Proanthocyanidin Characterization, Antioxidant and Cytotoxic Activities
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Anti-Inflammatory Activity of Sambucus Plant Bioactive
Natural Product Sciences 25(3) : 215-221 (2019) https://doi.org/10.20307/nps.2019.25.3.215 Anti-inflammatory Activity of Sambucus Plant Bioactive Compounds against TNF-α and TRAIL as Solution to Overcome Inflammation Associated Diseases: The Insight from Bioinformatics Study Wira Eka Putra1, Wa Ode Salma2, Muhaimin Rifa'i3,* 1Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, Indonesia 2Department of Nutrition, Faculty of Medicine, Halu Oleo University, Indonesia 3Department of Biology, Faculty of Mathematics and Natural Sciences, Brawijaya University, Indonesia Abstract − Inflammation is the crucial biological process of immune system which acts as body’s defense and protective response against the injuries or infection. However, the systemic inflammation devotes the adverse effects such as multiple inflammation associated diseases. One of the best ways to treat this entity is by blocking the tumor necrosis factor alpha (TNF-α) and TNF-related apoptosis-inducing ligand (TRAIL) to avoid the pro- inflammation cytokines production. Thus, this study aims to evaluate the potency of Sambucus bioactive compounds as anti-inflammation through in silico approach. In order to assess that, molecular docking was performed to evaluate the interaction properties between the TNF-α or TRAIL with the ligands. The 2D structure of ligands were retrieved online via PubChem and the 3D protein modeling was done by using SWISS Model. The prediction results of the study showed that caffeic acid (-6.4 kcal/mol) and homovanillic acid (-6.6 kcal/mol) have the greatest binding affinity against the TNF-α and TRAIL respectively. This evidence suggests that caffeic acid and homovanillic acid may potent as anti-inflammatory agent against the inflammation associated diseases. -
PROSPECÇÃO DE GENES TECIDO ESPECÍFICO E METABÓLITOS EM Elaeis Spp
LUIZ HENRIQUE GALLI VARGAS PROSPECÇÃO DE GENES TECIDO ESPECÍFICO E METABÓLITOS EM Elaeis spp. LAVRAS - MG 2014 LUIZ HENRIQUE GALLI VARGAS PROSPECÇÃO DE GENES TECIDO ESPECÍFICO E METABÓLITOS EM Elaeis spp. Dissertação apresentada à Universidade Federal de Lavras, como parte das exigências do Programa de Pós- Graduação em Biotecnologia Vegetal, área de concentração em Biotecnologia Vegetal, para a obtenção do título de Mestre. Orientador Dr. Manoel Teixeira Souza Júnior Coorientadores Dr. Eduardo Fernandes Formighieri Dra. Patrícia Verardi Abdelnur LAVRAS – MG 2014 Ficha Catalográfica Elaborada pela Coordenadoria de Produtos e Serviços da Biblioteca Universitária da UFLA Vargas, Luiz Henrique Galli. Prospecção de genes tecido específico e metabólitos em Elaeis spp. / Luiz Henrique Galli Vargas. – Lavras : UFLA, 2014. 138 p. : il. Dissertação (mestrado) – Universidade Federal de Lavras, 2014. Orientador: Manoel Teixeira Souza Júnior. Bibliografia. 1. Genoma. 2. Palma de óleo. 3. Caiaué. 4. UHPLC-MS. 5. Expressão relativa. I. Universidade Federal de Lavras. II. Título. CDD – 633.851233 LUIZ HENRIQUE GALLI VARGAS PROSPECÇÃO DE GENES TECIDO ESPECÍFICO E METABÓLITOS EM Elaeis spp. Dissertação apresentada à Universidade Federal de Lavras, como parte das exigências do Programa de Pós- Graduação em Biotecnologia Vegetal, área de concentração em Biotecnologia Vegetal, para a obtenção do título de Mestre. APROVADO em 15 de agosto de 2014. Dr. Eduardo Fernandes Formighieri EMBRAPA - Agroenergia Dra. Patrícia Verardi Abdelnur EMBRAPA - Agroenergia Dr. João Ricardo Moreira de Almeida EMBRAPA - Agroenergia Dr. Alexandre Alonso Alves EMBRAPA - Agroenergia Dr. Manoel Teixeira Souza Júnior Orientador LAVRAS – MG 2014 Aos meus pais, irmãos e toda família. Aos meus avós (in memoriam). DEDICO AGRADECIMENTOS Aos meus pais, Luiz Sérgio Oliveira Vargas e Neli Galli, por permitirem a realização deste sonho, à minha “mãe” de coração, Magna Viana pelos incentivos durante os anos. -
