And C-Terminal Domains of Src Regulate Distinct Roles Of

Total Page:16

File Type:pdf, Size:1020Kb

And C-Terminal Domains of Src Regulate Distinct Roles Of Author Manuscript Published OnlineFirst on March 12, 2018; DOI: 10.1158/0008-5472.CAN-17-2314 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Acetylation within the N- and C-terminal domains of Src regulate distinct roles of STAT3-mediated tumorigenesis Chao Huang1, 3, 6 *, Zhe Zhang2, 6, Lihan Chen3, 6, Hank W. Lee3, Marina K. Ayrapetov4, Ting C. Zhao4, Yimei Hao3, Jinsong Gao4, Chunzhang Yang5, Gautam U. Mehta5, Zhengping Zhuang5, Xiaoren Zhang3, Guohong Hu3, and Y. Eugene Chin1, 3 * 1 Translation Medicine Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200025, China 2 Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China 3 Institute of Health Sciences, Chinese Academy of Sciences and Shanghai Jiaotong University School of Medicine, 320 Yueyang Road, Shanghai 200031, China 4 Departments of Surgery and Medicine, Brown University School of Medicine-Rhode Island Hospital, 593 Eddy Street, Providence, Rhode Island 02903 USA 5 Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland 20892, USA 6 Co-first authors * Correspondence: [email protected] and [email protected] Running tittle: Regulation of Src-STAT3 signaling pathway by acetylation Keywords: c-Src; STAT3; acetylation; EGF; tumorigenesis Grant Support: This work was supported by grants from the National Natural Science Foundation of China (81230059 to Y.E.Chin, 81672804 to C.Huang, 81402097 to Z.Zhang), Ministry of Science and Technology of China (2015CB910402 to C.Huang). Disclosure of Potential Conflicts of Interest Downloaded from cancerres.aacrjournals.org on September1 30, 2021. © 2018 American Association for Cancer Research. Author Manuscript Published OnlineFirst on March 12, 2018; DOI: 10.1158/0008-5472.CAN-17-2314 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. No potential conflicts of interest were disclosed. Significance CBP-mediated acetylation of lysine clusters in both the N-terminal and C-terminal regions of c-Src provides additional levels of control over STAT3 transcriptional activity Downloaded from cancerres.aacrjournals.org on September2 30, 2021. © 2018 American Association for Cancer Research. Author Manuscript Published OnlineFirst on March 12, 2018; DOI: 10.1158/0008-5472.CAN-17-2314 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Abstract Post-translational modifications of mammalian c-Src N-terminal and C-terminal domains regulate distinct functions: myristoylation of G2 controls its cell membrane association and phosphorylation of Y419/Y527 controls its activation or inactivation, respectively. We provide evidence that Src-cell membrane association-dissociation and catalytic activation-inactivation are both regulated by acetylation. In EGF-treated cells, CREB binding protein (CBP) acetylated an N-terminal lysine cluster (K5, K7, and K9) of c-Src to promote dissociation from the cell membrane. CBP also acetylated the C- terminal K401, K423, and K427 of c-Src to activate intrinsic kinase activity for STAT3 recruitment and activation. N-terminal domain phosphorylation (Y14, Y45, and Y68) of STAT3 by c-Src activated transcriptionally active dimers of STAT3. Moreover, acetyl- Src translocated into nuclei where it formed the Src-STAT3 enhanceosome for gene regulation and cancer cell proliferation. Thus, c-Src acetylation in the N-terminal and C-terminal domains play distinct roles in Src activity and regulation. Introduction Src family kinases are cell membrane-associated non-receptor protein tyrosine kinases that coordinate various cellular events including differentiation, adhesion, and migration. Aberrant Src kinase activity has been widely implicated in cancer development, progression and metastasis (1, 2). Functionally, Src has N-terminal and C-terminal regions of similar size. The human c-Src N-terminal region is comprised of a unique domain (UD), an SH3 domain, and an SH2 domain while the C-terminal region contains a catalytic domain (CD) followed by a regulatory tail (2). Src Downloaded from cancerres.aacrjournals.org