Diverse Species-Specific Phenotypic Consequences of Loss of Function
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Sorting Nexins in Protein Homeostasis Sara E. Hanley1,And Katrina F
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 November 2020 doi:10.20944/preprints202011.0241.v1 Sorting nexins in protein homeostasis Sara E. Hanley1,and Katrina F. Cooper2* 1Department of Molecular Biology, Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ, 08084, USA 1 [email protected] 2 [email protected] * [email protected] Tel: +1 (856)-566-2887 1Department of Molecular Biology, Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ, 08084, USA Abstract: Sorting nexins (SNXs) are a highly conserved membrane-associated protein family that plays a role in regulating protein homeostasis. This family of proteins is unified by their characteristic phox (PX) phosphoinositides binding domain. Along with binding to membranes, this family of SNXs also comprises a diverse array of protein-protein interaction motifs that are required for cellular sorting and protein trafficking. SNXs play a role in maintaining the integrity of the proteome which is essential for regulating multiple fundamental processes such as cell cycle progression, transcription, metabolism, and stress response. To tightly regulate these processes proteins must be expressed and degraded in the correct location and at the correct time. The cell employs several proteolysis mechanisms to ensure that proteins are selectively degraded at the appropriate spatiotemporal conditions. SNXs play a role in ubiquitin-mediated protein homeostasis at multiple levels including cargo localization, recycling, degradation, and function. In this review, we will discuss the role of SNXs in three different protein homeostasis systems: endocytosis lysosomal, the ubiquitin-proteasomal, and the autophagy-lysosomal system. The highly conserved nature of this protein family by beginning with the early research on SNXs and protein trafficking in yeast and lead into their important roles in mammalian systems. -
The Genetics of Human Skin and Hair Pigmentation
GG20CH03_Pavan ARjats.cls July 31, 2019 17:4 Annual Review of Genomics and Human Genetics The Genetics of Human Skin and Hair Pigmentation William J. Pavan1 and Richard A. Sturm2 1Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA; email: [email protected] 2Dermatology Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Queensland 4102, Australia; email: [email protected] Annu. Rev. Genom. Hum. Genet. 2019. 20:41–72 Keywords First published as a Review in Advance on melanocyte, melanogenesis, melanin pigmentation, skin color, hair color, May 17, 2019 genome-wide association study, GWAS The Annual Review of Genomics and Human Genetics is online at genom.annualreviews.org Abstract https://doi.org/10.1146/annurev-genom-083118- Human skin and hair color are visible traits that can vary dramatically Access provided by University of Washington on 09/02/19. For personal use only. 015230 within and across ethnic populations. The genetic makeup of these traits— Annu. Rev. Genom. Hum. Genet. 2019.20:41-72. Downloaded from www.annualreviews.org Copyright © 2019 by Annual Reviews. including polymorphisms in the enzymes and signaling proteins involved in All rights reserved melanogenesis, and the vital role of ion transport mechanisms operating dur- ing the maturation and distribution of the melanosome—has provided new insights into the regulation of pigmentation. A large number of novel loci involved in the process have been recently discovered through four large- scale genome-wide association studies in Europeans, two large genetic stud- ies of skin color in Africans, one study in Latin Americans, and functional testing in animal models. -
Snp Associations with Tuberculosis Susceptibility in a Ugandan