Datasheet Inhibitors / Agonists / Screening Libraries a DRUG SCREENING EXPERT
Datasheet Inhibitors / Agonists / Screening Libraries A DRUG SCREENING EXPERT Product Name : Procyanidin B4 Catalog Number : TN1151 CAS Number : 29106-51-2 Molecular Formula : C30H26O12 Molecular Weight : 578.52 Description: Procyanidin B4 reveals significant antioxidant activity Storage: 2 years -80°C in solvent; 3 years -20°C powder; Receptor (IC50) Nrf2 In vitro Activity Aimed to isolate and purify the proanthocyanidins from lotus seed skin by acetone extraction and rotary evaporation, identify their chemical structures by HPLC-MS-MS and NMR, and further investigate the antioxidant properties of the extract purified by macroporous resin (PMR) from lotus seed skin both in vitro and in vivo. The results showed that PMR mainly contained oligomeric proanthocyanidins, especially dimeric procyanidin B1 (PB1), procyanidin B2 and Procyanidin B4. Although it had limited ability to directly scavenge radicals in vitro, PMR could significantly enhance the expressions of antioxidant proteins via activation of nuclear factor-E2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway in HepG2 cells. Molecular data revealed that PB1, a major component in PMR, stabilized Nrf2 by inhibiting the ubiquitination of Nrf2, which led to subsequent activation of the Nrf2-ARE pathway, including the enhancements of Nrf2 nuclear translocation, Nrf2-ARE binding and ARE transcriptional activity. Moreover, the in vivo results in high fat diet-induced mice further verified the powerful antioxidant property of PMR[1] Reference 1. Lotus seed skin proanthocyanidin extract exhibits potent antioxidant property via activation of the Nrf2-ARE pathway.Acta Biochim Biophys Sin (Shanghai). 2019 Jan 1;51(1):31-40. 2. Comparison of compounds of three Rubus species and their antioxidant activity.Drug Discov Ther. -
Masquelier's Grape Seed Extract: from Basic Flavonoid Research to a Well
Weseler and Bast Nutrition Journal (2017) 16:5 DOI 10.1186/s12937-016-0218-1 REVIEW Open Access Masquelier’s grape seed extract: from basic flavonoid research to a well-characterized food supplement with health benefits Antje R. Weseler* and Aalt Bast Abstract Careful characterization and standardization of the composition of plant-derived food supplements is essential to establish a cause-effect relationship between the intake of that product and its health effect. In this review we follow a specific grape seed extract containing monomeric and oligomeric flavan-3-ols from its creation by Jack Masquelier in 1947 towards a botanical remedy and nutraceutical with proven health benefits. The preparation’s research history parallels the advancing insights in the fields of molecular biology, medicine, plant and nutritional sciences during the last 70 years. Analysis of the extract’s flavanol composition emerged from unspecific colorimetric assays to precise high performance liquid chromatography - mass spectrometry and proton nuclear magnetic resonance fingerprinting techniques. The early recognition of the preparation’s auspicious effects on the permeability of vascular capillaries directed research to unravel the underlying cellular and molecular mechanisms. Recent clinical data revealed a multitude of favorable alterations in the vasculature upon an 8 weeks supplementation whichsummedupinahealthbenefitoftheextractin healthy humans. Changes in gene expression of inflammatory pathways in the volunteers’ leukocytes were suggested to be involved -
Grape Pip/CD