on September3 30, 2021. © 2018 American Association for Cancer Research. Author Manuscript Published OnlineFirst on March 12, 2018; DOI: 10.1158/0008-5472.CAN-17-2314 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. associates with the cytoplasmic membrane, which depends on myristoylation of the N- terminal glycine residue (G2) mediated by N-myristoyltransferase (Nmt) and positively charged residues within UD that interact with the overall negatively charged cell membrane (3). Cell membrane association is required for cell transformation, whereas dissociation permits Src to be targeted to other cellular compartments (4, 5). c-Src catalytic activity has been detected in the cytoplasm but also in the endoplasmic reticulum (ER), mitochondria and nucleus (6-8). c-Src is inhibited by the C-terminal Src kinase (Csk) that phosphorylates Y527 (in chicken) or Y530 (in human) and renders Src catalytically inactive as a result of intramolecular interactions between the C- terminal tail and the SH2 domain (9). c-Src catalytic activation needs conformational changes within the catalytic domain: the orientation of two lobes of catalytic domain; rearrangement of the activation loop; and movement of the helical interface between the two lobes into the catalytic cleft. Global phosphorylation of c-Src may cause this conformational change and augment its kinase activity (10). In cancer cells, c-Src is activated by growth factors, and leads to phosphorylation and activation of oncogenic substrates including STAT3 (11). However, it remains unclear how c-Src regulates down-stream targets in response to growth factor treatment. In this study, we report that c-Src global phosphorylation is induced by CBP, an acetyltransferase in the cells. We observe that after EGF stimulation, unique domain and catalytic domain of c-Src are acetylated by CBP, which results in c-Src dissociation from plasma membrane and recruitment and activation of STAT3. Importantly, c-Src forms a protein kinase-transcription factor enhanceosome with STAT3 in the nuclei where c-Src promotes STAT3 activity to up-regulate oncogene expression in cancer cells. Downloaded from cancerres.aacrjournals.org on September4 30, 2021. © 2018 American Association for Cancer Research. Author Manuscript Published OnlineFirst on March 12, 2018; DOI: 10.1158/0008-5472.CAN-17-2314 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Materials and Methods Cell Culture and Reagents NIH3T3, HEK293T and MCF-7 cells were purchased from ATCC (Oct, 2010), Src-/- SYF and control (Src introduced) SYF cells from DC Flynn (Apr, 2002), U3A cells from and GR Stark (Feb, 1996), and cbp-/- MEF were cultured in DMEM medium containing 10% fetal bovine serum, 2 μM glutamine, and 100 U/ml each of penicillin and streptomycin by Invitrogen (Carlsbad, CA). MCF-7 and U3A cells were authenticated using short tandem repeat (STR) profiling analysis by Suzhou Genetic Testing Biotechnology Co. Ltd. HEK293T was STR-authenticated by Shanghai Biowing Applied Biotechnology Co. Ltd. NIH3T3, SYF and MEF cells were authenticated as mouse origin by Shanghai Biowing Applied Biotechnology Co. Ltd. All cells were tested for mycoplasma contamination by using GMyc-PCR Mycoplasma Test kit (Yeasen BioTech, Shanghai) and were maintained at 37ºC in a humidified 5% CO2 atmosphere. Antibodies used were anti-STAT3 (cat# sc-8019, sc-482), anti-c-Src (cat# sc-5266), anti-HA, anti-Myc, anti-GFP from Santa Cruz Biotech (Santa Cruz, CA); anti-c-Src (cat# 2109) from Cell Signaling; Anti-Src (phospho Y416) antibody from Abcam (cat# ab185617) and Merck Millipore (cat# 04-857); anti-Na+/K+ ATPase (cat# ab167390), anti-IkB (cat# ab7547), anti-H3 (cat# ab1791), anti-pan acetylated lysine (cat# 22550) from Abcam; anti-GST, and anti-FLAG from Sigma-Aldrich (St. Louis, MO); 4G10 from Millipore (Billerica, MA); anti-pan acetylated lysine (cat# 9441) and anti-pY705-STAT3 (cat# 9145) from Cell Signaling (Boston, MA). Rabbit polyclonal antibodies against acetyl-Src (aK7, aK9, aK423, and aK427) and phospho-STAT3 (pY45 and pY68) were custom prepared by Millipore or AB-land, Inc. (Hangzhou, China). Polyclonal