Phosphoserine/Threonine Binding Minireview Domains: You Can’T Pserious?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Interactions of Cbl with Grb2 and Phosphatidylinositol 3'-Kinase in Activated Jurkat Cells
University of Massachusetts Medical School eScholarship@UMMS Open Access Articles Open Access Publications by UMMS Authors 1995-07-01 Interactions of Cbl with Grb2 and phosphatidylinositol 3'-kinase in activated Jurkat cells Herman Meisner University of Massachusetts Medical School Et al. Let us know how access to this document benefits ou.y Follow this and additional works at: https://escholarship.umassmed.edu/oapubs Part of the Life Sciences Commons, and the Medicine and Health Sciences Commons Repository Citation Meisner H, Conway BR, Hartley DA, Czech MP. (1995). Interactions of Cbl with Grb2 and phosphatidylinositol 3'-kinase in activated Jurkat cells. Open Access Articles. Retrieved from https://escholarship.umassmed.edu/oapubs/1457 This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in Open Access Articles by an authorized administrator of eScholarship@UMMS. For more information, please contact [email protected]. MOLECULAR AND CELLULAR BIOLOGY, July 1995, p. 3571–3578 Vol. 15, No. 7 0270-7306/95/$04.0010 Copyright q 1995, American Society for Microbiology Interactions of Cbl with Grb2 and Phosphatidylinositol 39-Kinase in Activated Jurkat Cells HERMAN MEISNER, BRUCE R. CONWAY, DAVID HARTLEY, AND MICHAEL P. CZECH* Program in Molecular Medicine and Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605 Received 28 December 1994/Returned for modification 20 February 1995/Accepted 31 March 1995 T-cell receptor (TCR) cross-linking increases tyrosine phosphorylation of multiple proteins, only a few of which have been identified. One of the most rapidly tyrosine-phosphorylated polypeptides is the 120-kDa product of the proto-oncogene c-cbl, a cytosolic and cytoskeletal protein containing multiple proline-rich motifs that are potential binding sites for proteins containing Src homology 3 (SH3) domains. -
Cell Activation , Is Required for T Lck SH2 Domain of P56 Lad, An
Lad, an Adapter Protein Interacting with the SH2 Domain of p56 lck, Is Required for T Cell Activation This information is current as Young Bong Choi, Chan Ki Kim and Yungdae Yun of September 27, 2021. J Immunol 1999; 163:5242-5249; ; http://www.jimmunol.org/content/163/10/5242 Downloaded from References This article cites 54 articles, 31 of which you can access for free at: http://www.jimmunol.org/content/163/10/5242.full#ref-list-1 Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on September 27, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 1999 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Lad, an Adapter Protein Interacting with the SH2 Domain of p56lck, Is Required for T Cell Activation1,2 Young Bong Choi,*† Chan Ki Kim,* and Yungdae Yun3*† T cell-specific Src family tyrosine kinase, p56lck, plays crucial roles in T cell differentiation, activation, and proliferation. These multiple functions of p56lck are believed to be conducted through the protein-protein interactions with various cellular signaling proteins. -
The Hippo Pathway Target, YAP, Promotes Metastasis Through Its TEAD-Interaction Domain
The Hippo pathway target, YAP, promotes metastasis PNAS PLUS through its TEAD-interaction domain John M. Lamara, Patrick Sterna,1, Hui Liua,b,2, Jeffrey W. Schindlera,b, Zhi-Gang Jianga,c, and Richard O. Hynesa,b,c,3 cHoward Hughes Medical Institute, aKoch Institute for Integrative Cancer Research, and bDepartment of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139 Contributed by Richard O. Hynes, July 23, 2012 (sent for review February 28, 2012) The transcriptional coactivator Yes-associated protein (YAP) is 14-3-3 proteins (1, 9) and α-catenin (10, 11). LATS-mediated a major regulator of organ size and proliferation in vertebrates. phosphorylation of YAP also can promote YAP ubiquitination As such, YAP can act as an oncogene in several tissue types if its and subsequent proteasomal degradation (12). Several addi- activity is increased aberrantly. Although no activating mutations tional proteins are involved in Hippo pathway-dependent and in the yap1 