Evolutionary Divergences in Luscinia Svecica Subspecies Complex – New Evidence Supporting the Uniqueness of the Iberian Bluethroat Breeding Populations

Total Page:16

File Type:pdf, Size:1020Kb

Evolutionary Divergences in Luscinia Svecica Subspecies Complex – New Evidence Supporting the Uniqueness of the Iberian Bluethroat Breeding Populations Ornis Fennica 94: 141–149. 2017 Evolutionary divergences in Luscinia svecica subspecies complex – new evidence supporting the uniqueness of the Iberian bluethroat breeding populations Javier García*, Arild Johnsen, Benito Fuertes & Susana Suárez-Seoane J. García, S. Suárez-Seoane, Department of Biodiversity and Environmental Manage- ment, Faculty of Biological Sciences, University of León, Campus de Vegazana s/n, 24071 León, Spain. * Corresponding author’s e-mail: [email protected] B. Fuertes, Grupo Ibérico de Anillamiento. C/ Daoiz y Velarde, 16. 24006 León, Spain A. Johnsen, Natural History Museum, University of Oslo, PO Box 1172 Blindern, 0318 Oslo, Norway Received 12 August 2016, accepted 14 April 2017 The assessment of evolutionary divergences within subspecies complexes provide an ef- fective short-cut for estimating intraspecific genetic diversity, which is relevant for con- servation actions. We explore new evidence supplementing the existing knowledge about the singularity of Iberian bluethroats within the Luscinia svecica subspecies mosaic. We compared biometric traits of Iberian males (L. s. azuricollis) to the closest subspecies (L. s. cyanecula, L. s. namnetum and L. s. magna) using general linear models and analysed the correlations between biometric and genetic differentiation (based on nuclear micro- satellites) among the target subspecies with a Mantel test. Biometric differences were cal- culated using 63 museum skins and 63 live specimens. Genetic distances were estimated in a sample of 136 individuals. An additional characterisation of the plumage of Iberian males was shaped from 22 live specimens. We highlight the distinctiveness of Iberian birds within the subspecies mosaic since L. s. azuricollis had longer wings than L. s. cyanecula and L. s. namnetum, but shorter wings than L. s. magna. Indeed,L.s.azuricollis had longer tarsus and bill than L. s. namnetum, but shorter bill than L. s. magna. Biometric divergence was not significantly associated with genetic distance. Iberian males showed an all-blue plastron in 77% of specimens, a mostly non-marked black band and no white band, which distinguished them from males of L. s. cyanecula and L. s. namnetum.We conclude the importance of considering phenotypic and genotypic differences at subspe- cies level, which is essential for designing realistic conservation strategies addressed to preserve species genetic diversity patterns. 1. Introduction like the Nature 2000 network in Europe. However, conservation strategies may benefit from targeting The presence of endangered species is currently lower taxonomic levels of assessment to avoid one of the main principles for establishing priori- widespread loss of genetic diversity (Meffe & ties of conservation and designing protected areas, Carrol 1997). Successful conservation policies 142 ORNIS FENNICA Vol. 94, 2017 should be explicitly focused on the preservation of cies classification, neither about phylogenetic re- multiple populations across the range of the spe- lationships (Questiau et al. 1998, Eybert et al. cies, that should be self-sustaining, healthy and ge- 2003, Zink et al. 2003, Johnsen et al. 2006). netically robust (Redford et al. 2011), since ge- AccordingtoZinket al. (2003), only two netic variability determines the adaptive potential clades can be differentiated in Eurasia based on of the species and their resilience to environmental mitochondrial DNA studies. One of these groups changes (Reed & Frankham 2003). is located in northern Eurasia and includes chest- In the case of