SNP ASSOCIATIONS WITH TUBERCULOSIS SUSCEPTIBILITY IN A UGANDAN HOUSEHOLD CONTACT STUDY by ALLISON REES BAKER Submitted in partial fulfillment of the requirements For the degree of Master of Science Thesis Advisor: Dr. Catherine M. Stein Department of Epidemiology and Biostatistics CASE WESTERN RESERVE UNIVERSITY August, 2010 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis/dissertation of ______________________________________________________ candidate for the ________________________________degree *. (signed)_______________________________________________ (chair of the committee) ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ (date) _______________________ *We also certify that written approval has been obtained for any proprietary material contained therein. Table of Contents Table of Contents...............................................................................................................iii List of Tables ..................................................................................................................... iv Acknowledgements............................................................................................................. v List of Commonly Used Abbreviations ............................................................................. vi Chapter 1: Literature -
Temporal Epigenomic Profiling Identifies AHR As a Dynamic Super-Enhancer Controlled Regulator of Mesenchymal Multipotency
bioRxiv preprint doi: https://doi.org/10.1101/183988; this version posted November 17, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Gerard et al.: Time-series epigenomic profiles of mesenchymal differentiation 1 Temporal epigenomic profiling identifies AHR as a 2 dynamic super-enhancer controlled regulator of 3 mesenchymal multipotency 4 Deborah Gérard1, Florian Schmidt2,3, Aurélien Ginolhac1, Martine Schmitz1, 5 Rashi Halder4, Peter Ebert3, Marcel H. Schulz2,3, Thomas Sauter1 and Lasse 6 Sinkkonen1* 7 1Life Sciences Research Unit, University of Luxembourg, L-4367 Belvaux, 8 Luxembourg 9 2Excellence Cluster for Multimodal Computing and Interaction, Saarland Informatics 10 Campus, Germany 11 3Computational Biology & Applied Algorithmics, Max Planck Institute for 12 Informatics, Saarland Informatics Campus, Germany 13 4Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur- 14 Alzette, L-4362, Luxembourg 15 16 [email protected]; [email protected]; [email protected]; 17 [email protected]; [email protected]; [email protected]; 18 [email protected]; [email protected]; [email protected] 19 20 *Corresponding author: Dr. Lasse Sinkkonen 21 Life Sciences Research Unit, University of Luxembourg 22 6, Avenue du Swing, L-4367 Belvaux, Luxembourg 23 Tel.: +352-4666446839 24 E-mail: [email protected] 25 1 bioRxiv preprint doi: https://doi.org/10.1101/183988; this version posted November 17, 2017. -
SNX13 Reduction Mediates Heart Failure Through Degradative Sorting of Apoptosis Repressor with Caspase Recruitment Domain
ARTICLE Received 2 May 2014 | Accepted 8 Sep 2014 | Published 8 Oct 2014 DOI: 10.1038/ncomms6177 SNX13 reduction mediates heart failure through degradative sorting of apoptosis repressor with caspase recruitment domain Jun Li1,2,*, Changming Li1,3,*, Dasheng Zhang1,2, Dan Shi1,2, Man Qi1,3, Jing Feng1,3, Tianyou Yuan1,2, Xinran Xu1,2, Dandan Liang1,2, Liang Xu1,2, Hong Zhang1,2, Yi Liu1,2, Jinjin Chen1,3, Jiangchuan Ye1,3, Weifang Jiang4, Yingyu Cui1,5, Yangyang Zhang6, Luying Peng1,2,5, Zhaonian Zhou1,7 & Yi-Han Chen1,2,3,5 Heart failure (HF) is associated with complicated molecular remodelling within cardio- myocytes; however, the mechanisms underlying this process remain unclear. Here we show that sorting nexin-13 (SNX13), a member of both the sorting nexin and the regulator of G protein signalling (RGS) protein families, is a potent mediator of HF. Decreased levels of SNX13 are observed in failing hearts of humans and of experimental animals. SNX13-deficient zebrafish recapitulate HF with striking cardiomyocyte apoptosis. Mechanistically, a reduction in SNX13 expression facilitates the degradative sorting of apoptosis repressor with caspase recruitment domain (ARC), which is a multifunctional inhibitor of apoptosis. Consequently, the apoptotic pathway is activated, resulting in the loss of cardiac cells and the dampening of cardiac function. The N-terminal PXA structure of SNX13 is responsible for mediating the endosomal trafficking of ARC. Thus, this study reveals that SNX13 profoundly affects cardiac performance through the SNX13-PXA-ARC-caspase signalling pathway. 1 Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China. -