gene have been identified in human cancer, yap1 is -independent regulation of YAP and TAZ, including the FERM located on the 11q22 amplicon, which is amplified in several hu- domain proteins Merlin/NF2 and FRMD6, the junctional pro- man tumors. In addition, mutations or epigenetic silencing of teins ZO-2 and AJUB, the polarity complex proteins Crumbs, members of the Hippo pathway, which represses YAP function, Angiomotin, Scribble, and KIBRA, and the protein phosphatases have been identified in human cancers. Here we demonstrate that, PP2A and ASPP1 (6–8). Thus, YAP protein levels and activity are in addition to increasing tumor growth, increased YAP activity is regulated tightly at multiple levels. -
Direct Interaction Between Calmodulin and the Grb7 RA-PH Domain
International Journal of Molecular Sciences Article Direct Interaction between Calmodulin and the Grb7 RA-PH Domain Gabrielle M. Watson and Jacqueline A. Wilce * Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Wellington Road, Clayton VIC 3800, Australia; [email protected] * Correspondence: [email protected]; Tel.: +613-9902-9226; Fax: +613-9902-9500 Received: 7 January 2020; Accepted: 15 February 2020; Published: 17 February 2020 Abstract: Grb7 is a signalling adapter protein that engages activated receptor tyrosine kinases at cellular membranes to effect downstream pathways of cell migration, proliferation and survival. Grb7’s cellular location was shown to be regulated by the small calcium binding protein calmodulin (CaM). While evidence for a Grb7/CaM interaction is compelling, a direct interaction between CaM and purified Grb7 has not been demonstrated and quantitated. In this study we sought to determine this, and prepared pure full-length Grb7, as well as its RA-PH and SH2 subdomains, and tested for CaM binding using surface plasmon resonance. We report a direct interaction between full-length Grb7 and CaM that occurs in a calcium dependent manner. While no binding was observed to the SH2 domain alone, we observed a high micromolar affinity interaction between the Grb7 RA-PH domain and CaM, suggesting that the Grb7/CaM interaction is mediated through this region of Grb7. Together, our data support the model of a CaM interaction with Grb7 via its RA-PH domain. Keywords: Grb7; Calmodulin; RA-PH domain; SH2 domain; SPR 1. Introduction Growth receptor bound 7 (Grb7) protein is a cytoplasmic adapter protein that couples activated tyrosine kinase receptors to a nexus of downstream proliferative, migratory and survival signalling pathways [1,2]. -
WW Domains Provide a Platform for the Assembly of Multiprotein Networks† Robert J
MOLECULAR AND CELLULAR BIOLOGY, Aug. 2005, p. 7092–7106 Vol. 25, No. 16 0270-7306/05/$08.00ϩ0 doi:10.1128/MCB.25.16.7092–7106.2005 Copyright © 2005, American Society for Microbiology. All Rights Reserved. WW Domains Provide a Platform for the Assembly of Multiprotein Networks† Robert J. Ingham,1 Karen Colwill,1 Caley Howard,1 Sabine Dettwiler,2 Caesar S. H. Lim,1,3 Joanna Yu,1,3 Kadija Hersi,1 Judith Raaijmakers,1 Gerald Gish,1 Geraldine Mbamalu,1 Lorne Taylor,1 Benny Yeung,1 Galina Vassilovski,1 Manish Amin,1 Fu Chen,4 Liudmila Matskova,4 Go¨sta Winberg,4 Ingemar Ernberg,4 Rune Linding,1 Paul O’Donnell,1 Andrei Starostine,1 Walter Keller,2 Pavel Metalnikov,1Chris Stark,1 and Tony Pawson1,3* Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada1; Department of Molecular and Medical Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada3; Department of Cell Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland2; and Karolinska Institutet, Microbiology and Tumor Biology Center (MTC), SE-171 Stockholm, Sweden4 Received 8 April 2005/Returned for modification 5 May 2005/Accepted 22 May 2005 WW domains are protein modules that mediate protein-protein interactions through recognition of proline- rich peptide motifs and phosphorylated serine/threonine-proline sites. To pursue the functional properties of WW domains, we employed mass spectrometry to identify 148 proteins that associate with 10 human WW domains. Many of these proteins represent novel WW domain-binding partners and are components of multiprotein complexes involved in molecular processes, such as transcription, RNA processing, and cytoskel- etal regulation. -
