Medicinal Plants with Cardiovascular Effects (Part 2): Plant Based Review
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Determination of Flavonoids and Hydroxycinnamic Acids in the Herb
The Pharma Innovation Journal 2020; 9(1): 43-46 ISSN (E): 2277- 7695 ISSN (P): 2349-8242 NAAS Rating: 5.03 Determination of flavonoids and hydroxycinnamic TPI 2020; 9(1): 43-46 © 2020 TPI acids in the herb of common agrimony by HPLC www.thepharmajournal.com Received: 24-11-2019 method Accepted: 28-12-2019 NM Huzio NM Huzio, AR Grytsyk, LI Budniak and IR Bekus Department of Pharmacy, Ivano-Frankivsk National Medical University, Ivano- Abstract Frankivsk, 76000, Ukraine The creation of new herbal products and the improvement of their production technologies is an important area of pharmaceutical science. A valuable source of biologically active substances is a AR Grytsyk representative of the Rose family (Rosaceae) common agrimony (Agrimonia eupatoria L.). Remedies on Department of Pharmacy, the basis of common agrimony are used to increase the secretion of the digestive glands, as appetizing, Ivano-Frankivsk National choleretic, hemostatic, astringent, anti-diuretic and anti-inflammatory agent. The chemical composition Medical University, Ivano- of the common agrimony herb grown on the territory of Ukraine is poorly studied, so conducting an in- Frankivsk, 76000, Ukraine depth phytochemical study of the raw material of this type of plant is relevant. The purpose of the work was the determination of individual flavonoids and hydroxycinnamic acids by high performance liquid LI Budniak chromatography (HPLC). The determination of the qualitative composition and the quantitative content Department of Pharmacy Management, Economics and of the individual flavonoids and hydroxycinnamic acids in the common agrimony herb were performed Technology, I. Horbachevsky by HPLC on an Agilent 1200 chromatograph. Ternopil National Medical As a result of the conducted studies, the quantitative content of 4 flavonoids – isoquercitrin (916.73 University, Ternopil, 46000, µg/g), neohesperidin (3850.93 µg/g), naringenin (308.28 µg/g) and luteolin (332.13 µg/g) was found and Ukraine determined in the common agrimony herb. -
Thesis of Potentially Sweet Dihydrochalcone Glycosides
University of Bath PHD The synthesis of potentially sweet dihydrochalcone glycosides. Noble, Christopher Michael Award date: 1974 Awarding institution: University of Bath Link to publication Alternative formats If you require this document in an alternative format, please contact: [email protected] General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 05. Oct. 2021 THE SYNTHESIS OF POTBTTIALLY SWEET DIHYDROCHALCOITB GLYCOSIDES submitted by CHRISTOPHER MICHAEL NOBLE for the degree of Doctor of Philosophy of the University of Bath. 1974 COPYRIGHT Attention is drawn to the fact that copyright of this thesis rests with its author.This copy of the the sis has been supplied on condition that anyone who con sults it is understood to recognise that its copyright rests with its author and that no quotation from the thesis and no information derived from it may be pub lished without the prior written consent of the author. -
Production Potential and Phenology of Alhagi Maurorum
Journal of Natural Resource Conservation and Management Vol. 1, No. 2, pp 125-130, 2020 https://www.anrcm.org/journal/ Forage resources in arid and saline environments of central Iran: production potential and phenology of Alhagi maurorum Hadi Pirasteh-Anosheh*, Gholam Hassan Ranjbar and Amir Parnian National Salinity Research Center, Agricultural Research, Education and Extension Organization, Yazd 8917357676, Iran Corresponding author E-mail: [email protected] Received : October 29, 2020 ABSTRACT Revised : December 2, 2020 Accepted : December 7, 2020 Although significant amount of information is available on camelthorn (Alhagi Published : December 23, 2020 spp.) as a weed, little is known about Alhagi spp. as a forage plant. Considering its forage value, the present study was conducted to document the phenology and biomass production of AlhagimaurorumMedik.in