(PX) Domains Based on Their Phosphoinositide Binding Specificities
ARTICLE https://doi.org/10.1038/s41467-019-09355-y OPEN Classification of the human phox homology (PX) domains based on their phosphoinositide binding specificities Mintu Chandra1, Yanni K.-Y. Chin1, Caroline Mas1,6, J. Ryan Feathers2, Blessy Paul1, Sanchari Datta2, Kai-En Chen 1, Xinying Jia 3, Zhe Yang4, Suzanne J. Norwood1, Biswaranjan Mohanty5, Andrea Bugarcic1, Rohan D. Teasdale1,4, W. Mike Henne2, Mehdi Mobli 3 & Brett M. Collins1 1234567890():,; Phox homology (PX) domains are membrane interacting domains that bind to phosphati- dylinositol phospholipids or phosphoinositides, markers of organelle identity in the endocytic system. Although many PX domains bind the canonical endosome-enriched lipid PtdIns3P, others interact with alternative phosphoinositides, and a precise understanding of how these specificities arise has remained elusive. Here we systematically screen all human PX domains for their phospholipid preferences using liposome binding assays, biolayer interferometry and isothermal titration calorimetry. These analyses define four distinct classes of human PX domains that either bind specifically to PtdIns3P, non-specifically to various di- and tri- phosphorylated phosphoinositides, bind both PtdIns3P and other phosphoinositides, or associate with none of the lipids tested. A comprehensive evaluation of PX domain structures reveals two distinct binding sites that explain these specificities, providing a basis for defining and predicting the functional membrane interactions of the entire PX domain protein family. 1 Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia. 2 Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. 3 Centre for Advanced Imaging and School of Chemistry and Molecular Biology, The University of Queensland, St. -
Snazarus and Its Human Ortholog SNX25 Regulate Autophagic Flux By
bioRxiv preprint doi: https://doi.org/10.1101/2021.04.08.439013; this version posted April 8, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. 1 Snazarus and its human ortholog SNX25 regulate autophagic flux 2 by affecting VAMP8 endocytosis 3 4 Annie Lauzier1, Marie-France Bossanyi1, Rupali Ugrankar2, W. Mike Henne2 and Steve Jean1* 5 6 *Corresponding author: 7 Email: [email protected] 8 Telephone: 819-821-8000 Ext: 70450 9 Fax: 819-820-6831 10 11 1Faculté de Médecine et des Sciences de la Santé 12 DéparteMent d’iMMunologie et de biologie cellulaire 13 Université de Sherbrooke 14 3201, Rue Jean Mignault 15 Sherbrooke, Québec, Canada, J1E 4K8 16 17 2DepartMent of Cell Biology, UT Southwestern Medical Center 18 6000 Hary Lines Boulevard 19 Dallas, TX, USA, 75390 20 21 Running title: Snazarus is required for autophagy 22 Keywords: Snazarus, Sorting nexin 25, Autophagy, VAMP8, Endocytosis 23 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.04.08.439013; this version posted April 8, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. 24 Abstract 25 Autophagy, the degradation and recycling of cytosolic components in the lysosome, is an essential 26 cellular MechanisM. -
The Emerging Role of Sorting Nexins in Cardiovascular Diseases
Clinical Science (2019) 133 723–737 https://doi.org/10.1042/CS20190034 Review Article The emerging role of sorting nexins in cardiovascular diseases Jian Yang1,2, Van Anthony M. Villar3, Selim Rozyyev3, Pedro A. Jose3 and Chunyu Zeng2 1Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 410020, P.R. China ; 2Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing 400042, P.R. China; 3Division of Renal Diseases and Hypertension, Department of Medicine, and Department of Pharmacology/Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20052, U.S.A. Correspondence: Jian Yang ([email protected]) or Chunyu Zeng ([email protected]) The sorting nexin (SNX) family consists of a diverse group of cytoplasmic- and membrane-associated phosphoinositide-binding proteins that play pivotal roles in the regu- lation of protein trafficking. This includes the entire endocytic pathway, such as endocytosis, endosomal sorting, and