From Src Homology Domains to Other Signaling Modules: Proposal of the `Protein Recognition Code'
Oncogene (1998) 17, 1469 ± 1474 1998 Stockton Press All rights reserved 0950 ± 9232/98 $12.00 http://www.stockton-press.co.uk/onc From Src Homology domains to other signaling modules: proposal of the `protein recognition code' Marius Sudol The Department of Biochemistry, Mount Sinai School of Medicine, One Gustave Levy Place, New York, NY 10029, USA The study of oncogenes has illuminated many aspects of domains have identi®ed a set of common features cellular signaling. The delineation and characterization which aids in their description. The domains are of protein modules exempli®ed by Src Homology composed of 40 ± 150 amino acids which fold to domains has revolutionized our understanding of the generate one or more ligand-binding surfaces, known molecular events underlying signal transduction path- as `recognition pockets'. Generally, conserved residues ways. Several well characterized intracellular modules of the domain are directly involved in mediating which mediate protein-protein interactions, namely SH2, contacts with the amino acids of the ligand and in SH3, PH, PTB, EH, PDZ, EVH1 and WW domains, maintaining the structure of the domain. Ligands are directly involved in the multitude of membrane, interact with their complementary domains through cytoplasmic and nuclear processes in multicellular and/or short sequence motifs (also called core motifs), unicellular organisms. The modular character of these composed of only 3 ± 6 amino acids (Figure 1). The protein domains and their cognate motifs, the univers- sequence of the core determines the selection of the ality of their molecular function, their widespread domains (Songyang and Cantley, 1995). The most occurrence, and the speci®city as well as the degeneracy `important' amino acid within the core is traditionally of their interactions have prompted us to propose the designated `0' and the remaining amino acids are concept of the `protein recognition code'. -
Phosphotyrosine Signaling: Evolving a New Cellular Communication System
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Leading Edge Essay Phosphotyrosine Signaling: Evolving a New Cellular Communication System Wendell A. Lim1,2,* and Tony Pawson3,4,* 1Howard Hughes Medical Institute 2Department of Cellular and Molecular Pharmacology University of California, San Francisco, San Francisco, CA 94158, USA 3Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada 4Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada *Correspondence: [email protected] (W.A.L.), [email protected] (T.P.) DOI 10.1016/j.cell.2010.08.023 Tyrosine phosphorylation controls many cellular functions. Yet the three-part toolkit that regulates phosphotyrosine signaling—tyrosine kinases, phosphotyrosine phosphatases, and Src Homology 2 (SH2) domains—is a relatively new innovation. Genomic analyses reveal how this revolutionary signaling system may have originated and why it rapidly became critical to metazoans. Throughout human history, new technolo- (TyrK) phosphorylate specific target with an evolutionary process? Proteins gies and technological platforms have tyrosine residues, phosphotyrosine phos- that bind or remove a posttranslational constantly been invented. Only a small phatases (PTP) remove the phosphates, modification would seem useless without fraction of these technologies go on to and Src Homology 2 (SH2) domains an enzyme to generate the modification be widely adopted, but these can recognize the modifications (Pawson and, in principle, would not provide ultimately have transformational conse- 1995). Together, these three modules a fitness advantage leading to its retention quences. In the evolutionary history of form the ‘‘writer,’’ ‘‘eraser,’’ and ‘‘reader’’ and spread. -
Insight Into the Brain-Specific Alpha Isoform of the Scaffold Protein SH2B1 and Its Rare Obesity-Associated Variants
