Hydro-Kinetic Drives, Hydraulic Torque Converters and Hydraulic Couplings

Total Page:16

File Type:pdf, Size:1020Kb

Hydro-Kinetic Drives, Hydraulic Torque Converters and Hydraulic Couplings Hydro-Kinetic Drives, Hydraulic Torque Converters and Hydraulic Couplings By NICHOLAS A. D'ARCY, JR. IDESPREAD interest in hydraulic drives was ADVANTAGES OF HYDRAULIC DRIVES created in this country when hydraulic couplings The original developments of Dr. Foettinger were were incorporated in several popular automo- connected with the development of the Diesel engine. biles. This was the outgrowth of the inventions of Dr. Some simple device was needed to absorb the torsiorial Ing. Hermann Foettinger in Hamburg, Germany. over vibrations and "un-equality" of operation of this engine. 30 years ago. Dr. Foettinger developed both the hy- and the hydraulic torque converter and hydraulic cou- draulic coupling and the hydraulic torque converter for pling proved to be the devices needed. One of the most use in Diesel-powered vessels having up to 20.000 horse- important advantages of all hydro-kinetic drives is the power available for driving the propeller. reduction of vibration and smoothing-out of the flow of The use and development of hydraulic drives spread power from internal combustion engines. In addition. to Sweden. where the Ljurigstrorn works further devel- they absorb shock loads. prevent stalling of the engines. oped the hydraulic torque converter under Lysholm- and provide a smooth method of starting a load. These Smith patents, and to England. where Vn1car1-Sinclair fundamental characteristics of the hydro-kinetic drives developed the hydraulic coupling. The Swedisli appli- apply without regard to whether the unit is a hydraulic cations were made largely to rail cars and the English torque converter or any of the several types of hydraulic applications to trucks and buses. coup1 i ng. It has been in the last four or five years that wide- Hydraulic torque converters have the further advan- spread industrial development has occurred in these tage of developing high output torque at low output two hydro-kinetic drives. The American Blower Corpo- %peed? while maintaining high operating speed in the prime mover. The over-all efficiency of the torque con- ration was sub-licensed by Vulcan-Sinclair to manufac- verter reaches a maximum of approximately 83 per cent. ture hydraulic couplings. the Twin Disc Clutch Company which is low compared to certain electrical units. but it licensed under Lysholm-Smith patents to manufacture allows the prime mover to develop full input horse- industrial hydraulic torque converters and hydraulic power by running at maximum speed. For this reason couplings. and Spicer Manufacturing Corporation to the output horsepower from a torque converter is often manufacture torque converters for automotive uses. higher than with mechanical transmissions with the These three American organizations are rapidly extend- engines operating at reduced speeds. ing the uses of hydro-kinetic drives. and new industries The hydraulic coupling. on the other hand. has a are rapidly availing themselves of the advantages of this maximum efficiency of over 95 per cent. but the output development. torque of a coupling can never exceed the input torque. Positive-drive hydraulic units are also in widespread From these radical differences one can see that each type use in the United States. but this type of drive is a of hydro-kinetic drive has its own particular advantage. separate and important field which will only be touched and care must be used in selecting the correct unit for upon at this time. any particular installation. AT LEFT: Ratio of output torque 20 to input torque. OUTPUT RPM, PERCENT OF INPUT RPM Page 10 ENGINEERING AND SCIENCE MONTHLY 0 10 20 30 40 50 60 70 80 90 100 INPUT SPEED, PERCENT ENGI E GOVERNED SPEED Performance characteristics of hydraulic coupling used with an internal combustion engine. BASIC PRINCIPLES OF HYDRO-KINETIC DRIVES fluid for heir drive. lioth units transmit horsepower in a pump or impeller on the driving end and a reaction memLcr on the drixen end. The rotation of tin' impeller imparts kinetic w~eraio the fluid in the closed circuit and drives the fluid to the outer peri- pheq of the unit. The iurhinc member then al)aorl)s the kinetic energy of the fluid in its hladp- and the fluid- having lost it~eloc- it\. is returned to the rw~tral portion of the unit. The impeller again picks up the fluid and the cycle is repeated. There is no mysterious characteristic imparted to tlie fluid at high velociiies. as has sometimes been described. The entire action is hadvd on fin]]- known Ja~sof Iqdraulicsi. There is no pwitiv e connection between tlie impeller and the turbine member, dud this feature allous the fluid to J~~OI-f)shock. absorb vibration. and provide AT LEFT: Axial hydraulic forces balance each other in this twin smooth starting. llot li tonpe con- coupling. AT RIGHT: A variable-speed coupling in