bird species, the assessment of nut-spotted subspecies (L. s. svecica, L. s. volgae intra-specific variation has been traditionally ad- and L. s. pallidogularis). The other comprises dressed at the taxonomic category of subspecies southern subspecies with or without a white throat (Winker 2010). The evaluation of bird subspecies spot (L. s. azuricollis, L. s. namnetum, L. s. cyane- is critical since it contributes to explain the current cula and L. s magna). Johnsen et al. (2006) found distribution and the biogeographic history of spe- evidence for low gene flow among northern and cies (Newton 2003). Indeed, according to Philli- southern groups, the latter being more differenti- more & Owens (2006), it offers an effective short- ated than the former. These authors also showed cut for estimating patterns of intraspecific genetic that Bluethroat genetic structure (based on micro- diversity, thereby providing a useful tool for the satellite marker analysis) was consistent with the study of evolutionary divergence and conserva- subspecies classification (based on phenotypic tion. However, it is important to have in mind that, features). They found significant qualitative varia- despite the convenience of using this study level, tion in throat spot coloration and quantitative vari- the traditional subspecies limits, that have been ation in hue, chroma and brightness of the UV/ based on phenotypic features, could sometimes be blue throat coloration that possibly evolved by contradicted by the outcomes derived from mod- sexual selection through female choice, in turn ern molecular techniques (Zink et al. 2003, leading to subspecies diversification (Peiponen Rheindt et al. 2011), which makes the approach 1960, Andersson & Amundsen 1997, Johnsen et more challenging. al. 1998, 2001). The bluethroat (Luscinia svecica) is a small Indeed, Hogner et al. (2013), on the basis of migratory passerine (weight 14–20 g) with bree- sperm characteristics, showed a significant differ- ding populations distributed through the west and entiation between L. s. svecica, L. s. namnetum, L. north of the Western Paleartic (Cramp 1988, De- s. cyanecula and L. s. azuricollis that was consis- ment’ev & Gladkov 1968). It has been incorpo- tent with the findings of Johnsen et al. (2006) and, rated in the Annex I of the European Union’s Birds therefore, supported the status of these subspecies Directive (Directive 2009/147/CE) that includes as independent taxa. The high number of differ- the most endangered species of Europe. The spe- ences existing between subspecies and their geo- cies shows a high sexual dichromatism, which in- graphic isolation indicate that Bluethroats are cur- fluences inter and intrasexual communication. In rently in an advanced stage of the speciation pro- the case of males, throat and breast are dominated cess, when compared with other subspecies com- by a large patch of ultraviolet (UV)/blue plumage plexes (Johnsen et al. 2006). (with or without a central spot of white/chestnut Iberian breeding Bluethroats have been tradi- coloration) and a breast band of chestnut plumage tionally misclassified within one of the white- below. Females are highly variable in the extent of spotted subspecies, L. s. cyanecula (Cramp 1988, their throat coloration, from entirely drab to almost Del Hoyo et al. 2005), although decades ago other male-like (Cramp 1988, Amundsen et al. 1997). authors as Mayaud (1958) and Corley-Smith The phenotypic variation of Bluethroats consti- (1959) had highlighted that they presented suffi- tutes a complex mosaic associated to differences in cient plumage differences to be considered as a geographical morphs and life history. Ten subspe- different subspecies (L. s. azuricollis). Recently, cies have been described according to both male Johnsen et al. (2006, 2007) and Hogner et al. throat ornament and general plumage patterns (2013) have shown that