although they appear subtle, supply very important infor- under investigation. Raman spectroscopy can be employed mation when scrutinized closely. There are differences in to provide a fast, non destructive means of determining the band positions and the band shapes of the G band layer thickness for graphene thin films. 2D bands and the relative intensity of these bands are also significantly different. -
Inline Holographic Coherent Anti-Stokes Raman Microscopy
Inline holographic coherent anti-Stokes Raman microscopy Qian Xu, 1 Kebin Shi, 1 Haifeng Li, 1 Kerkil Choi, 2 Ryoichi Horisaki, 2 David Brady, 2 Demetri Psaltis, 3 and Zhiwen Liu 1,* 1Department of Electrical Engineering, the Pennsylvania State University, University Park, PA 16802 USA 2Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708 USA 3School of Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland *[email protected] Abstract: We demonstrate a simple approach for inline holographic coherent anti-Stokes Raman scattering (CARS) microscopy, in which a layer of uniform nonlinear medium is placed in front of a specimen to be imaged. The reference wave created by four-wave mixing in the nonlinear medium can interfere with the CARS signal generated in the specimen to result in an inline hologram. We experimentally and theoretically investigate the inline CARS holography and show that it has chemical selectivity and can allow for three-dimensional imaging. ©2010 Optical Society of America OCIS codes: (180.0180) Microscopy; (090.0090) Holography; (300.6230) Spectroscopy, coherent anti-Stokes Raman scattering. References and links 1. S. A. Benton, and V. M. Bove, Jr., Holographic Imaging (Wiley-Interscience, Hoboken, NJ, USA, 2008). 2. H. J. Coufal, D. Psaltis, G. T. Sincerbox, A. M. Glass, and M. J. Cardillo, Holographic Data Storage (Springer, New York, NY, USA, 2003). 3. B. W. Schilling, T. C. Poon, G. Indebetouw, B. Storrie, K. Shinoda, Y. Suzuki, and M. H. Wu, “Three- dimensional holographic fluorescence microscopy,” Opt. Lett. 22 (19), 1506–1508 (1997). 4. J. Rosen, and G. Brooker, “Non-scanning motionless fluorescence three-dimensional holographic microscopy,” Nat. -
Cobolt Lasers for Raman Spectroscopy – White Paper
Cobolt lasers for Raman Spectroscopy – White Paper 1. Please tell us a bit about Cobolt? Cobolt AB is a Sweden-based manufacturer of high performance diode-pumped lasers and laser diodes in the UV, visible and near-infrared spectral ranges. The company’s laser products serve as key-components in advanced analytical instrumentation equipment for life science, quality control and industrial metrology applications. Cobolt is recognized on the market for providing compact, high performance, continuous wave lasers with reliable single-frequency or narrow-linewidth performance over a large range of environmental conditions. This is thanks to the company’s proprietary HTCure™ technology for advanced laser manufacturing. HTCure™ allows for robust assembly of high precision optical systems into compact, hermetically sealed packages. Cobolt was founded in 2000 and is head-quartered in Solna, Sweden, where the company’s products are developed, designed, and manufactured in a modern and ISO 9001 certified clean-room factory. The facility is specially designed for volume manufacturing of advanced lasers and laser systems. The company has direct sales offices in Sweden, Germany and the USA. Since December 2015, Cobolt AB is part of Hübner Photonics, a division of the Hübner Group. Hübner is a market leading supplier of industrial mobility solutions for the transport industry. Cobolt 04-01, 05-01 and 08-01 Series of high performance CW lasers for Raman spectroscopy 2. What are the different techniques in modern Raman Spectroscopy, and what are they used for? Thanks to rapid technology advancements in recent years, Raman Spectroscopy has become a routine, cost-efficient, and much appreciated analytical tool not only in material research applications but also for in-line process control applications in for instance pharmaceutical, food & beverage, chemical and agricultural industries.