which working verter and coupling depend upon fluid is removed, cooled, and returned to circuit. (Illustration courtesy the kinetic energy imparted to the Power Magazine.) NOVEMBER 1945 Page I I In addition to the simple traction or sealed (*oiipliiig. one may obtain scoop tube or variable speed coupling^. ring type coupling?. dumping couplings. and clutch type wuplings. These have all been developed to mecl certain requirements. but they arc basically the "arne a'- the traction coupling. Perhaps the most iritere~tingof these special couplings is the scoop tube coupling. whir-11 allots the operator to rontrol the volume of fluid in the roiipling. This controls the amount of slip for ai giten output speed and torque requirement. In additii the scoop tube coupling allows the fluid to be constant removed from the circuit. cooled. and reintroduced in the circuit., APPLICATIONS OF HYDRAULIC COUPLINGS The hydraulic coupling is essentially a constant- pee( cori~tant-torqueh-vdraulic unit. and as such it shouli he used on drives rer~~liringthis tipe of power. It i also an efficient drive. and one need not be concernc'd Construction of a typical hydraulic torque con- with loss in pmver through this type of unit. The paç verter: P is impeller, T,, T., and TL,are runner vanes, senger automobile is one of tlie outstanding successful and F and F, are the fixed vanes. (Illustration applications of hydraulic units. since it has a relatively courtesy Power Magazine.) constant-speed. constant-torque drive after the unit gains speed and is one in which economy of operation is a ~eloptorque in proportion to tlie square of the speed of prime factor. the driven member arid the fifth power of the diameter. One of the best inrhistrial applica~iorisfor hydraulic couplirigs is that between I he internal combustion engine HYDRAULIC COUPLINGS and the propeller shaft on moderate-sized power boats-. The hydraulic coupling is the simpler of tlie IN) The coupling absorbs engine vibrations and provides ;t tijdro-kinetic drives. It consists essential!> of two iden- very smooth drive. In new developments for fishing tical opposed vaned members, so that either half can boats hydraulic couplings are being incorporated into he used as the driving or driven member. In certain multiple-engine drives to compound the power of tuo adaptations of the hydraulic coupling. added feature- engines into a single propeller shaft. This drive has the are incorporated to alter this arrangement slightly. but added advantages of balancing the power of the two the basic principle remains. The two opposed memliers engines and protecting the compounding drive equip- being identical. one would expect to find the character merit. It is interesting to note that the original develop- of power transmitted identical with the power driling ment of hydraulic drives was made in connection with the coupling, and this is the case. except for friction ship propeller drives incorporating up to 20.000 horse- losses. In the traction or sealed type of coupling. the power, and now the drives are being developed for simplest and most common hydraulic coupling. the out- fishing boats having recpurcrrient~of approximately 300 put speed is on1 J about t 11 rce per cent less than the input horsepower. speed. and the output torque is always equal to the input Couplings are also useful in connection with electric torrrue. motors which muç he started under load. The fact that Engine speed variation, hydraulic coupling on engine: 22.4 strokes per minute; left, 105-1 15 pound pressure; center, 132 pound pressure; right, 200 pound pressure. Page 12 ENGINEERING AND SCIENCE MONTHLY the coupling transmits torque in proportion to the squarr hydraulic coupling had been installed on the engine. A of the speed allows the electric motor to gain bpeed similar reduction of the intake manifold pressure wia- under light torque. With this type of driiv. standard tion wsoKserved. The clutr'h tjpe of coupling allows push-button controls and standard electric motors can the operator to disconnect the engine from the driven be successfully used tu start heavy loads. The load is n~emliersuheii neces'ar?. liut allots him to remain in cilso started much more smoothly than it itli special liigli- hydraulic drive at all times i+hile operating. starting-torque electric motors. Electric motor drives of Tlit~$coup tube. or variable speed. IIJ-draulic c:oupling this nature are in operation on grease n~ixei'a,belt con- baa the added advantage of controlling the speed of tlie \thyors. ball mills, and mail) similar tyi)es of inacliiner) output shaft bj regulating the amount of fluid in the Itliere the unit must btart under full load. coup1iiig. In this tg pe of roupling an adjustable tube (hnsiatent reports uf reduced rnaiutenance of efiuip- t stcnds jut0 the hy draiilic circuit and drains the fluid merit are received from operators using drives incor- down to am desired level, thus allowing the coupling porating Iiy draulic couplings.