Iberian populations are (Cramp 1988, Del Hoyo et al. 2005), although a genetically well defined, both in nuclear micro- unanimous consensus does not exist about subspe- satellites and mtDNA (but see Zink et al. 2003). In García et al.: Evolutionary divergences in Luscinia svecica subspecies complex 143 Fig. 1. Study area. A) Map of Eurasia showing the geo- graphic location where Bluethroat specimens from dif- ferent subspecies were captured. B) Breeding distribution of Bluethroat in Spain (10 × 10 km UTM squares; Martí & Del Moral, 2003) and sampling locali- ties. this sense, the accurate assessment of subspecies svecica subspecies complex. In particular, we eva- taxonomic position, as well as the full characteri- luated biometric differences of Iberian males (L. s. sation of phenotypic and genotypic distinctiveness azuricollis) against those of the closest subspecies, of subspecies, is essential for implementing ade- according to geographic (L. s. cyanecula and L. s. quate measures of conservation addressed to pro- namnetum) and plumage (L. s. magna) criteria, tect the Eurasian Bluethroats as a whole. and tested the correlation between biometric and The objective of this study was to add new evi- genetic differentiation among the target subspe- dence that supplements the existing knowledge cies. Additionally, we aimed to carry out a specific about the relevance and singularity of the Iberian characterisation of Iberian males according to breeding bluethroats in the context of the Luscinia their plumage. 144 ORNIS FENNICA Vol. 94, 2017 2. Material and methods collected in Spain between 1999 and 2002 (Fig. 1b). We evaluated the tone of the breast blue In order to evaluate the biometric differences plastron (light, intermediate or dark), the colour of among subspecies, we have considered three vari- the spot (white, chestnut or blue if it were absent) ables: wing chord length (± 0.5 mm), tarsus length, and the presence of black, white and chestnut (± 0.1 mm) and bill length (± 0.1 mm) (Svensson breast bands (absent, not marked, marked or very 1992). These data have been collected
Recommended publications
  • Luscinia Luscinia)
    Ornis Hungarica 2018. 26(1): 149–170. DOI: 10.1515/orhu-2018-0010 Exploratory analyses of migration timing and morphometrics of the Thrush Nightingale (Luscinia luscinia) Tibor CSÖRGO˝ 1 , Péter FEHÉRVÁRI2, Zsolt KARCZA3, Péter ÓCSAI4 & Andrea HARNOS2* Received: April 20, 2018 – Revised: May 10, 2018 – Accepted: May 20, 2018 Tibor Csörgo,˝ Péter Fehérvári, Zsolt Karcza, Péter Ócsai & Andrea Harnos 2018. Exploratory analyses of migration timing and morphometrics of the Thrush Nightingale (Luscinia luscinia). – Ornis Hungarica 26(1): 149–170. DOI: 10.1515/orhu-2018-0010 Abstract Ornithological studies often rely on long-term bird ringing data sets as sources of information. However, basic descriptive statistics of raw data are rarely provided. In order to fill this gap, here we present the seventh item of a series of exploratory analyses of migration timing and body size measurements of the most frequent Passerine species at a ringing station located in Central Hungary (1984–2017). First, we give a concise description of foreign ring recoveries of the Thrush Nightingale in relation to Hungary. We then shift focus to data of 1138 ringed and 547 recaptured individuals with 1557 recaptures (several years recaptures in 76 individuals) derived from the ringing station, where birds have been trapped, handled and ringed with standardized methodology since 1984. Timing is described through annual and daily capture and recapture frequencies and their descriptive statistics. We show annual mean arrival dates within the study period and present the cumulative distributions of first captures with stopover durations. We present the distributions of wing, third primary, tail length and body mass, and the annual means of these variables.
