3D Silicon Detectors for High Energy G Gy Physics and Imaging Applications
Total Page:16
File Type:pdf, Size:1020Kb
3D Silicon Detectors for Higggyh Energy Physics and Imaging Applications 9 April 2010 9 April 2010 Cinzia Da Vià, The University of Manchester, UK r-UK. Hamburg ee Introduction y of Manchest tt 3D silicon technology and key properties , the Universi , the áá Applications to HEP Cinzia Da Vi Applications to Medicine and Biology Summary and Perspectives Micro-machining Æ MEMS Micro-Electro-Mechanical Systems 9 April 2010 9 April 2010 MEMS refers to the integration of mechanical elements, and electronics on a common silicon r-UK. Hamburg substrate throughmicro ee fabrication technology y of Manchest tt "micromachining" process that selectively etch away , the Universi , the parts of the silicon wafer or add áá new structural layers to form the mechanical and electro-mechanical Cinzia Da Vi structures Communications High frequency circuits will benefit considerably from the advent of the RF-MEMS technology. Electrical components such as inductors and ‘tunable ‘capacitors can be improved significantly compared to their integrated counterparts if they are made using MEMS technology. Accelerometers MEMS accelerometers are quickly replacing conventional accelerometers for crash air-bag deployment systems in automobiles. Biotechnology Polymerase Chain Reaction (PCR) micro-systems for DNA amplification and identification, micro-machined Scanning Tunnelling Microscopes (STMs), biochips for detection of hazardous chemical and biological agents, and micro-systems for high-throughput drug screening and election. 3D Silicon detectors 9 April 2010 9 April 2010 r-UK. Hamburg ee y of Manchest tt 3D silicon detectors were proposed in 1995 by S. Parker, and active edges in 1997 by C. Kenney. , the Universi , the áá Combine traditional VLSI processing and 1. NIMA 395 (1997) 328 MEMS (Micro Electro Mechanical Systems) 2. IEEE Trans Nucl Sci 46 (1999) 1224 Cinzia Da Vi technology. 3. IEEE Trans Nucl Sci 48 (2001) 189 4. IEEE Trans NlNucl SiSci 48 (2001) 1629 5. IEEE Trans Nucl Sci 48 (2001) 2405 6. Proc. SPIE 4784 (2002)365 Electrodes are processed inside the detector 7. CERN Courier, Vol 43, Jan 2003, pp 23-26 8. NIM A 509 (2003) 86-91 bulk instead of being implanted on the 9. NIMA 524 (2004) 236-244 10. NIM A 549 (2005) 122 Wafer's surface. 11. NIM A 560 (2006) 127 12. NIM A 565 (2006) 272 13. IEEE TNS 53 (2006) 1676 The edge is an electrode! Dead volume at the 14. NIM A 587(2008) 243-249 Recent papers not included Edge < 5 microns! Essential for 3D versus planar detectors (not to scale) particle Active edge 3D PLANAR ~ 0.5-1 mm + + 9 April 2010 9 April 2010 n+ p n+ p 50 μm 50 μm m - μ - - - - r-UK. Hamburg - - - 00 i ee - - + + + + 30 + + + + + + n+ microcracks, y of Manchest tt Collecting chips induce surface electrode leakage current MEDICI simulation , the Universi , the áá p n of a 3D structure 3D planar Cinzia Da Vi DEPLETION VOLTAGES < 10 V 70 V EDGE SENSITIVITY < 5 μm 500 μm CHARGE 1 MIP (300 mm) 24000e- 24000e- CAPACITANCE 30-50f ~20fF COLLECTION DISTANCE 50 μm 300 μm n n SPEED 1-2 ns 10-20 ns Drift lines parallel to the surface 3D Tests with 0.13 μm CMOS Amplifier chip Full-3D (A Kok, S. Parker, C. Da Viá, P. Jarron, M. Depeisse, G. Anelli), fabricated at Stanford speed properties By J. Hasi, C. Kenney After neutron irradiation 0.002 9 April 2010 9 April 2010 0 15 2 -0.002 8.6 e n/cm -0.004 5.98e15 n/cm2 litude [V] litude r-UK. Hamburg pp ee Short collection distance Am -0.006 3.7e15 n/cm2 High average e-field at low V bias -0.008 NON IRRADIATED Parallel charge collection C. DaVia et al March 06 y of Manchest tt -0010.01 -3 10-8 -2 10-8 -1 10-8 01 10-8 2 10-8 3 10-8 Time [s] , the Universi , the áá Raw oscilloscope Cinzia Da Vi trace rt~ 800ps rt≈ 1.5ns 2ns 3D signal simulation T 30K 5 3D Inter-electrode spacing = 50 μm number vs. pulse height 25 Constant Fraction Discrimination Pulse height distribution 50 um 20 IES 67 pulses δ T 15 analysed σ noise Counts 9 April 2010 9 April 2010 10 Analysis from S. Parker 5 Expected noise-induced time-error distribution r-UK. Hamburg ee 0 time resolution vs. pulse height number vs. time resolution from noise 1200 Noise time error y of Manchest 1000 analysis tt (using constant average dt 800 fraction scatter plot: discrimination) 155 ps , the Universi , the 600 (ps) tt áá d vs. pulse height. bottom plot: 400 134 ps Cinzia Da Vi 200 0 300 0 5 10 15 20 Counts 200 100 dt (ps) dt distribution from ~ noise-free signal 0 2 4 6 8 10 12 14 16 added repeatedly to separate noise pulse height (mV) segments. 