Recommended publications
  • Modern Design and Control of Automatic Transmission and The
    Review Paper doi:10.5937/jaes13-7727 Paper number: 13(2015)1, 313, 51 - 59 MODERN DESIGN AND CONTROL OF AUTOMATIC TRANSMISSION AND THE PROSPECTS OF DEVELOPMENT Dejan Matijević The School of Electrical and Computer Engineering of Applied Studies, Belgrade, Serbia Ivan Ivanković* University of Belgrade, Faculty of Mechanical Engineering, Belgrade, Serbia Dr Vladimir Popović University of Belgrade, Faculty of Mechanical Engineering, Belgrade, Serbia The paper provides an overview of modern technical solutions of automatic transmissions in auto- motive industry with their influence on sustainable development. The objective of the first section is a structural view of specific constructions and control systems of presently used automatic transmis- sions, with emphasis on mechatronics implementation. The second section is based on perspectives of development, by integrating some branches of soft computing, such as fuzzy logic and artificial neural networks in order to create an optimal control algorithm for obtaining a contribution to fuel economy, exhaust emission, comfort and vehicle performance. Key words: Automatic transmission, Mechatronics, Automotive industry, Soft Computing INTRODUCTION which is depended by coefficient of friction and normal load on the drive axle. Lower limitation Almost all automobiles in use today are driven by is defined by maximal speed that vehicle can internal combustion engines, which are charac- reach. Shaded areas between traction forces terized by many advantages, such as relatively through gears are power losses. To decrease good efficiency, relatively compact energy stor- power losses and to be as closely as possible age and high power – to – weight ratio [07]. to the ideal traction hyperbola, the gearbox with But, fundamental disadvantages are: enough gear ratios is needed.
    [Show full text]
  • Torque Converter. Human Engineering Institute, Cleveland, Ohio Report Number Am-2-5 Pub Date 15 May 67 Edrs Price Mf-$0.25 Hc-$2.04 49P
    REPORT RESUMES ED 021 106 VT 005 689 AUTOMOTIVE DIESEL MAINTENANCE 2. UNIT V, AUTOMATIC TRANSMISSIONS--TORQUE CONVERTER. HUMAN ENGINEERING INSTITUTE, CLEVELAND, OHIO REPORT NUMBER AM-2-5 PUB DATE 15 MAY 67 EDRS PRICE MF-$0.25 HC-$2.04 49P. DESCRIPTORS- *STUDY GUIDES, *TEACHING GUIDES, TRADE AND INDUSTRIAL EDUCATION, *AUTO MECHANICS (CCUPATION), *EQUIPMENT MAINTENANCE, DIESEL MATERIALS, INDIVIDUAL INSTRUCTION, INSTRUCTIONAL FILMS, PROGRAMED INSTRUCTON, KINETICS, MOTOR VEHICLES, THIS MODULE OF A 25-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF TORQUE CONVERTERS USED ON DIESEL POWERED VEHICLES. TOPICS ARE (1) FLUID COUPLINGS (LOCATION AND PURPOSE),(2) PRINCIPLES OF OPERATION,(3) TORQUE CONVERRS,(4) TORQMATIC CONVERTER, (5) THREE STAGE, THREE ELEMENT TORQUE CONVERTER, AND (6) TORQUE CONVERTER MAINTENANCE AND TROUBLESHOOTING. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL PROGRAM TRAINING FILM "LEARNING ABOUT TORQUE CONVERTERS" AND OTHER MATERIALS. SEE VT 005 685 FOR FURTHER INFORMATION. MODULES IN THIS SERIES ARE AVAILABLE AS VT 005 685- VT 005 709. MODULES FOR "AUTOMOTIVE DIESEL MAINTENANCE 1" ARE AVAILABLE AS VT 005 655 VT 005 684. THE 2-YEAR PROGRAM OUTLINE FOR "AUTOMOTIVE DIESEL MAINTENANCE 1 AND 2" IS AVAILABLE AS VT 006 006. THE TEXT MATERIAL, TRANSPARENCIES, PROGRAMED TRAINING FILM, AND THE ELECTRONIC TUTOR MAY BE RENTED (FOR $1.75 PER WEEK) OR PURCHASED FROM THE HUMAN ENGINEERING INSTITUTE HEADQUARTERS AND DEVELOPMENT CETER, 2341 CARNEGIE AVENUE: CLEVELAND, 'OHM 44115. (HC) STUDY AND READING MATERIALS AUTOMOTIVE MAINTENANCE L_____ AUTOMATIC TRANSMISSIONS- TORQUE CONVERTER UNIT V SECTION A FLUID COUPLINGS (LOCATION AND PURPOSE) SECTION B PRINCIPLE OF OPERATION SECTION C TORQUE CONVERTERS SECTION D TORQMATIC CONVERTER SECTION E THREE STAGE, THREE ELEMENT TORQUE CONVERTER.