antibodies are produced by immunizing animals with synthetic Downloaded from cancerres.aacrjournals.org on September5 30, 2021. © 2018 American Association for Cancer Research. Author Manuscript Published OnlineFirst on March 12, 2018; DOI: 10.1158/0008-5472.CAN-17-2314 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. acetyl peptides corresponding to residues surrounding acetylated K7, acetylated K9, acetylated K423, or acetylated K427 of Src and synthetic phosphopeptides corresponding to residues surrounding Y45 or Y68 of Stat3. Antibodies were purified by protein A and peptide affinity chromatography. GST or GST tagged Src protein was purchased from Abcam. Recombinant human EGF was purchased from Sigma-Aldrich; recombinant mouse EGF, human OSM, and mouse OSM were purchased from R&D Systems (Minneapolis, MN). For convenience reason, chicken c-Src protein sequence was used in the context, i.e., K401, K423, K427, Y416 and Y527 should be K404, K426, K430, Y419, and Y530 of human Src correspondingly. Preparation
Recommended publications
  • Interactions of Cbl with Grb2 and Phosphatidylinositol 3'-Kinase in Activated Jurkat Cells
    University of Massachusetts Medical School eScholarship@UMMS Open Access Articles Open Access Publications by UMMS Authors 1995-07-01 Interactions of Cbl with Grb2 and phosphatidylinositol 3'-kinase in activated Jurkat cells Herman Meisner University of Massachusetts Medical School Et al. Let us know how access to this document benefits ou.y Follow this and additional works at: https://escholarship.umassmed.edu/oapubs Part of the Life Sciences Commons, and the Medicine and Health Sciences Commons Repository Citation Meisner H, Conway BR, Hartley DA, Czech MP. (1995). Interactions of Cbl with Grb2 and phosphatidylinositol 3'-kinase in activated Jurkat cells. Open Access Articles. Retrieved from https://escholarship.umassmed.edu/oapubs/1457 This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in Open Access Articles by an authorized administrator of eScholarship@UMMS. For more information, please contact [email protected]. MOLECULAR AND CELLULAR BIOLOGY, July 1995, p. 3571–3578 Vol. 15, No. 7 0270-7306/95/$04.0010 Copyright q 1995, American Society for Microbiology Interactions of Cbl with Grb2 and Phosphatidylinositol 39-Kinase in Activated Jurkat Cells HERMAN MEISNER, BRUCE R. CONWAY, DAVID HARTLEY, AND MICHAEL P. CZECH* Program in Molecular Medicine and Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605 Received 28 December 1994/Returned for modification 20 February 1995/Accepted 31 March 1995 T-cell receptor (TCR) cross-linking increases tyrosine phosphorylation of multiple proteins, only a few of which have been identified. One of the most rapidly tyrosine-phosphorylated polypeptides is the 120-kDa product of the proto-oncogene c-cbl, a cytosolic and cytoskeletal protein containing multiple proline-rich motifs that are potential binding sites for proteins containing Src homology 3 (SH3) domains.
    [Show full text]
  • Cell Activation , Is Required for T Lck SH2 Domain of P56 Lad, An
    Lad, an Adapter Protein Interacting with the SH2 Domain of p56 lck, Is Required for T Cell Activation This information is current as Young Bong Choi, Chan Ki Kim and Yungdae Yun of September 27, 2021. J Immunol 1999; 163:5242-5249; ; http://www.jimmunol.org/content/163/10/5242 Downloaded from References This article cites 54 articles, 31 of which you can access for free at: http://www.jimmunol.org/content/163/10/5242.full#ref-list-1 Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on September 27, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 1999 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Lad, an Adapter Protein Interacting with the SH2 Domain of p56lck, Is Required for T Cell Activation1,2 Young Bong Choi,*† Chan Ki Kim,* and Yungdae Yun3*† T cell-specific Src family tyrosine kinase, p56lck, plays crucial roles in T cell differentiation, activation, and proliferation. These multiple functions of p56lck are believed to be conducted through the protein-protein interactions with various cellular signaling proteins.