Insight into the Brain-Specific Alpha Isoform of the Scaffold Protein SH2B1 and its Rare Obesity-Associated Variants By Ray Morris Joe A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Cellular and Molecular Biology) in the University of Michigan 2017 Doctoral Committee: Professor Christin Carter-Su, Chair Professor Ken Inoki Professor Benjamin L. Margolis Professor Donna M. Martin Professor Martin G. Myers © Ray Morris Joe ORCID: 0000-0001-7716-2874 [email protected] All rights reserved 2017 Acknowledgements I’d like to thank my mentor, Christin Carter-Su, for providing me a second opportunity and taking a chance on me after my leave of absence without hesitation. It is an honor to have a mentor guide me through the many challenges I have faced as a graduate student. She has taught me to find passion in my profession, and to strive to push through obstacles and find ways to reach my goals. In addition, she has given me insight to find a balance between work and life by giving me freedom to independently perform my research as well as stories on family and child-rearing. Throughout the many countless days and nights writing grants, manuscripts, and analyzing/interpreting data, it was wonderful to share our past cultural identities with one another. I look forward to having Christy as a mentor, colleague, and friend for all my future endeavors I have after I leave her laboratory. I want to thank my thesis committee, Ken Inoki, Ben Margolis, Donna Martin, and Martin Myers for the numerous insights for my scientific training. -
High-Throughput Methods for Identification of Protein-Protein Interactions Involving Short Linear Motifs Cecilia Blikstad and Ylva Ivarsson*
Blikstad and Ivarsson Cell Communication and Signaling (2015) 13:38 DOI 10.1186/s12964-015-0116-8 REVIEW Open Access High-throughput methods for identification of protein-protein interactions involving short linear motifs Cecilia Blikstad and Ylva Ivarsson* Abstract Interactions between modular domains and short linear motifs (3–10 amino acids peptide stretches) are crucial for cell signaling. The motifs typically reside in the disordered regions of the proteome and the interactions are often transient, allowing for rapid changes in response to changing stimuli. The properties that make domain-motif interactions suitable for cell signaling also make them difficult to capture experimentally and they are therefore largely underrepresented in the known protein-protein interaction networks. Most of the knowledge on domain-motif interactions is derived from low-throughput studies, although there exist dedicated high-throughput methods for the identification of domain-motif interactions. The methods include arrays of peptides or proteins, display of peptides on phage or yeast, and yeast-two-hybrid experiments. We here provide a survey of scalable methods for domain-motif interaction profiling. These methods have frequently been applied to a limited number of ubiquitous domain families. It is now time to apply them to a broader set of peptide binding proteins, to provide a comprehensive picture of the linear motifs in the human proteome and to link them to their potential binding partners. Despite the plethora of methods, it is still a challenge for most approaches to identify interactions that rely on post-translational modification or context dependent or conditional interactions, suggesting directions for further method development. -
0085AD. Genes &
Cell Death and Differentiation (1999) 6, 883 ± 889 ã 1999 Stockton Press All rights reserved 13509047/99 $15.00 http://www.stockton-press.co.uk/cdd WW domain-containing FBP-30 is regulated by p53 1 ,1 Valerie Depraetere and Pierre Golstein* Introduction 1 Centre d'Immunologie INSERM-CNRS de Marseille-Luminy, Case 906, 13288 Subtractive approaches might be appropriate to clone cell Marseille Cedex 9, France death signalling genes in systems where PCD is dependent * corresponding author: Dr. Pierre Golstein, Centre d'Immunologie INSERM- on RNA synthesis,1±6 whereas many of the genes encoding CNRS de Marseille-Luminy, Case 906, 13288 Marseille Cedex 9, France. the cell death machinery, which is thought to be constitutively tel: +33 491269468; fax: +33 491269430; e-mail: [email protected] expressed in all cells,7 would not be identified by such a procedure. The aim of the present study was to look for genes Received 24.3.99; revised 17.6.99; accepted 13.7.99 the expression of which is induced upon g-irradiation and may Edited by B. Osborne lead to activation of the cell death program. Thymocytes were chosen as a model because of their high sensitivity to g- irradiation, and because g-irradiation-induced death of Abstract thymocytes is dependent upon p53 expression and upon RNA and protein synthesis.3,4 A subtractive cloning approach A subtractive cloning approach was used to clone genes was developed to clone genes which are up-regulated in g- transcriptionally induced in thymocytes undergoing pro- irradiated- as compared to untreated-wild-type murine grammed cell death after g-irradiation. -