    [Show full text]
  • ECM Will Have Two (2) Options for Pure Street Class. Option 1: ECM Track Rules Option 2: Magnolia Track Rules
    ECM Speedway 2020 Pure Street Rules Revised 02/20/2020 ***Raceceivers Are Mandatory in ALL Classes The Statement: Unless it came on a stock, mass produced vehicle, it is NOT LEGAL UNLESS SPECIFIED HERE! IF it came on a stock, mass produced vehicle and it is prohibited here, it is NOT LEGAL! All dimensions are reFerenced as the car is raced. Your tire pressures, spring settings, ect. May put your car out oF limits. No variances are allowed when / iF the cars are checked / weighed going onto the track. Following the race, decisions on variances For accident is at the discretion oF the Tech Inspector(s). RELATIONSHIP TO OTHER CLASSES: These cars are primarily For NEWER drivers to V8 cars. There are a large number oF stock parts. IF you have won a Feature in a late model style car in the last 10 years, you can NOT drive in this class. ELIGIBLE MAKES/MODELS: Any Chrysler, Ford or GM model car that was / is mass- produced For the United States Market. Check with track beFore you build. ECM will have two (2) Options for Pure Street Class. Option 1: ECM Track Rules Option 2: Magnolia Track Rules. NO MIX and Match in these two options, ALL or NONE Will be Strictly Enforced Option 1: MATERIALS: No ceramic or carbon Fiber parts allowed. RADIATOR: One, mounted in Front oF the engine For the purpose oF cooling water and, optionally, to cool an automatic transmission. ENGINE: Location: Stock location For Make / Model / Year. Engine Option 1: GM cap seals or GEN-4 Green Crate Seals.
    [Show full text]
  • Unit M 6-Transmission in Diesel Locomotive
    UNIT M 6-TRANSMISSION IN DIESEL LOCOMOTIVE OBJECTIVE The objective of this unit is to make you understand about • the need for transmission in a diesel engine • the duties of an ideal transmission • the requirements of traction • the relation between HP and Tractive Effort • the factors related to transmission efficiency • various modes of transmission and their working principle • the application of hydraulic transmission in diesel locomotive STRUCTURE 1. Introduction 2. Duties of an ideal transmission 3. Engine HP and Locomotive Tractive Effort 4. Factors related to efficiency 5. Rail and wheel adhesion 6. Types of transmission system 7. Principles of Mechanical Transmission 8. Principles of Hydrodynamic Transmission 9. Application of Hydrodynamic Transmission ( Voith Transmission ) 10. Principles of Electrical Transmission 11. Summary 12. Self assessment 1 1. INTRODUCTION A diesel locomotive must fulfill the following essential requirements- 1. It should be able to start a heavy load and hence should exert a very high starting torque at the axles. 2. It should be able to cover a very wide speed range. 3. It should be able to run in either direction with ease. Further, the diesel engine has the following drawbacks: • It cannot start on its own. • To start the engine, it has to be cranked at a particular speed, known as a starting speed. • Once the engine is started, it cannot be kept running below a certain speed known as the lower critical speed (normally 35-40% of the rated speed). Low critical speed means that speed at which the engine can keep itself running along with its auxiliaries and accessories without smoke and vibrations.