    [Show full text]
  • Direct Interaction Between Calmodulin and the Grb7 RA-PH Domain
    International Journal of Molecular Sciences Article Direct Interaction between Calmodulin and the Grb7 RA-PH Domain Gabrielle M. Watson and Jacqueline A. Wilce * Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Wellington Road, Clayton VIC 3800, Australia; [email protected] * Correspondence: [email protected]; Tel.: +613-9902-9226; Fax: +613-9902-9500 Received: 7 January 2020; Accepted: 15 February 2020; Published: 17 February 2020 Abstract: Grb7 is a signalling adapter protein that engages activated receptor tyrosine kinases at cellular membranes to effect downstream pathways of cell migration, proliferation and survival. Grb7’s cellular location was shown to be regulated by the small calcium binding protein calmodulin (CaM). While evidence for a Grb7/CaM interaction is compelling, a direct interaction between CaM and purified Grb7 has not been demonstrated and quantitated. In this study we sought to determine this, and prepared pure full-length Grb7, as well as its RA-PH and SH2 subdomains, and tested for CaM binding using surface plasmon resonance. We report a direct interaction between full-length Grb7 and CaM that occurs in a calcium dependent manner. While no binding was observed to the SH2 domain alone, we observed a high micromolar affinity interaction between the Grb7 RA-PH domain and CaM, suggesting that the Grb7/CaM interaction is mediated through this region of Grb7. Together, our data support the model of a CaM interaction with Grb7 via its RA-PH domain. Keywords: Grb7; Calmodulin; RA-PH domain; SH2 domain; SPR 1. Introduction Growth receptor bound 7 (Grb7) protein is a cytoplasmic adapter protein that couples activated tyrosine kinase receptors to a nexus of downstream proliferative, migratory and survival signalling pathways [1,2].
    [Show full text]
  • From Src Homology Domains to Other Signaling Modules: Proposal of the `Protein Recognition Code'
    Oncogene (1998) 17, 1469 ± 1474 1998 Stockton Press All rights reserved 0950 ± 9232/98 $12.00 http://www.stockton-press.co.uk/onc From Src Homology domains to other signaling modules: proposal of the `protein recognition code' Marius Sudol The Department of Biochemistry, Mount Sinai School of Medicine, One Gustave Levy Place, New York, NY 10029, USA The study of oncogenes has illuminated many aspects of domains have identi®ed a set of common features cellular signaling. The delineation and characterization which aids in their description. The domains are of protein modules exempli®ed by Src Homology composed of 40 ± 150 amino acids which fold to domains has revolutionized our understanding of the generate one or more ligand-binding surfaces, known molecular events underlying signal transduction path- as `recognition pockets'. Generally, conserved residues ways. Several well characterized intracellular modules of the domain are directly involved in mediating which mediate protein-protein interactions, namely SH2, contacts with the amino acids of the ligand and in SH3, PH, PTB, EH, PDZ, EVH1 and WW domains, maintaining the structure of the domain. Ligands are directly involved in the multitude of membrane, interact with their complementary domains through cytoplasmic and nuclear processes in multicellular and/or short sequence motifs (also called core motifs), unicellular organisms. The modular character of these composed of only 3 ± 6 amino acids (Figure 1). The protein domains and their cognate motifs, the univers- sequence of the core determines the selection of the ality of their molecular function, their widespread domains (Songyang and Cantley, 1995). The most occurrence, and the speci®city as well as the degeneracy `important' amino acid within the core is traditionally of their interactions have prompted us to propose the designated `0' and the remaining amino acids are concept of the `protein recognition code'.