endosomal signaling. Dysfunctions of SNX pathway are involved in several forms of cardiovascular disease (CVD). Moreover, SNX gene variants are associated with CVDs. In this review, we discuss the current knowledge on SNX-mediated regulatory mechanisms and their roles in the pathogenesis and treatment of CVDs. Introduction Cardiovascular diseases (CVDs), including hypertension, coronary heart disease, heart failure, and stroke, are the leading causes of morbidity and mortality, worldwide, accounting for substantial suffering and healthcare-related expenditures [1]. According to the American Heart Association, the duration of infor- mal caregiving hours increases from 0.10 h/wk for patients with coronary heart disease to 6.12 h/wk for patients with stroke. -
Phosphorylation of Conserved Phosphoinositide Binding Pocket Regulates Sorting Nexin Membrane Targeting
ARTICLE DOI: 10.1038/s41467-018-03370-1 OPEN Phosphorylation of conserved phosphoinositide binding pocket regulates sorting nexin membrane targeting Marc Lenoir1, Cansel Ustunel2, Sandya Rajesh1, Jaswant Kaur1, Dimitri Moreau 2, Jean Gruenberg 2 & Michael Overduin 3 fi 1234567890():,; Sorting nexins anchor traf cking machines to membranes by binding phospholipids. The paradigm of the superfamily is sorting nexin 3 (SNX3), which localizes to early endosomes by recognizing phosphatidylinositol 3-phosphate (PI3P) to initiate retromer-mediated segrega- tion of cargoes to the trans-Golgi network (TGN). Here we report the solution structure of full length human SNX3, and show that PI3P recognition is accompanied by bilayer insertion of a proximal loop in its extended Phox homology (PX) domain. Phosphoinositide (PIP) binding is completely blocked by cancer-linked phosphorylation of a conserved serine beside the ste- reospecific PI3P pocket. This “PIP-stop” releases endosomal SNX3 to the cytosol, and reveals how protein kinases control membrane assemblies. It constitutes a widespread regulatory element found across the PX superfamily and throughout evolution including of fungi and plants. This illuminates the mechanism of a biological switch whereby structured PIP sites are phosphorylated to liberate protein machines from organelle surfaces. 1 School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK. 2 Biochemistry Department, University of Geneva, 30 quai Ernest Ansermet, 1211 Geneva 4, Switzerland. 3 Department of Biochemistry, Faculty of Medicine & Dentistry, University of Alberta, Medical Sciences Building, Edmonton, AB T6G 2H7, Canada. These authors contributed equally: Marc Lenoir, Cansel Ustunel. Correspondence and requests for materials should be addressed to M.O. -
Structural Basis for Different Phosphoinositide Specificities Of
THE JOURNAL OF BIOLOGICAL CHEMISTRY VOL. 289, NO. 41, pp. 28554–28568, October 10, 2014 © 2014 by The American Society for Biochemistry and Molecular Biology, Inc. Published in the U.S.A. Structural Basis for Different Phosphoinositide Specificities of the PX Domains of Sorting Nexins Regulating G-protein Signaling* Received for publication, July 10, 2014, and in revised form, August 14, 2014 Published, JBC Papers in Press, August 22, 2014, DOI 10.1074/jbc.M114.595959 Caroline Mas1, Suzanne J. Norwood, Andrea Bugarcic, Genevieve Kinna, Natalya Leneva, Oleksiy Kovtun, Rajesh Ghai2, Lorena E. Ona Yanez3, Jasmine L. Davis, Rohan D. Teasdale4, and Brett M. Collins5 From the Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia Background: RGS-PX proteins are regulators of signaling and trafficking within the endosomal system. Results: A structural basis for membrane interactions of RGS-PX proteins is established. Conclusion: The four mammalian paralogues display different membrane interaction properties. Significance: RGS-PX proteins possess a conserved functional architecture in all eukaryotes. Downloaded from Sorting nexins (SNXs) or phox homology (PX) domain con- The sorting nexin (SNX)6 or phox homology (PX) domain- taining proteins are central regulators of cell trafficking and containing proteins are a large and diverse family of molecules signaling. A subfamily of PX domain proteins possesses two with many different roles in cellular trafficking and signaling unique PX-associated domains, as well as a regulator of G (1–3). The defining feature of these molecules is the presence of http://www.jbc.org/ protein-coupled receptor signaling (RGS) domain that atten- a PX domain, which is coupled to a variety of different func- ␣ uates G s-coupled G protein-coupled receptor signaling. -