    [Show full text]
  • Torque Converter Clutch Systems
    Torque Converter Clutch Systems Dr. techn Robert Fischer Dipl.-Ing. Dieter Otto Introduction Modern vehicle drive-train engineering must exhaust all potential drive-train options in order to provide maximum acceleration and fuel efficiency with high overall efficiency and optimum comfort. At the same time, attention must be paid to ever stricter emission standards. These requirements often work at cross-purposes with each other, which means that improving emissions often entails increasing weight, fuel consumption and decreasing acceleration, not to mention incurring constantly increasing costs [1]. Despite this trend, LuK has developed a torque controlled clutch system - called the TorCon System - that increases driver comfort, reduces fuel consumption and emissions, improves acceleration and even results in a 4- speed automatic transmission that is superior to a conventional 5-speed automatic. This means that wherever an expensive 5-speed automatic transmission is used due to fuel consumption and acceleration requirements, the same results can be achieved with a 4-speed automatic transmission. LuK's design philosophy is centered on holistic system design, and the automatic transmission area is no exception. This approach meets the demands that automotive industry have come to expect of it's system suppliers. Given the parameters it is not possible to fall back on large test facilities and a fleet of test vehicles. Yet LuK is confident that it is a competent development partner and can ensure the introduction of new transmission systems into production with the shortest possible development lead times. The following demonstration of LuK's development philosophy shows why this is possible. LuK, as a component supplier, has given special thought to the total system, not just to the parts supplied by LuK.
    [Show full text]
  • Hybrid Electric Vehicle Torque Split Algorithm for Reduction of Engine Torque Transients
    Graduate Theses, Dissertations, and Problem Reports 2018 HYBRID ELECTRIC VEHICLE TORQUE SPLIT ALGORITHM FOR REDUCTION OF ENGINE TORQUE TRANSIENTS Derek George Follow this and additional works at: https://researchrepository.wvu.edu/etd Recommended Citation George, Derek, "HYBRID ELECTRIC VEHICLE TORQUE SPLIT ALGORITHM FOR REDUCTION OF ENGINE TORQUE TRANSIENTS" (2018). Graduate Theses, Dissertations, and Problem Reports. 7179. https://researchrepository.wvu.edu/etd/7179 This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses, Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. HYBRID ELECTRIC VEHICLE TORQUE SPLIT ALGORITHM FOR REDUCTION OF ENGINE TORQUE TRANSIENTS Derek George Thesis submitted to the Statler College of Engineering and Mineral Resources at West Virginia University in partial fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering Scott Wayne,Ph.D., Committee Chairperson Andrew Nix,Ph.D. Mario Perhinschi,Ph.D. Department of Mechanical Engineering Morgantown, West Virginia 2018 Keywords: Hybrid Electric Vehicle Torque Split Algorithm Copyright 2018 Derek George Abstract HYBRID ELECTRIC VEHICLE TORQUE SPLIT ALGORITHM FOR REDUCTION OF ENGINE TORQUE TRANSIENTS Derek George The increased concern over energy efficiency and emissions in recent years has led to the deployment of cleaner alternatives for vehicle powertrains, including electrified vehicles.
    [Show full text]
  • ESP Parts Coverage.Pdf
    PremiumCARE + Covered Components (Partial List) • Housing and Ins • Intermediate Clutch - Piston • Manifold - Vacuum Outlet • Oil Cooler Transmission • Pivot - Front/Rear Seat Back • Processor Assembly - • Regulator - Front Door L • Seal - A/C Condenser • Sensor - Speed Brake • Shim A/C Compressor • Spring - Door Latch • Switch - Electrical • Transducer - EGR Back Pressure • Valve Assembly - Brake • Wiring Assembly - A/C Plan Options Assembly Transaxle Seal • Manifold Absolute Pressure • Oil Level Sensor • Pivot Rear Seat Back Regulator On 1000Window - Power • Seal - A/C Door • Sensor - Speedometer • Skid Control Module Rear • Spring - Front Windshield Wiper • Transducer - Hydraulic Pressure • Valve Assembly - Brake M/C Blower Motor Feed FORD PROTECT EXTENDED SERVICE PLANS • Housing Assembly • Internal Separator Plate Sensor • Oil Pan • Planetary Assembly - • PTO Assembly • Regulator - Front Door R • Seal - A/C Inlet Door • Sensor - Temp Coolant • Sleeve - Bearing Suspension Torsion • Switch - Fuel Filter • Transducer Assembly • Valve Assembly - Cooling Control • Wiring Assembly - Brake Skid EXTENDED SERVICE PLAN • Housing Assembly - Rear Axle • Inverter System Controller (ISC) • Manifold and Thermostat • Oil Pressure Sender Transmission Rear • Pulley - Alternator Window - Power • Seal - Brake Booster • Sensor - Transmission • Sleeve - Front Stabilizer Bar • Spring - Gear Tensioner • Switch - Ignition Anti-Theft • Transfer Case Assembly • Valve Assembly - Exhaust • Wiring Assembly - Interior/ INTEREST- • Housing Assembly Roof Slide (Hybrid)