Novel Roles of SH2 and SH3 Domains in Lipid Binding
cells Review Novel Roles of SH2 and SH3 Domains in Lipid Binding Szabolcs Sipeki 1,†, Kitti Koprivanacz 2,†, Tamás Takács 2, Anita Kurilla 2, Loretta László 2, Virag Vas 2 and László Buday 1,2,* 1 Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University Medical School, 1094 Budapest, Hungary; [email protected] 2 Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary; [email protected] (K.K.); [email protected] (T.T.); [email protected] (A.K.); [email protected] (L.L.); [email protected] (V.V.) * Correspondence: [email protected] † Both authors contributed equally to this work. Abstract: Signal transduction, the ability of cells to perceive information from the surroundings and alter behavior in response, is an essential property of life. Studies on tyrosine kinase action fundamentally changed our concept of cellular regulation. The induced assembly of subcellular hubs via the recognition of local protein or lipid modifications by modular protein interactions is now a central paradigm in signaling. Such molecular interactions are mediated by specific protein interaction domains. The first such domain identified was the SH2 domain, which was postulated to be a reader capable of finding and binding protein partners displaying phosphorylated tyrosine side chains. The SH3 domain was found to be involved in the formation of stable protein sub-complexes by constitutively attaching to proline-rich surfaces on its binding partners. The SH2 and SH3 domains have thus served as the prototypes for a diverse collection of interaction domains that recognize not only proteins but also lipids, nucleic acids, and small molecules. -
Redirecting Tyrosine Kinase Signaling to an Apoptotic Caspase Pathway Through Chimeric Adaptor Proteins
Redirecting tyrosine kinase signaling to an apoptotic caspase pathway through chimeric adaptor proteins Perry L. Howard*, Marie C. Chia†, Suzanne Del Rizzo*, Fei-Fei Liu†, and Tony Pawson*‡ *Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON, Canada M5G 1X5; and †Department of Medical Biophysics, University of Toronto, and Department of Radiation Oncology, Ontario Cancer Institute, Princess Margaret Hospital, University Health Network, 610 University Avenue, Toronto, ON, Canada M6G 1X5 Communicated by Louis Siminovitch, Mount Sinai Hospital, Toronto, ON, Canada, July 25, 2003 (received for review January 15, 2003) Signal transduction pathways are typically controlled by protein– motifs that interact with corresponding domains on adaptor protein interactions, which are mediated by specific modular proteins. This occurrence is typified by the Fas receptor, which domains. One hypothetical use of such interaction domains is to contains a death domain (DD) in its C-terminal tail (7, 8). generate new signaling pathways and networks during eukaryotic Trimerization of the receptor leads to binding of the Fas DD to evolution, through the joining of distinct binding modules in novel the DD of an adaptor, Fadd, which also possesses a death combinations. In this manner, new polypeptides may be formed effector domain (DED) (9). The DED of Fadd associates with that make innovative connections among preexisting proteins. the DEDs of procaspase 8͞10 (10). Fadd therefore bridges the Adaptor proteins are specialized signaling molecules composed Fas receptor to procaspases. The assembly of this multiprotein exclusively of interaction domains, that frequently link activated complex leads to caspase dimerization and activation, followed cell surface receptors to their intracellular targets.