    [Show full text]
  • Territoriality As a Paternity Guard in the European Robin, Erithacus Rubecula
    ANIMAL BEHAVIOUR, 2000, 60, 165–173 doi:10.1006/anbe.2000.1442, available online at http://www.idealibrary.com on ARTICLES Territoriality as a paternity guard in the European robin, Erithacus rubecula JOE TOBIAS & NAT SEDDON Department of Zoology, University of Cambridge (Received 29 June 1999; initial acceptance 29 July 1999; final acceptance 18 March 2000; MS. number: 6273) To investigate the relative importance of paternity defences in the European robin we used behavioural observations, simulated intrusions and temporary male removal experiments. Given that paired males did not increase their mate attendance, copulation rate or territory size during the female’s fertile period, the most frequently quoted paternity assurance strategies in birds were absent. However, males with fertile females sang and patrolled their territories more regularly, suggesting that territorial motivation and vigilance were elevated when the risk of cuckoldry was greatest. In addition, there was a significant effect of breeding period on response to simulated intrusions: residents approached and attacked freeze-dried mounts more readily in the fertile period. During 90-min removals of the pair male in the fertile period, neighbours trespassed more frequently relative to prefertile and fertile period controls and appeared to seek copulations with unattended females. When replaced on their territories, males immediately increased both song rate and patrolling rate in comparison with controls. We propose that male robins sing to signal their presence, and increase their territorial vigilance and aggression in the fertile period to protect paternity. 2000 The Association for the Study of Animal Behaviour Despite the apparent social monogamy of the majority of Thryothorus nigricapillus: Levin 1996).
    [Show full text]
  • Recent Evolutionary History of the Bluethroat (Luscinia Svecica)
    Molecular Ecology (2003) 12, 3069–3075 doi: 10.1046/j.1365-294X.2003.01981.x RecentBlackwell Publishing Ltd. evolutionary history of the bluethroat (Luscinia svecica) across Eurasia ROBERT M. ZINK,* SERGEI V. DROVETSKI,† SOPHIE QUESTIAU,‡ IGOR V. FADEEV,§ EVGENIY V. NESTEROV,§ MICHAEL C. WESTBERG* and SIEVERT ROHWER¶ *J. F. Bell Museum of Natural History, University of Minnesota, St Paul, MN 55108, USA, †Department of Ecology, Evolution, and Behavior, University of Minnesota, St Paul, MN 55108, USA, ‡Ecologie Animale, Université d’Angers, Belle-Beille, 2, boulevard Lavoisier, F-49045 Angers cedex, France, §State Darwin Museum, 57 Vavilova Street, Moscow 117292, Russia, ¶Burke Museum and Department of Zoology, University of Washington, Seattle, WA 98195–3010, USA Abstract We analysed mitochondrial DNA (mtDNA) sequences from 154 bluethroats (Luscinia svecica) sampled at 21 sites throughout much of their Eurasian range. A previously reported, single base-pair mtDNA difference between L. s. svecica and L. s. namnetum was inconsistent upon expanded geographical sampling. A significant FST value (0.29) and an isolation-by-distance effect show the existence of geographical differentiation. Phyloge- netic analysis of haplotypes revealed northern and southern groups, although lineage sort- ing is incomplete. There was no geographical structure to the haplotype tree within groups, and currently recognized subspecies were not supported. A minimum evolution tree based on pairwise mtDNA genetic distances among average samples showed the same two broadly distributed northern and southern groups. These groups abut in the centre of the latitudinal range, and were possibly isolated by forest that developed and spread westward over the last 15 000 years.
    [Show full text]
  • On the Status and Distribution of Thrush Nightingale Luscinia Luscinia and Common Nightingale L
    Sandgrouse31-090402:Sandgrouse 4/2/2009 11:21 AM Page 18 On the status and distribution of Thrush Nightingale Luscinia luscinia and Common Nightingale L. megarhynchos in Armenia VASIL ANANIAN INTRODUCTION In the key references on the avifauna of the Western Palearctic and former Soviet Union, the breeding distributions of Common Luscinia megarhynchos and Thrush Nightingales L. luscinia in the Transcaucasus (Georgia, Armenia and Azerbaijan) are presented inconsistently, especially for the latter species. These sources disagree on the status of Thrush Nightingale in the area, thus Vaurie (1959), Cramp (1988) and Snow & Perrins (1998) considered it breeding in the Transcaucasus, while Dementiev & Gladkov (1954), Sibley & Monroe (1990) and Stepanyan (2003) do not. Its distribu- tion in del Hoyo et al (2005) is mapped according to the latter view, but they note the species’ presence in Armenia during the breeding season. Several other publications Plate 1. Common Nightingale Luscinia megarhynchos performing full territorial song, Vorotan river gorge, c15 consider that the southern limit of Thrush km SSW of Goris town, Syunik province, Armenia, 12 May Nightingale’s Caucasian breeding range is 2005. © Vasil Ananian in the northern foothills of the Greater Caucasus mountains (Russian Federation), while the Transcaucasus is inhabited solely by Common Nightingale (Gladkov et al 1964, Flint et al 1967, Ivanov & Stegmann 1978, Vtorov & Drozdov 1980). Thrush Nightingale in Azerbaijan was classified as ‘accidental’ by Patrikeev (2004). The author accepted that the species had possibly nested in the past and referred to old summer records by GI Radde from the Karayasi forest in the Kura–Aras (Arax) lowlands, but Patrikeev found only Common Nightingale there in the late 1980s.