6 Radiation Induced Bulk Damage in Silicon From RD48/ROSE 9 April 2010 9 April 2010 Primary Knock on Atom Displacement threshold in Si: r-UK. Hamburg Frenkel pair E~25eV ee Defect cluster E~5keV Vacancy y of Manchest tt Interstitial Van Lint 1980 , the Universi , the áá V,I MIGRATE UNTIL THEY MEET IMPURITIES AND DOPANTS TO FORM STABLE DEFECTS Effect on sensors Cinzia Da Vi Ec V6 - VO Ec - 0.17eV CHARGED DEFECTS==>NEFF, VBIAS V2(=/-)+Vn Ec-0.22eV V2(-/0)+Vn Ec-0.40eV DEEP TRAPS, RECOMBINATION Ei CENTERS ==>CHARGE LOSS V2O (0/+) DEEP TRAPS, GENERATION CIOI EV+0.36eV Ev CENTERS==>LEAKAGE CURRENT Cinzia Da Viá , the University of Manchester-UK. Hamburg 9 April 2010 For details on LHC radiation environment and effects radiation on silicon please look at thistalk CB The effect of trapping VB 9 April 2010 9 April 2010 The carriers move less Æ less sigggnal since the signal is formed when char ges move r-UK. Hamburg ee y of Manchest tt , the Universi , the áá Cinzia Da Vi Trapping has been measured for electrons and holes by G. Kramberger (Ljiubliana) NIMA 481 (2002) 100 Signal Efficiency and Signal Charge in 3D Structures SE=signal after irradiation/signal before irradiation Ramo’s theorem with trapping 9 April 2010 9 April 2010 particle dS dV dx x = q W exp(− ) 3D + + + p+ + + + + + n p n n p n p n dt dx dt λ Effective drift length r-UK. Hamburg ee λ ⎡ x ⎤ S = 1− exp(− ) + ⎢ ⎥ - L ⎣ λ ⎦ L Δ + 1 + + 2 2 y of Manchest SE = - tt λ λ λ L + ⎛ ⎞ ⎛ ⎞ - SE = − + exp(− ) ⎜ ⎟ ⎜ ⎟ Kτ - L ⎝ L ⎠ ⎝ L ⎠ λ 1+ 0.6L Φ vD ~50 μm , the Universi , the áá effe Active edge ~4μm ~ 500 μm L=inter electrode distance λ= effective drift length 1 p+ n+ VD= vdrift (saturated) WeightPot STRIP -2 1E15 n cm 200K COL Φ= fluence Cinzia Da Vi Prob e STRIP 0.8 Prob h STRIP ELECT LECTION Κτ=trapping time damage Prob signal STRIP - - constant L=Δ 0.6 i Δ= substrate thickness /Signal + h (determines the amount + /p 0.4 + e p of generated charged by a R 0.2 x ODE MIP) n+ 0 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 L=Inter electrode distance Trapping times from G. Kramberger et al. PLANAR Distance (cm) NIMA 481 (2002) 100 NIM A 501(2003) 138 (Vertex 2001) Effective drift length due to trapping λ= vdrift x τtrap 9 April 2010 9 April 2010 200 r-UK. Hamburg )) o ee T = -20 C Electrons e- mobility 3 times bigger! 150 e- ength (microns ength y of Manchest 100 tt Holes 50 For max signal: 15 -2 , the Universi , the Fluence = 10 protons cm Effective Drift L áá 0 01234 - Electric Field ( Volt/micron ) Collect e Cinzia Da Vi + h WktWork at Vdrift Saturated -> e-field >2V/μm Ottaviani, Canali et al. Trapping times from Kramberger et al. NIMA 481 (2002) 100 Simulations CDV and S.Watts NIM A 501(2003) 138 (Vertex 2001) 3D electrodes configurations 8.81x1015n/cm2 1731.73x 1016p/cm2 Irradiation and measurements performed in Prague 120 2E NI C. Da Viá, T. Slaviceck, V. Linhart, P. Bem, S. Parker, 2E 160 7.55e14 S. Pospisil, S. Watts (process J. Hasi, C. Kenney) - 2.00e15 100 9000e 8.81e15 2E 120 80 45% ude [mV] V ~130V [%] cy 9 April 2010 9 April 2010 b tt 2E nn 50 μm 60 80 400 μm 40 40 Signal efficie Signal Ampli 20 C. Da Viá July 07 threshold C. Da Viá July 07 r-UK. Hamburg IR Laser 0 ee n 0 0 50 100 150 200 02 1015 4 1015 6 1015 8 1015 1 1016 Oscillo- Bias Voltage [V] Fluence [n/cm2] p μ 103 m scope Vfd ~20V 160 120 3E-NI bias 140 7.55e14 2.00e15 100 ] mV] y of Manchest [[ 8.81e15 tt 120 %% 51% 3E 80 50 μm 100 400 μm 3E 80 60 - 3E 10200e 60 IR 40 , the Universi , the V ~112V 40 b ignal efficiency [ Signal Amplitude Amplitude Signal SS áá 20 n 20 C. Da Viá July 07 threshold p 0 0 C. Da Viá July 07 0 50 100 150 200 02 1015 4 1015 6 1015 8 1015 1 1016 71 μm 2 Bias Voltage [V] Fluence [n/cm ] Vfd ~8V Cinzia Da Vi 140 120 4E NI 4E 7.55e14 4E 120 2.00e15 100 - 8.81e15 4E 100 50 μm 13200e 80 400 μm Vb~94V 80 60 mplitude [mV] fficiency [%] fficiency AA 60 ee 40 66% 40 Signal n Signal 20 20 C.DaVia July 07 threshold p 0 C. Da Viá et al.