Research Grape Seed Extract Abstracts The cellular and molecular basis of health benefits of grape seed proanthocyanidin extract Red grape seed extract containing proanthocyanidins and other antioxidants are being used as nutritional supplements by many health conscious individuals. The beneficial effects of grape seed proanthocyanidins (GSPE) have been reported, however, little is known about their mechanism(s) of action. One of the beneficial effects of GSPE is chemoprevention of cellular damage. The precise mechanism by which GSPE mediates, chemoprevention is not yet understood. This report addresses this issue. We investigated the mechanisms of actions of GSPE, which ameliorates chemotherapy-induced toxic effects of Idarubicin (Ida) and 4,-hydroxyperoxycyclophosphamide (4-HC) in normal human Chang liver cells. Exposure to GSPE resulted in a significant reduction in apoptosis in response to the cytotoxicity of chemotherapeutic agents. RT-PCR analysis showed a significant increase in the anti-apoptotic gene Bcl-2 and a decrease in the cell cycle associated and proapoptotic genes, c-myc and p53 in cells treated with GSPE. These results suggest that some of the chemopreventive effects of GSPE are mediated by upregulating Bcl-2 and down regulating c-myc and p53 genes. Joshi SS, Kuszynski CA, Bagchi D Curr Pharm Biotechnol 2001 Jun;2(2):187-200. Free radicals scavenging action and anti-enzyme activities of procyanidines from Vitis vinifera. A mechanism for their capillary protective action The scavenging by procyanidines (polyphenol oligomers from Vitis vinifera seeds, CAS 85594-37-2) of reactive oxygen species (ROS) involved in the onset (HO degrees) and the maintenance of microvascular injury (lipid radicals R degrees, RO degrees, ROO degrees) has been studied in phosphatidylcholine liposomes (PCL), using two different models of free radical generation: a) iron-promoted and b) ultrasound-induced lipid peroxidation. -
Review Article Recent Applications of Mass Spectrometry in the Study of Grape and Wine Polyphenols
Hindawi Publishing Corporation ISRN Spectroscopy Volume 2013, Article ID 813563, 45 pages http://dx.doi.org/10.1155/2013/813563 Review Article Recent Applications of Mass Spectrometry in the Study of Grape and Wine Polyphenols Riccardo Flamini Consiglio per la Ricerca e la Sperimentazione in Agricoltura-Centro di Ricerca per la Viticoltura (CRA-VIT), Viale XXVIII Aprile 26, 31015 Conegliano, Italy Correspondence should be addressed to Riccardo Flamini; riccardo.�amini�entecra.it Received 24 September 2012; Accepted 12 October 2012 Academic �ditors: D.-A. Guo, �. Sta�lov, and M. Valko Copyright © 2013 Riccardo Flamini. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Polyphenols are the principal compounds associated with health bene�c effects of wine consumption and in general are characterized by antioxidant activities. Mass spectrometry is shown to play a very important role in the research of polyphenols in grape and wine and for the quality control of products. e so ionization of LC/MS makes these techniques suitable to study the structures of polyphenols and anthocyanins in grape extracts and to characterize polyphenolic derivatives formed in wines and correlated to the sensorial characteristics of the product. e coupling of the several MS techniques presented here is shown to be highly effective in structural characterization of the large number of low and high molecular weight polyphenols in grape and wine and also can be highly effective in the study of grape metabolomics. 1. Principal Polyphenols of Grape and Wine During winemaking the condensed (or nonhydrolyzable) tannins are transferred to the wine and contribute strongly to Polyphenols are the principal compounds associated to the sensorial characteristic of the product. -
Original Article Utilizing Network Pharmacology to Explore the Underlying Mechanism of Cinnamomum Cassia Presl in Treating Osteoarthritis