two dry saline rangelands of Ashkezar and Ardakan regions at central Iran during 2019. The results distinguished seven stages for Alhagi, consisted of shoot emergence, main stem growth, branching, budding, flowering, fruiting, and seed ripening occurred after 22, 30, 78, 41, 54, 61 and 118 days in Ashkezar region and 31, 37, 67, 33, 41, 50 and 106 days in Ardakan, respectively. Depending on the region, Alhagi germinates and grows in mid to early February, and the main stems started to grow in late February to early March, and the branches were formed in mid to late March. Flowers appeared in mid-to-late April, while fruits in early May to early June. Finally, the seeds began to ripen from late May to mid-June. Senescence also occurred in late summer and early autumn at the latest. -
Glycosides in Lemon Fruit
Food Sci. Technol. Int. Tokyo, 4 (1), 48-53, 1998 Characteristics of Antioxidative Flavonoid Glycosides in Lemon Fruit Yoshiaki MIYAKE,1 Kanefumi YAMAMOT0,1 Yasujiro MORIMITSU2 and Toshihiko OSAWA2 * Central Research Laboratory of Pokka Corporation, Ltd., 45-2 Kumanosyo, Shikatsu-cho, Nishikasugai-gun, Aichi 481, Japan 2Department of Applied Biological Sciences, Nagoya University, Nagoya 46401, Japan Received June 12, 1997; Accepted September 27, 1997 We investigated the antioxidative flavonoid glycosides in the peel extract of lemon fruit (Citrus limon). Six flavanon glycosides: eriocitrin, neoeriocitrin, narirutin, naringin, hesperidin, and neohesperidin, and three flavone glycosides: diosmin, 6~-di- C-p-glucosyldiosmin (DGD), and 6- C-p-glucosyldiosmin (GD) were identified by high- performance liquid chromatography (HPLC) analysis. Their antioxidative activity was examined using a linoleic acid autoxidation system. The antioxidative activity of eriocitrin, neoeriocitrin and DGD was stronger than that of the others. Flavonoid glycosides were present primarily in the peel of lemon fruit. There was only a small difference in the content of the flavonoid glycosides of the lemon fruit juice from various sources and varieties. Lemon fruit contained abundant amounts of eriocitrin and hesperidin and also contained narirutin, diosmin, and DGD, but GD, neoeriocitrin, naringin, and neohesperidin were present only in trace amounts. The content of DGD, GD, and eriocitrin was especially abundant in lemons and limes; however, they were scarcely found in other citrus fruits. The content of flavonoid compounds in lemon juice obtained by an in-line extractor at a juice factory was more abundant than that obtained by hand-squeezing. These compounds were found to be stable even under heat treatment conditions (121'C, 15 min) in acidic solution. -
GRAS Notice (GRN) No. 719, Orange Pomace
GRAS Notice (GRN) No. 719 https://www.fda.gov/Food/IngredientsPackagingLabeling/GRAS/NoticeInventory/default.htm SAFETY EVALUATION DOSSIER SUPPORTING A GENERALLY RECOGNIZED AS SAFE (GRAS) CONCLUSION FOR ORANGE POMACE SUBMITTED BY: PepsiCo, Inc. 700 Anderson Hill Road Purchase, NY 10577 SUBMITTED TO: U.S. Food and Drug Administration Center for Food Safety and Applied Nutrition Office of Food Additive Safety HFS-200 5100 Paint Branch Parkway College Park, MD 20740-3835 CONTACT FOR TECHNICAL OR OTHER INFORMATION: Andrey Nikiforov, Ph.D. Toxicology Regulatory Services, Inc. 154 Hansen Road, Suite 201 Charlottesville, VA 22911 July 3, 2017 Table of Contents Part 1. SIGNED STATEMENTS AND CERTIFICATION ...........................................................1 A. Name and Address of Notifier .............................................................................................1 B. Name of GRAS Substance ...................................................................................................1 C. Intended Use and Consumer Exposure ................................................................................1 D. Basis for GRAS Conclusion ................................................................................................2 E. Availability of Information ..................................................................................................3 Part 2. IDENTITY, METHOD OF MANUFACTURE, SPECIFICATIONS, AND PHYSICAL OR TECHNICAL EFFECT.................................................................................................4 -