Original Article Association of the SNX13 Rs4142995 SNP and Serum Lipid Levels in the Jing and Han Populations
Int J Clin Exp Pathol 2016;9(12):12669-12685 www.ijcep.com /ISSN:1936-2625/IJCEP0035407 Original Article Association of the SNX13 rs4142995 SNP and serum lipid levels in the Jing and Han populations Hui Gao, Rui-Xing Yin, Qing-Hui Zhang, Ling Pan, Wei-Jun Li, Jian-Hua Huang, Kai-Guang Li, Yuan Bin Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, Nanning, China Received July 10, 2016; Accepted July 20, 2016; Epub December 1, 2016; Published December 15, 2016 Abstract: The single nucleotide polymorphism (SNP) of the sorting nexin 13 gene (SNX13) rs4142995 locus has been associated with high-density lipoprotein cholesterol (HDL-C) levels in a previous genome-wide association study (GWAS), but little is known about the association of the SNX13 rs4142995 SNP and serum lipid profiles in the Chinese populations. The present study was to detect the association of the SNX13 rs4142995 SNP and several environmental factors with serum lipid levels in the Jing and Han populations. Genotyping of the SNX13 rs4142995 SNP was performed in 670 subjects of Jing and 670 subjects of Han peoples using polymerase chain reaction and restriction fragment length polymorphism, and then confirmed by direct sequencing. The G allele carriers in the Jing population had lower serum total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) and apolipopro- tein (Apo) B levels than the G allele non-carriers. Subgroup analyses showed that the G allele carriers had lower TC, LDL-C and ApoB levels in Jing females but not in Jing males. Serum lipid parameters were also correlated with several environmental factors in the Jing and Han populations, or in males and females in both ethnic groups. -
Regulation of the Phosphoinositide Code by Phosphorylation of Membrane Readers
cells Article Regulation of the Phosphoinositide Code by Phosphorylation of Membrane Readers Troy A. Kervin and Michael Overduin * Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada; [email protected] * Correspondence: [email protected]; Tel.: +1-780-492-3518 Abstract: The genetic code that dictates how nucleic acids are translated into proteins is well known, however, the code through which proteins recognize membranes remains mysterious. In eukaryotes, this code is mediated by hundreds of membrane readers that recognize unique phosphatidylinositol phosphates (PIPs), which demark organelles to initiate localized trafficking and signaling events. The only superfamily which specifically detects all seven PIPs are the Phox homology (PX) domains. Here, we reveal that throughout evolution, these readers are universally regulated by the phosphorylation of their PIP binding surfaces based on our analysis of existing and modelled protein structures and phosphoproteomic databases. These PIP-stops control the selective targeting of proteins to organelles and are shown to be key determinants of high-fidelity PIP recognition. The protein kinases responsible include prominent cancer targets, underscoring the critical role of regulated membrane readership. Keywords: lipid specificity; membrane recognition; phosphoinositide binding; PX domain; protein phosphorylation; post-translational modification; regulation Citation: Kervin, T.A.; Overduin, M. Regulation of the Phosphoinositide Code by Phosphorylation of Membrane Readers. Cells 2021, 10, 1. Introduction 1205. https://doi.org/10.3390/ Membrane readers are protein domains that recognize the various PIPs found in cells10051205 each subcellular organelle and the plasma membrane. These conserved modules serve to Academic Editors: Paolo Bernardi, reversibly attach proteins to lipid bilayers to mediate the assembly and disassembly of Luca Scorrano and Gerardo signaling and trafficking complexes.