    [Show full text]
  • Siberian Blue Robin Larvivora Cyane from the Barak Valley of Assam with a Status Update for India
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/338137338 Siberian Blue Robin Larvivora cyane from the Barak Valley of Assam with a status update for India Article in Indian BIRDS · December 2019 CITATIONS READS 0 7 2 authors: Rejoice Gassah Vijay Anand Ismavel Makunda Christian Hospital 4 PUBLICATIONS 0 CITATIONS 22 PUBLICATIONS 12 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Neglected health problems in rural India View project Biodiversity Documentation View project All content following this page was uploaded by Vijay Anand Ismavel on 24 December 2019. The user has requested enhancement of the downloaded file. Correspondence 123 peninsular India (Grimmett et al. 2011; Rasmussen & Anderton minY=11.103753465762485&env.maxX=93.01342361450202&env.maxY=12.31963 2012; eBird 2019). This species is a common winter visitor to 3103994705&zh=true&gp=true&ev=Z&mr=on&bmo=1&emo=1&yr=cur&byr=2019 Myanmar, Thailand, Laos, and Tonkin (Robson 2008). &eyr=2019. [Accessed on: 19 January 2019.] DeCandido, R., Subedi, T., Siponen, M., Sutasha, K., Pierce, A., Nualsri, C., & Round, P. D., 2013. Flight identification of Milvus migrans lineatus ‘Black-eared’ Kite and Milvus migrans govinda ‘Pariah’ Kite in Nepal and Thailand. BirdingASIA 20: 32–36. Grimmett, R., Inskipp, C., & Inskipp, T., 2011. Birds of the Indian Subcontinent. 2nd ed. London: Oxford University Press & Christopher Helm. Pp. 1–528. Rasmussen, P. C., & Anderton, J. C., 2012. Birds of South Asia: the Ripley guide: field guide. 2nd ed. Washington, D.C.
    [Show full text]
  • First Images in the Wild of Blackthroat Luscinia Obscura, Asia's Most
    BirdingASIA 15 (2011): 17–19 17 LITTLE-KNOWN ASIAN BIRD First images in the wild of Blackthroat Luscinia obscura, Asia’s most enigmatic robin WEI QIAN & HE YI Background probably a female from Baihe Nature Reserve, The Blackthroat Luscinia obscura is known to breed Sichuan, on 3 June 2007 (Anderson 2007). only in the mountains of south-west China, where Additionally, a few captive birds, assumed to have there are a few scattered records from Sichuan, been caught in the vicinity of Chengdu, have Gansu and Shaanxi, together with even fewer appeared in Chengdu bird market (Wang 2004). presumed non-breeding records from Yunnan All other records are from Thailand and presumed (southern China) and northern Thailand. It is an to be either wintering birds or passage migrants extremely poorly known species classified as (BirdLife International 2001). Vulnerable because it is inferred to have a small, declining population as a result of destruction of Observations temperate forest within its breeding area as well On the morning of 2 May 2011, we visited Sichuan as habitat loss in its likely wintering areas (BirdLife University to observe and photograph migrating International 2001, 2011). birds in a small patch of wood and shrubbery in Since its description in 1891, there have only the south-eastern corner of the campus. At about been nine records from China, including some 09h20 a bird abruptly flew into the shrubbery, uncertain ones. These records comprise one each which we quickly located and identified as a male from Ganshu and Shaanxi, two from Yunnan, Blackthroat Luscinia obscura. We continued to presumed to be during migration, and four from observe it until about 17h20 when we left and Sichuan, all detailed in BirdLife International obtained what we believe to be the first images of (2001), and a recent sight record of a male and this species in the wild (Plates 1 & 2).