INDEX for 2011 HERBALPEDIA Abelmoschus Moschatus—Ambrette Seed Abies Alba—Fir, Silver Abies Balsamea—Fir, Balsam Abies
INDEX FOR 2011 HERBALPEDIA Acer palmatum—Maple, Japanese Acer pensylvanicum- Moosewood Acer rubrum—Maple, Red Abelmoschus moschatus—Ambrette seed Acer saccharinum—Maple, Silver Abies alba—Fir, Silver Acer spicatum—Maple, Mountain Abies balsamea—Fir, Balsam Acer tataricum—Maple, Tatarian Abies cephalonica—Fir, Greek Achillea ageratum—Yarrow, Sweet Abies fraseri—Fir, Fraser Achillea coarctata—Yarrow, Yellow Abies magnifica—Fir, California Red Achillea millefolium--Yarrow Abies mariana – Spruce, Black Achillea erba-rotta moschata—Yarrow, Musk Abies religiosa—Fir, Sacred Achillea moschata—Yarrow, Musk Abies sachalinensis—Fir, Japanese Achillea ptarmica - Sneezewort Abies spectabilis—Fir, Himalayan Achyranthes aspera—Devil’s Horsewhip Abronia fragrans – Sand Verbena Achyranthes bidentata-- Huai Niu Xi Abronia latifolia –Sand Verbena, Yellow Achyrocline satureoides--Macela Abrus precatorius--Jequirity Acinos alpinus – Calamint, Mountain Abutilon indicum----Mallow, Indian Acinos arvensis – Basil Thyme Abutilon trisulcatum- Mallow, Anglestem Aconitum carmichaeli—Monkshood, Azure Indian Aconitum delphinifolium—Monkshood, Acacia aneura--Mulga Larkspur Leaf Acacia arabica—Acacia Bark Aconitum falconeri—Aconite, Indian Acacia armata –Kangaroo Thorn Aconitum heterophyllum—Indian Atees Acacia catechu—Black Catechu Aconitum napellus—Aconite Acacia caven –Roman Cassie Aconitum uncinatum - Monkshood Acacia cornigera--Cockspur Aconitum vulparia - Wolfsbane Acacia dealbata--Mimosa Acorus americanus--Calamus Acacia decurrens—Acacia Bark Acorus calamus--Calamus -
Antimicrobial Potential of Alhagi Maurorum Against Clinically Important Microbes
International Journal of Botany Studies International Journal of Botany Studies ISSN: 2455-541X Impact Factor: RJIF 5.12 www.botanyjournals.com Volume 3; Issue 2; March 2018; Page No. 61-64 Antimicrobial potential of Alhagi maurorum against clinically important microbes Shilpa Dhaniya1, Suman Kumari Parihar2 1 Research Scholar, Government College, Ajmer, Rajasthan, India 2 Department of Botany, MDSU Ajmer, Rajasthan, India Abstract Alhagi maurorum Medic (Fabaceae) is the single species of genus Alhagi found in India. Various studies have shown A. maurorum used in folk medicines. However, its potential health benefits have not been studied in details. Methanol extracts of A. maurorum from the aerial part were screened for antimicrobial. Antimicrobial activities were tested against eight microorganisms using well diffusion method. In the present study, antimicrobial activity of leaves and stem extracts of Alhagi maurorum was evaluated against four fungus Aspergillus niger, Penicillium funiculosum, Fusarium oxysporum and Trichoderma ressei and four bacterial strains Streptomyces grisveus, Staphylococcus aureus, Bacillus subtilis and Escherichia coli. It was observed that maximum zone of inhibition was in leaves (18mm) against Streptomyces grisveus while rest of the strains were found to be resistant. In case of fungus, maximum zone was observed in stem against Trichoderma ressei and Fusarium oxysporium (14mm) while other fungal colonies were found to be resistant. Keywords: Alhagi maurorum, antibacterial, anti fungal, phytochemical analysis, agar well diffusion, zone of inhibition Introduction collected from Ajmer in Rajasthan (India). Preparation of the Natural plant products important role play in various crude methanol extract was obtained by macerating 10 gm of functions, and how much of them have useful biological dried plant powder in 95% methanol and kept on a rotary activities [1]. -
Antioxidant and Anti-Inflammatory Activity of Citrus Flavanones Mix