    [Show full text]
  • Annexure-1 TECHNICAL SECTION SPECIFICATIONS (A) Design, Manufacture, Supply, Testing and Commissioning of Broad Gauge Shunti
    Annexure-1 TECHNICAL SECTION SPECIFICATIONS (A) Design, Manufacture, Supply, Testing and Commissioning of broad gauge Shunting Locomotive having Twin-Power-Pack, Two Diesel Engines with 4 Axles and Two Hydraulic Turbo Reverse Transmission of Total Drive Power Minimum 700 HP, the drive from the Transmission to Wheel will be through Final Drives and Heavy Duty Cardan Shafts/ or Diesel Electric locomotive having twin power pack, two axle bogies with all 4 axles independently motored, with two traction generators total driving power minimum 700 HP. (B) The detailed technical requirement and mechanical design requirement shall be as per Annexure I.A & IB. (C) All CONSUMABLES like Filters, Gaskets, Hoses, Lubricants, etc. and MAINTENANCE SPARES required during Guarantee period as per clause (8) below for their recommended Preventive Schedule Maintenance/Services of the Diesel Engines and Assemblies/Sub-assemblies of complete Locomotive as recommended by the Bidder/Manufacturer of Sub-assemblies are to be supplied along with Locomotive and shall be QUOTED AS LULMP SUM inclusive in cost of Locomotive. However, Bidder shall submit Schedule for Preventive Maintenance/Services and the list of all such items/spares required for it mentioning their Part Numbers with Installed and Recommended Quantities. Bidder shall also submit CERTIFICATE confirming that during that Guarantee Period as per clause (8), requirement of any additional Spares/Parts if any other than the list shall be supplied free of cost. (D) Bidder shall submit quotation for 02(two) years Recommended Maintenance spares with list of Installed and Recommended Quantities for Diesel Engines and Assemblies/Sub-assemblies for complete Locomotive . However, the cost of 2 years recommended Maintenance Spares shall not be considered for evaluation purpose and it will be NFL’s discretion to purchase All/Partial/Nil recommended maintenance SPARES along with Locomotive.
    [Show full text]
  • Active Launch Systems
    Active launch systems For passenger cars up to 1,000 Nm 2 3 Powertrain compo- nents and systems for passenger cars and LCV Performance – comfort – environmental protection. Powertrain components and systems for passenger cars and light commercial vehicles, developed and delivered by ZF, meet the widespread challenges of the highly complex interface between engine and transmission. The demands placed on suppliers in the automotive sec- Dual wet clutch with a consequent reduction in fuel consumption. In the tor are changing dramatically. Increasingly, suppliers are chart on page 7, the central performance data of the being called upon to integrate components into complex The Dual Clutch Transmission System has two clutches new converter generation of turbine-torsional damper systems – a development task that can only succeed on at its disposal. The advantage here is that two gears (TTD) and twin-torsional damper (TwinTD) are presented. the basis of close partnerships with vehicle manufactur- can be engaged at the same time. One of the clutch- ers. The future will bring continued demands for reduced es serves the odd-numbered gears, and the other the fuel consumption, emissions, weight and installation even-numbered ones. The complete shift process takes Hydrodynamically space, along with enhanced comfort, safety, and driving a few hundredths of a second – without interruption of cooled clutch – HCC® dynamics. To meet these goals, innovative solutions and traction. In combination with a torsional damper a sig- new products are essential. nificantly reduced fuel consumption is reached as well The hydrodynamically cooled clutch (HCC®) is a newly as better characteristics in driving comfort.