    [Show full text]
  • Phosphotyrosine Signaling: Evolving a New Cellular Communication System
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Leading Edge Essay Phosphotyrosine Signaling: Evolving a New Cellular Communication System Wendell A. Lim1,2,* and Tony Pawson3,4,* 1Howard Hughes Medical Institute 2Department of Cellular and Molecular Pharmacology University of California, San Francisco, San Francisco, CA 94158, USA 3Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada 4Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada *Correspondence: [email protected] (W.A.L.), [email protected] (T.P.) DOI 10.1016/j.cell.2010.08.023 Tyrosine phosphorylation controls many cellular functions. Yet the three-part toolkit that regulates phosphotyrosine signaling—tyrosine kinases, phosphotyrosine phosphatases, and Src Homology 2 (SH2) domains—is a relatively new innovation. Genomic analyses reveal how this revolutionary signaling system may have originated and why it rapidly became critical to metazoans. Throughout human history, new technolo- (TyrK) phosphorylate specific target with an evolutionary process? Proteins gies and technological platforms have tyrosine residues, phosphotyrosine phos- that bind or remove a posttranslational constantly been invented. Only a small phatases (PTP) remove the phosphates, modification would seem useless without fraction of these technologies go on to and Src Homology 2 (SH2) domains an enzyme to generate the modification be widely adopted, but these can recognize the modifications (Pawson and, in principle, would not provide ultimately have transformational conse- 1995). Together, these three modules a fitness advantage leading to its retention quences. In the evolutionary history of form the ‘‘writer,’’ ‘‘eraser,’’ and ‘‘reader’’ and spread.
    [Show full text]
  • Insight Into the Brain-Specific Alpha Isoform of the Scaffold Protein SH2B1 and Its Rare Obesity-Associated Variants
    Insight into the Brain-Specific Alpha Isoform of the Scaffold Protein SH2B1 and its Rare Obesity-Associated Variants By Ray Morris Joe A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Cellular and Molecular Biology) in the University of Michigan 2017 Doctoral Committee: Professor Christin Carter-Su, Chair Professor Ken Inoki Professor Benjamin L. Margolis Professor Donna M. Martin Professor Martin G. Myers © Ray Morris Joe ORCID: 0000-0001-7716-2874 [email protected] All rights reserved 2017 Acknowledgements I’d like to thank my mentor, Christin Carter-Su, for providing me a second opportunity and taking a chance on me after my leave of absence without hesitation. It is an honor to have a mentor guide me through the many challenges I have faced as a graduate student. She has taught me to find passion in my profession, and to strive to push through obstacles and find ways to reach my goals. In addition, she has given me insight to find a balance between work and life by giving me freedom to independently perform my research as well as stories on family and child-rearing. Throughout the many countless days and nights writing grants, manuscripts, and analyzing/interpreting data, it was wonderful to share our past cultural identities with one another. I look forward to having Christy as a mentor, colleague, and friend for all my future endeavors I have after I leave her laboratory. I want to thank my thesis committee, Ken Inoki, Ben Margolis, Donna Martin, and Martin Myers for the numerous insights for my scientific training.
    [Show full text]
  • Phosphoserine/Threonine Binding Minireview Domains: You Can’T Pserious?
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Structure, Vol. 9, R33±R38, March, 2001, 2001 Elsevier Science Ltd. All rights reserved. PII S0969-2126(01)00580-9 PhosphoSerine/Threonine Binding Minireview Domains: You Can't pSERious? Michael B. Yaffe,*³ and Stephen J. Smerdon²³ 14-3-3 Proteins *Center for Cancer Research The term ª14-3-3º denotes a family of dimeric ␣-helical Massachusetts Institute of Technology pSer/Thr binding proteins present in high abundance in 77 Massachusetts Avenue, E18-580 all eukaryotic cells [1]. 14-3-3 proteins were the first Cambridge, Massachusetts 02139 molecules to be recognized as distinct pSer/Thr binding ² Division of Protein Structure proteins, forming tight complexes with phosphorylated National Institute for Medical Research ligands containing either of two sequence motifs, R[S/ The Ridgeway Ar]XpSXP and RX[Ar/S]XpSXP, respectively, where pS Mill Hill denotes both phosphoserine and phosphothreonine, London NW7 1AA and Ar denotes aromatic residues [2, 3]. In addition, a United Kingdom few 14-3-3 binding ligands have been identified whose sequences deviate significantly from these motifs or do not require phosphorylation for binding. Summary Over 50 distinct substrates have been identified that bind to 14-3-3, many of which play critical roles in regu- The fundamental biological importance of protein phos- lating progression through the cell cycle, activation of phorylation is underlined by the existence of more than the Erk1/2 subfamily of MAP kinases, initiation of apo- 500 protein kinase genes within the human genome.