    [Show full text]
  • Evaluation of Acoustic Pattern Recognition of Nightingale (Luscinia Megarhynchos) Recordings by Citizens
    Research Ideas and Outcomes 6: e50233 doi: 10.3897/rio.6.e50233 Case Study Evaluation of acoustic pattern recognition of nightingale (Luscinia megarhynchos) recordings by citizens Marcel Stehle‡,§, Mario Lasseck ‡, Omid Khorramshahi‡‡, Ulrike Sturm ‡ Museum für Naturkunde Berlin Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany § Eberswalde University for Sustainable Development, Eberswalde, Germany Corresponding author: Ulrike Sturm ([email protected]) Reviewed v1 Received: 17 Jan 2020 | Published: 24 Feb 2020 Citation: Stehle M, Lasseck M, Khorramshahi O, Sturm U (2020) Evaluation of acoustic pattern recognition of nightingale (Luscinia megarhynchos) recordings by citizens. Research Ideas and Outcomes 6: e50233. https://doi.org/10.3897/rio.6.e50233 Abstract Acoustic pattern recognition methods introduce new perspectives for species identification, biodiversity monitoring and data validation in citizen science but are rarely evaluated in real world scenarios. In this case study we analysed the performance of a machine learning algorithm for automated bird identification to reliably identify common nightingales (Luscinia megarhynchos) in field recordings taken by users of the smartphone app Naturblick. We found that the performance of the automated identification tool was overall robust in our selected recordings. Although most of the recordings had a relatively low confidence score, a large proportion of the recordings were identified correctly. Keywords pattern recognition, sound recognition, species identification, mobile app, citizen science © Stehle M et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
    [Show full text]
  • The Song Structure of the Siberian Blue Robin Luscinia [Larvivora] Cyane and a Comparison with Related Species
    Ornithol Sci 16: 71 – 77 (2017) ORIGINAL ARTICLE The song structure of the Siberian Blue Robin Luscinia [Larvivora] cyane and a comparison with related species Vladimir IVANITSKII1,#, Alexandra IVLIEVA2, Sergey GASHKOV3 and Irina MAROVA1 1 Lomonosov Moscow State University, Biology, 119899 Moscow Leninskie Gory, Moscow, Moscow 119899, Russian Federation 2 M.F. Vladimirskii Moscow Regional Research Clinical Institute, Moscow, Moscow, Russian Federation 3 Tomsk State University-Zoology Museum, Tomsk, Tomsk, Russian Federation ORNITHOLOGICAL Abstract We studied the song syntax of the Siberian Blue Robin Luscinia cyane, a small insectivorous passerine of the taiga forests of Siberia and the Far East. Males SCIENCE have repertoires of 7 to 14 (mean 10.9±2.3) song types. A single song typically con- © The Ornithological Society sists of a short trill comprised of from three to six identical syllables, each of two to of Japan 2017 three notes; sometimes the trill is preceded by a short single note. The most complex songs contain as many as five or six different trills and single notes. The song of the Siberian Blue Robin most closely resembles that of the Indian Blue Robin L. brunnea. The individual repertoires of Siberian Blue Robin, Common Nightingale L. megarhynchos and Thrush Nightingale L. luscinia contain groups of mutually associ- ated song types that are sung usually one after another. The Siberian Blue Robin and the Common Nightingale perform them in a varying sequence, while Thrush Nightin- gale predominantly uses a fixed sequence of song types. The distinctions between the song syntax of Larvivora spp. and Luscinia spp. are discussed.