antioxidants Article Antioxidant and Anti-Inflammatory Activity of Citrus Flavanones Mix and Its Stability after In Vitro Simulated Digestion Marcella Denaro †, Antonella Smeriglio *,† and Domenico Trombetta Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Palatucci, 98168 Messina, Italy; [email protected] (M.D.); [email protected] (D.T.) * Correspondence: [email protected]; Tel.: +39-090-676-4039 † Both authors contributed equally. Abstract: Recently, several studies have highlighted the role of Citrus flavanones in counteracting oxidative stress and inflammatory response in bowel diseases. The aim of study was to identify the most promising Citrus flavanones by a preliminary antioxidant and anti-inflammatory screening by in vitro cell-free assays, and then to mix the most powerful ones in equimolar ratio in order to investigate a potential synergistic activity. The obtained flavanones mix (FM) was then subjected to in vitro simulated digestion to evaluate the availability of the parent compounds at the intestinal level. Finally, the anti-inflammatory activity was investigated on a Caco-2 cell-based model stimulated with interleukin (IL)-1β. FM showed stronger antioxidant and anti-inflammatory activity with respect to the single flavanones, demonstrating the occurrence of synergistic activity. The LC-DAD-ESI- MS/MS analysis of gastric and duodenal digested FM (DFM) showed that all compounds remained unchanged at the end of digestion. As proof, a superimposable behavior was observed between FM and DFM in the anti-inflammatory assay carried out on Caco-2 cells. Indeed, it was observed that both FM and DFM decreased the IL-6, IL-8, and nitric oxide (NO) release similarly to the reference Citation: Denaro, M.; Smeriglio, A.; anti-inflammatory drug dexamethasone. -
Complete Iowa Plant Species List
!PLANTCO FLORISTIC QUALITY ASSESSMENT TECHNIQUE: IOWA DATABASE This list has been modified from it's origional version which can be found on the following website: http://www.public.iastate.edu/~herbarium/Cofcons.xls IA CofC SCIENTIFIC NAME COMMON NAME PHYSIOGNOMY W Wet 9 Abies balsamea Balsam fir TREE FACW * ABUTILON THEOPHRASTI Buttonweed A-FORB 4 FACU- 4 Acalypha gracilens Slender three-seeded mercury A-FORB 5 UPL 3 Acalypha ostryifolia Three-seeded mercury A-FORB 5 UPL 6 Acalypha rhomboidea Three-seeded mercury A-FORB 3 FACU 0 Acalypha virginica Three-seeded mercury A-FORB 3 FACU * ACER GINNALA Amur maple TREE 5 UPL 0 Acer negundo Box elder TREE -2 FACW- 5 Acer nigrum Black maple TREE 5 UPL * Acer rubrum Red maple TREE 0 FAC 1 Acer saccharinum Silver maple TREE -3 FACW 5 Acer saccharum Sugar maple TREE 3 FACU 10 Acer spicatum Mountain maple TREE FACU* 0 Achillea millefolium lanulosa Western yarrow P-FORB 3 FACU 10 Aconitum noveboracense Northern wild monkshood P-FORB 8 Acorus calamus Sweetflag P-FORB -5 OBL 7 Actaea pachypoda White baneberry P-FORB 5 UPL 7 Actaea rubra Red baneberry P-FORB 5 UPL 7 Adiantum pedatum Northern maidenhair fern FERN 1 FAC- * ADLUMIA FUNGOSA Allegheny vine B-FORB 5 UPL 10 Adoxa moschatellina Moschatel P-FORB 0 FAC * AEGILOPS CYLINDRICA Goat grass A-GRASS 5 UPL 4 Aesculus glabra Ohio buckeye TREE -1 FAC+ * AESCULUS HIPPOCASTANUM Horse chestnut TREE 5 UPL 10 Agalinis aspera Rough false foxglove A-FORB 5 UPL 10 Agalinis gattingeri Round-stemmed false foxglove A-FORB 5 UPL 8 Agalinis paupercula False foxglove -
Ontogenetic Studies on the Determination of the Apical Meristem In
Ontogenetic studies on the determination of the apical meristem in racemose inflorescences D i s s e r t a t i o n Zur Erlangung des Grades Doktor der Naturwissenschaften Am Fachbereich Biologie Der Johannes Gutenberg-Universität Mainz Kester Bull-Hereñu geb. am 19.07.1979 in Santiago Mainz, 2010 CONTENTS SUMMARY OF THE THESIS............................................................................................ 1 ZUSAMMENFASSUNG.................................................................................................. 2 1 GENERAL INTRODUCTION......................................................................................... 3 1.1 Historical treatment of the terminal flower production in inflorescences....... 