    [Show full text]
  • Novel Roles of SH2 and SH3 Domains in Lipid Binding
    cells Review Novel Roles of SH2 and SH3 Domains in Lipid Binding Szabolcs Sipeki 1,†, Kitti Koprivanacz 2,†, Tamás Takács 2, Anita Kurilla 2, Loretta László 2, Virag Vas 2 and László Buday 1,2,* 1 Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University Medical School, 1094 Budapest, Hungary; [email protected] 2 Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary; [email protected] (K.K.); [email protected] (T.T.); [email protected] (A.K.); [email protected] (L.L.); [email protected] (V.V.) * Correspondence: [email protected] † Both authors contributed equally to this work. Abstract: Signal transduction, the ability of cells to perceive information from the surroundings and alter behavior in response, is an essential property of life. Studies on tyrosine kinase action fundamentally changed our concept of cellular regulation. The induced assembly of subcellular hubs via the recognition of local protein or lipid modifications by modular protein interactions is now a central paradigm in signaling. Such molecular interactions are mediated by specific protein interaction domains. The first such domain identified was the SH2 domain, which was postulated to be a reader capable of finding and binding protein partners displaying phosphorylated tyrosine side chains. The SH3 domain was found to be involved in the formation of stable protein sub-complexes by constitutively attaching to proline-rich surfaces on its binding partners. The SH2 and SH3 domains have thus served as the prototypes for a diverse collection of interaction domains that recognize not only proteins but also lipids, nucleic acids, and small molecules.
    [Show full text]
  • Redirecting Tyrosine Kinase Signaling to an Apoptotic Caspase Pathway Through Chimeric Adaptor Proteins
    Redirecting tyrosine kinase signaling to an apoptotic caspase pathway through chimeric adaptor proteins Perry L. Howard*, Marie C. Chia†, Suzanne Del Rizzo*, Fei-Fei Liu†, and Tony Pawson*‡ *Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON, Canada M5G 1X5; and †Department of Medical Biophysics, University of Toronto, and Department of Radiation Oncology, Ontario Cancer Institute, Princess Margaret Hospital, University Health Network, 610 University Avenue, Toronto, ON, Canada M6G 1X5 Communicated by Louis Siminovitch, Mount Sinai Hospital, Toronto, ON, Canada, July 25, 2003 (received for review January 15, 2003) Signal transduction pathways are typically controlled by protein– motifs that interact with corresponding domains on adaptor protein interactions, which are mediated by specific modular proteins. This occurrence is typified by the Fas receptor, which domains. One hypothetical use of such interaction domains is to contains a death domain (DD) in its C-terminal tail (7, 8). generate new signaling pathways and networks during eukaryotic Trimerization of the receptor leads to binding of the Fas DD to evolution, through the joining of distinct binding modules in novel the DD of an adaptor, Fadd, which also possesses a death combinations. In this manner, new polypeptides may be formed effector domain (DED) (9). The DED of Fadd associates with that make innovative connections among preexisting proteins. the DEDs of procaspase 8͞10 (10). Fadd therefore bridges the Adaptor proteins are specialized signaling molecules composed Fas receptor to procaspases. The assembly of this multiprotein exclusively of interaction domains, that frequently link activated complex leads to caspase dimerization and activation, followed cell surface receptors to their intracellular targets.