    [Show full text]
  • Bird Flu Research at the Center for Tropical Research by John Pollinger, CTR Associate Director
    Center for Tropical Research October 2006 Bird Flu Research at the Center for Tropical Research by John Pollinger, CTR Associate Director Avian Influenza Virus – An Overview The UCLA Center for Tropical Research (CTR) is at the forefront of research and surveillance efforts on avian influenza virus (bird flu or avian flu) in wild birds. CTR has led avian influenza survey efforts on migratory landbirds in both North America and Central Africa since spring 2006. We have recently been funded by the National Institutes of Health (NIH) to conduct a large study in North, Central, and South America on the effects of bird migration and human habitat disturbance on the distribution and transmission of bird flu. These studies take advantage of our unique collaboration with the major bird banding station networks in the Americas, our extensive experience in avian field research in Central Africa, and UCLA’s unique resources and expertise in infectious diseases though the UCLA School of Public Health and its Department of Epidemiology. CTR has ongoing collaborations with four landbird monitoring networks: the Monitoring Avian Productivity and Survivorship (MAPS) network, the Monitoring Avian Winter Survival (MAWS) network, and the Monitoreo de Sobrevivencia Invernal - Monitoring Overwintering Survival (MoSI) network, all led by the Institute for Bird Populations (IBP), and the Landbird Migration Monitoring Network of the Americas (LaMMNA), led by the Redwood Sciences Laboratory (U.S. Forest Service). Bird flu has shot to the public’s consciousness with the recent outbreaks of a highly virulent subtype of avian influenza A virus (H5N1) that has recently occurred in Asia, Africa, and Europe.
    [Show full text]
  • Luscinia Svecica) in a Highly Anthropogenic River Basin Philippe Fontanilles, Iván De La Hera, Kevin Sourdrille, Florent Lacoste, Christian Kerbiriou
    Stopover ecology of autumn-migrating Bluethroats (Luscinia svecica) in a highly anthropogenic river basin Philippe Fontanilles, Iván de la Hera, Kevin Sourdrille, Florent Lacoste, Christian Kerbiriou To cite this version: Philippe Fontanilles, Iván de la Hera, Kevin Sourdrille, Florent Lacoste, Christian Kerbiriou. Stopover ecology of autumn-migrating Bluethroats (Luscinia svecica) in a highly anthropogenic river basin. Wil- son journal of ornithology, Wilson Ornithological Society, 2020, 161 (1), pp.89-101. 10.1007/s10336- 019-01717-z. hal-03102976 HAL Id: hal-03102976 https://hal.archives-ouvertes.fr/hal-03102976 Submitted on 7 Jan 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Stopover ecology of Bluethroats in a highly anthropogenic river basin during autumn 2 migration 3 Philippe Fontanilles1, *, Iván de la Hera1, 2, Kevin Sourdrille1, Florent Lacoste1, Christian Kerbiriou3,4 4 5 1 Observatoire d’Intérêt Scientifique Ornithologique (OISO), Cami deth Sailhetou, 65400 Lau Balagnas, France 6 2 School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland. 7 3 Centre d’Ecologie et des Sciences de la Conservation, UMR7204 MNHN-CNRS-UPMC-Sorbonne Université, 8 55 Rue Buffon, 75005 Paris, France 9 4 Station de Biologie Marine Place de la croix, 29900 Concarneau, France 10 11 Corresponding author, e.mail: [email protected] 12 13 Short title: Stopover ecology of Bluethroats 14 Key words: Luscinia svecica, home range, body condition, habitat selection, corn crop, diet, trophic resources.