    [Show full text]
  • Chevrolet Performance Supermatic Torque Converter
    Supermatic Torque Converter (19299800 - 19299807) Specifications Specifications Part Number 19299799 Thank you for choosing Chevrolet Performance Parts as your high performance source. Chevrolet Performance Parts is committed to providing proven, innovative performance technology that is truly.... more than just power. Chevrolet Performance Parts are engineered, developed and tested to exceed your expectations for fit and function. Please refer to our catalog for theChevrolet Performance Parts Authorized Center nearest you or visit our website at www.chevroletperformance.com. This publication provides general information on components and procedures that may be useful when installing or servicing a Supermatic Torque Converter. Please read this entire publication before starting work. Also, please verify that all of the components listed in the Package Contents section below were shipped in the kit. The information below is divided into the following sections: package contents, component information, Supermatic Torque Converter specifications, additional parts that you may need to purchase, torque specifications, and a service parts list. It is not the intent of these specifications to replace the comprehensive and detailed service practices explained in the Chevrolet service manuals. For information about warranty coverage, please contact your local Chevrolet Performance Parts dealer. Observe all safety precautions and warnings in the service manuals when installing a Supermatic Torque Converter in any vehicle. Wear eye protection and appropriate protective clothing. Support the vehicle securely with jack stands when working under or around it. Use only the proper tools. Exercise extreme caution when working with flammable, corrosive, and hazardous liquids and materials. Some procedures require special equipment and skills. If you do not have the appropriate training, expertise, and tools to perform any part of this conversion safely, this work should be done by a professional.
    [Show full text]
  • VEHICLE MODELING for USE in the CAFE MODEL PROCESS DESCRIPTION and MODELING ASSUMPTIONS Ayman Moawad, Namdoo Kim and Aymeric Rousseau
    Energy Systems Division VEHICLE MODELING FOR USE IN THE CAFE MODEL PROCESS DESCRIPTION AND MODELING ASSUMPTIONS Ayman Moawad, Namdoo Kim and Aymeric Rousseau About Argonne National Laboratory Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC under contract DE-AC02-06CH11357. The Laboratory’s main facility is outside Chicago, at 9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne and its pioneering science and technology programs, see www.anl.gov. DOCUMENT AVAILABILITY Online Access: U.S. Department of Energy (DOE) reports produced after 1991 and a growing number of pre-1991 documents are available free via DOE’s SciTech Connect (http://www.osti.gov/scitech/) Reports not in digital format may be purchased by the public from the National Technical Information Service (NTIS): U.S. Department of Commerce National Technical Information Service 5301 Shawnee Rd Alexandra, VA 22312 www.ntis.gov Phone: (800) 553-NTIS (6847) or (703) 605-6000 Fax: (703) 605-6900 Email: [email protected] Reports not in digital format are available to DOE and DOE contractors from the Office of Scientific and Technical Information (OSTI): U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831-0062 www.osti.gov Phone: (865) 576-8401 Fax: (865) 576-5728 Email: [email protected] Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor UChicago Argonne, LLC, nor any of their employees or officers, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.
    [Show full text]
  • Modelling and Measurement of Transient Torque Converter Characteristics
    Modelling and measurement of transient torque converter characteristics Master’s thesis in Automotive Engineering YANG LI MAX SUNDÉN Department of Applied Mechanics CHALMERS UNIVERSITY OF TECHNOLOGY Gothenburg, Sweden 2016 Master’s thesis in automotive engineering Modelling and measurement of transient torque converter characteristics YANG LI MAX SUNDÉN Department of Applied Mechanics Division of Vehicle Engineering & Autonomous Systems Vehicle Dynamics Group Chalmers University of Technology Gothenburg, Sweden 2016 Modelling and measurement of transient torque converter characteristics YANG LI MAX SUNDÉN © YANG LI and MAX SUNDÉN, 2016. Examiner: Professor Bengt J H Jacobson, Chalmers University of Technology Supervisor: Fredrik Henningsson, Volvo Car Corporation Master’s Thesis 2016:74 ISSN 1652-8557 Department of Applied Mechanics Division of Vehicle Engineering & Autonomous Systems Vehicle Dynamics Group Chalmers University of Technology SE-412 96 Gothenburg Telephone +46 31 772 1000 Cover: A three-element torque converter. Gothenburg, Sweden 2016 iv Modelling and measurement of transient torque converter characteristics YANG LI MAX SUNDÉN Department of Applied Mechanics Chalmers University of Technology Abstract The torque converter is a crucial component in the drivetrain of a vehicle equipped with an automatic gearbox. It has the ability to transfer power with torque amplification, allow slip between engine and transmission and dampen vibrations between the two. For these reasons its characteristics will have a direct effect on the vehicle’s performance, fuel economy, drivability and comfort. The behaviour of the torque converter is often modelled based on standardised component testing in the form of measured steady-state per- formance. It is however known that transient dynamics can have a significant impact under certain conditions, such as vehicle take-off.
    [Show full text]