    [Show full text]
  • Multisite Protein Modification and Intramolecular Signaling
    Oncogene (2005) 24, 1653–1662 & 2005 Nature Publishing Group All rights reserved 0950-9232/05 $30.00 www.nature.com/onc REVIEW Multisite protein modification and intramolecular signaling Xiang-Jiao Yang*,1 1Molecular Oncology Group, Department of Medicine, McGill University Health Center, Montreal, Quebec, Canada H3A 1A1 Post-translational modification is a major mechanism by into proper structuraland functionalstates. Many other which protein function is regulated in eukaryotes.Instead covalent modifications are transient and play important of single-site action, many proteins such as histones, p53, roles in regulating protein function. Instead of single-site RNA polymerase II, tubulin, Cdc25C and tyrosine kinases modification, various proteins are modified at multiple are modified at multiple sites by modifications like sites, a phenomenon referred to as multisite modifica- phosphorylation, acetylation, methylation, ubiquitination, tion. The multiplicity of modification sites on a protein sumoylation and citrullination.Multisite modification on often correlates with its biological importance and the a protein constitutes a complex regulatory program that complexity of the corresponding organism. Here, I resembles a dynamic ‘molecular barcode’ and transduces utilize selected proteins, including histones, RNA molecular information to and from signaling pathways. polymerase II, p53, Cdc25C and PDGF receptor-b,to This program imparts effects through ‘loss-of-function’ illustrate the complexity of multisite modification and and ‘gain-of-function’ mechanisms.Among
    [Show full text]
  • Two Contact Regions Between Stat1 and CBP/P300 in Interferon Signaling
    Proc. Natl. Acad. Sci. USA Vol. 93, pp. 15092–15096, December 1996 Biochemistry Two contact regions between Stat1 and CBPyp300 in interferon g signaling JUE J. ZHANG*, UWE VINKEMEIER*, WEI GU†,DEBABRATA CHAKRAVARTI‡,CURT M. HORVATH*, AND JAMES E. DARNELL,JR.*§ *Laboratory of Molecular Cell Biology, and †Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10021; and ‡The Salk Institute for Biological Studies, Gene Expression Laboratory, La Jolla, CA 92037 Contributed by James E. Darnell, Jr., October 22, 1996 ABSTRACT Interferon g (IFN-g) induces rapid tyrosine lacking 38 residues (including serine-727) at the carboxyl- phosphorylation of the latent cytoplasmic transcription fac- terminus (12). Only Stat1a is able to activate transcription of tor, Stat1, which then forms homodimers, translocates to the IFN-g-responsive genes or to confer the anti-viral state, indi- nucleus and participates in IFN-g-induced transcription. cating that the carboxyl terminus of Stat1 is the transactivation However, little is known of the interactions between Stat1 and domain of the molecule (13, 14). How Stat1 contacts the the general transcription machinery during transcriptional general transcription machinery to induce transcription of activation. We show here that Stat1 can directly interact with otherwise silent genes is unknown. the CREB-binding protein (CBP)yp300 family of transcrip- The CREB-binding protein (CBP)yp300 family of transcrip- tional coactivators. Specifically, two interaction regions were tional coactivators have been shown to potentiate the activity identified: the amino-terminal region of Stat1 interacts with of several groups of transcription factors (15). There is an the CREB-binding domain of CBPyp300 and the carboxyl- overall sequence similarity of CBP and p300, particularly in terminal region of Stat1 interacts with the domain of CBPy five separate domains, with which a number of transcription p300 that binds adenovirus E1A protein.
    [Show full text]
  • Pleckstrin Homology Domain by Phosphatidylinositol 3-Kinase And
    Tec Kinase Signaling in T Cells Is Regulated by Phosphatidylinositol 3-Kinase and the Tec Pleckstrin Homology Domain This information is current as Wen-Chin Yang, Keith A. Ching, Constantine D. Tsoukas of September 26, 2021. and Leslie J. Berg J Immunol 2001; 166:387-395; ; doi: 10.4049/jimmunol.166.1.387 http://www.jimmunol.org/content/166/1/387 Downloaded from References This article cites 58 articles, 32 of which you can access for free at: http://www.jimmunol.org/content/166/1/387.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 26, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2001 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Tec Kinase Signaling in T Cells Is Regulated by Phosphatidylinositol 3-Kinase and the Tec Pleckstrin Homology Domain1 Wen-Chin Yang,* Keith A. Ching,† Constantine D. Tsoukas,† and Leslie J. Berg2* Tec, the prototypical member of the Tec family of tyrosine kinases, is abundantly expressed in T cells and other hemopoietic cell types.
    [Show full text]