    [Show full text]
  • Autumn Migration and Recurrence of the Thrush Nightingale Luscinia Luscinia at a Stopover Site in Central Hungary
    AUTUMN MIGRATION AND RECURRENCE OF THE THRUSH NIGHTINGALE LUSCINIA LUSCINIA Tibor Cst)~G6*and Gabor L. LC)VElt* SUMMARY.-Aurtrmn migration and recurrence ofthe Thrrtsh Nightingale Luscinia lusoinia at a stopover sire in Central Hunaarv. The mieration dvnamics and recurrence of the Thrush Nishtinsale Ltmcinia luscinia was studied ita stopover iite at 6c;a. central Hungary, between 1983 and 1993;~uring this time, a total of 293 brrds wen ringed. The migralion peaked on 19 August, with the main period kfwcen 8-30 Auaust. Adults did not seem to mi~rateahead of vouna birds. Reoeated rewotures oroved that the area war used lor stopover and premigr;tory fatlening.'~e ;ecapturcd '114 birds in416 &asms. I2 oithem after the date oithe last nnging. 24 September. The median stopover length was II days, the maximum 38 davs. There were no sianificant dillercnces in stooover lcneths throuehout mieration. 01all birds 6.1 % were recaplured aiter onc year or later; birds a&uing ea;ly and la& during-the migratton had higher probab~lttyof being recaptured in subsequent years. Thc proportton or birds with the maximum la1 score mcreased from 0% in earl\ Auaust to 33% bv midJeotcmber. Fat scores and body masses on arrrval were significantly higher in.btrd;arriuing aiter 50 ~ugu; than in those ringed earlier-~eanwing lenglhc of btrds, allhough gradually decreasing durmg the course olmigralion, did nor show sign~ficantchanges. Key words: Hungary, migration, recurrence, stopover, Thrush Nightingale. RESUMEN.-Miyracidn otorial y recurrencia del Ruiseiior Combn Luscinia luscinia a una zona de descunso en Hunurfa Central. Se estudid la dinhifa migratoria y la recurrencia del Ruiseaor Com~n Lssciniu luscinia iuna zona de descanso en 6csa.
    [Show full text]
  • Erithacus Robin, Erithacus Komadori, Inferred from Cytochrome B Sequence Data
    Molecular Phylogenetics and Evolution 39 (2006) 899–905 www.elsevier.com/locate/ympev Short communication The origin of the East Asian Erithacus robin, Erithacus komadori, inferred from cytochrome b sequence data Shin-Ichi Seki ¤ Kyushu Research Center, Forestry and Forest Products Research Institute, 4-11-16 Kurokami, Kumamoto 860-0862, Japan Received 28 September 2005; revised 27 January 2006; accepted 27 January 2006 Available online 10 March 2006 1. Introduction two subspecies are, hence, also listed as vulnerable species in the Japanese Red List (Ministry of the Environment of The avian genus Erithacus is a member of the chat tribe, Japan, 2002). To make an eVective conservational decision Saxicolini, which is grouped in the Old World Xycatcher about E. komadori, there must be an understanding of its family, Muscicapidae (Sibley and Ahlquist, 1990; Voelker present distribution, in relation to its origin and diversiWca- and Spellman, 2004). The genus presently comprises three tion history of subspecies. species according to Sibley and Monroe (1990): E. rubecula, The phylogenetic relationship among the Erithacus rob- E. akahige, and E. komadori. Erithacus rubecula occurs in ins, however, is still a question under debate (Kajita, 1999; the western palearctic, from humid lowlands, wooded Ornithological Society of Japan, 2000). Some morphological mountains to treeline, and breeds in various types of for- similarity between E. rubecula and E. akahige, particularly ests, parks and gardens with trees, and shrubs (Cramp, the close similarity of feather coloration (Meinertzhagen, 1988). Contrary to this, the other two species are endemic 1951), appears to be the main reason why the East Asian to East Asia (Fig.
    [Show full text]