3 1.2 Structural understanding of the TF................................................................... 4 1.3 Parallel evolution of the character states referring the TF............................... 5 1.4 Matter of the thesis.......................................................................................... 6 2 DEVELOPMENTAL CONDITIONS FOR TERMINAL FLOWER PRODUCTION IN APIOID UMBELLETS...................................................................................................... 7 2.1 Introduction...................................................................................................... 7 2.2 Materials and Methods..................................................................................... 9 2.2.1 Plant material.................................................................................... -
Isolation, Identification and Evaluation of Natural Antioxidants from Aromatic Herbs Cultivated in Lithuania
ISOLATION, IDENTIFICATION AND EVALUATION OF NATURAL ANTIOXIDANTS FROM AROMATIC HERBS CULTIVATED IN LITHUANIA CENTRALE LANDBOUWCATALOGUS 0000 0889 7700 Promotor Prof.Dr .Ae . deGroot , hoogleraar ind ebio-organisch e chemie, Wageningen Universiteit Co-promotoren Dr. T.A. vanBeek , universitair hoofddocent, Laboratoriumvoo r Organische Chemie, Wageningen Universiteit Dr. Ir.J.P.H . Linssen, universitair hoofddocent, Sectie Levensmiddelenleer, Wageningen Universiteit Promotiecommissie Prof.Dr .Ir .I.M.C.M . Rietjens (Wageningen Universiteit) Prof.Dr .Ir .P.R .Venskutoni s (Kaunas University ofTechnology , Lithuania) Prof. Dr.Ir .A.G.J . Voragen (Wageningen Universiteit) Dr. H.A.G. Niederlander (Rijksuniversiteit Groningen) /Jf j^30l Airidas Dapkevicius ISOLATION, IDENTIFICATION AND EVALUATION OF NATURAL ANTIOXIDANTS FROM AROMATIC HERBS CULTIVATED IN LITHUANIA (with a summary in English) (met een samenvatting in het Nederlands) (su santrauka lietuviskai) (com resumo em Portugues) Proefschrift ter verkrijging van de graad van doctor op gezagva n de rector magnificus van Wageningen Universiteit, prof. dr. ir. L. Speelman in het openbaar te verdedigen op dinsdag 29januar i 2002 des namiddags te twee uur in de Aula (, 3 Qq I 6 ISBN 90-5808-578-3 Tom y children leva and Simonas General introduction 1.1 Lipid oxidation in general 1 1.2 Food lipid oxidation mechanisms 2 1.2.1 Free radical autoxidation 2 1.2.2 Photooxidation 5 1.2.3 Enzyme-initiated lipid oxidation 6 1.2.4 Metal-catalysed lipid oxidation 6 1.2.5 Formation of secondary products of -
Agrimonia Eupatoria L. and Cynara Cardunculus L. Water Infusions: Phenolic Profile and Comparison of Antioxidant Activities
Article Agrimonia eupatoria L. and Cynara cardunculus L. Water Infusions: Phenolic Profile and Comparison of Antioxidant Activities Anika Kuczmannová 1,†, Peter Gál 1,2,3,4,†,*, Lenka Varinská 2,3, Jakub Treml 5, Ivan Kováˇc 3,6, Martin Novotný 3,7, Tomáš Vasilenko 3,8, Stefano Dall’Acqua 9, Milan Nagy 1 and Pavel Muˇcaji 1,* Received: 29 September 2015 ; Accepted: 4 November 2015 ; Published: 18 November 2015 Academic Editor: Maurizio Battino 1 Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University, Odbojárov 10, 832 32 Bratislava, Slovakia; [email protected] (A.K.); [email protected] (M.N.) 2 Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, Trieda SNP 1, 040 11 Košice, Slovakia; [email protected] 3 Department for Biomedical Research, East-Slovak Institute of Cardiovascular Diseases, Inc., Ondavská 8, 040 11 Košice, Slovakia; [email protected] (I.K.); [email protected] (M.N.); [email protected] (T.V.) 4 Institute of Anatomy, 1st Faculty of Medicine, Charles University, U nemocnice 2, 128 00 Prague, Czech Republic 5 Department of Molecular Biology and Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Palackého 1-3, 612 42 Brno, Czech Republic; [email protected] 6 2nd Department of Surgery, Pavol Jozef Šafárik University and Louise Pasteur University Hospital, 041 90 Košice, Slovakia 7 Department of Infectology and Travel Medicine, Pavol Jozef Šafárik University and Louise Pasteur University Hospital, 041 90 Košice, Slovakia 8 Department of Surgery, Pavol Jozef Šafárik University and Košice-Šaca Hospital, 040 15 Košice-Šaca, Slovakia 9 Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F.