Int J Clin Exp Med 2019;12(12):13359-13369 www.ijcem.com /ISSN:1940-5901/IJCEM0100310 Original Article Utilizing network pharmacology to explore the underlying mechanism of Cinnamomum cassia Presl in treating osteoarthritis Guowei Zhou, Ruoqi Li, Tianwei Xia, Chaoqun Ma, Jirong Shen Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu, China Received July 30, 2019; Accepted October 8, 2019; Epub December 15, 2019; Published December 30, 2019 Abstract: Objective: The network pharmacology method was adopted to establish the relationship between “Ingre- dients-Disease Targets-Biological Pathway”, screen the potential target of Cinnamomum cassia Presl in treating osteoarthritis (OA), and explore the underlying mechanism. Methods: Chemical components and selected targets related to Cinnamomum cassia Presl were retrieved from BATMAN-TCM. OA disease targets were searched from TTD, DrugBank, OMIM, GAD, PharmGKB, and DisGeNET databases. Canonical SMILES were obtained from Pub- chem, and targets were obtained from SwissTargetPrediction. We constructed a target interaction network graph by using the STRING database and Cytoscape 3.2.1, and screened key targets by using the MCC algorithm of cytoHubba. Enrichment analysis of the GO function and KEGG pathway was conducted using the DAVID database. Results: Eighteen active compounds derived from Cinnamomum cassia Presl and 40 intersections between Cin- namomum cassia Presl and OA were obtained. Ten key targets were screened by the MCC algorithm, including PTGS2, MAPK8, MMP9, ALB, MMP2, MMP1, SERPINE1, TGFB1, PLAU, and ESR1. The GO analysis consisted of 33 enrichment results, including biological processes (e.g., collagen catabolic process and inflammatory response), cell composition (e.g., extracellular space and extracellular matrix), and molecular function (e.g., heme binding and aromatase activity). -
Heidker Unr 0139D 12054.Pdf
University of Nevada, Reno Metabolic Effects of a Grape Seed Procyanidin Extract and its Relation to Bile Acid Homeostasis A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Cell and Molecular Biology By Rebecca M. Heidker Dr. Marie-Louise Ricketts/Dissertation Advisor May, 2016 Copyright by Rebecca M. Heidker 2016 All rights reserved THE GRADUATE SCHOOL We recommend that the dissertation prepared under our supervision by REBECCA HEIDKER Entitled Metabolic Effects Of Grape Seed Procyanidin Extract On Risk Factors Of Cardiovascular Disease be accepted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Marie-Louise Ricketts, Advisor Patricia Berinsone, Committee Member Patricia Ellison, Committee Member Cynthia Mastick, Committee Member Thomas Kidd, Graduate School Representative David W. Zeh, Ph. D., Dean, Graduate School May, 2016 i Abstract Bile acid (BA) recirculation and synthesis are tightly regulated via communication along the gut-liver axis and assist in the regulation of triglyceride (TG) and cholesterol homeostasis. Serum TGs and cholesterol are considered to be treatable risk factors for cardiovascular disease, which is the leading cause of death both globally and in the United States. While pharmaceuticals are common treatment strategies, nearly one-third of the population use complementary and alternative (CAM) therapy alone or in conjunction with medications, consequently it is important that we understand the mechanisms by which CAM treatments function at the molecular level. It was previously demonstrated that one such CAM therapy, namely a grape seed procyanidin extract (GSPE), reduces serum TGs via the farnesoid X receptor (Fxr). -
Pyrogallol Structure in Polyphenols Is Involved in Apoptosis-Induction on HEK293T and K562 Cells
Molecules 2008, 13, 2998-3006; DOI: 10.3390/molecules13122998 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Article Pyrogallol Structure in Polyphenols is Involved in Apoptosis-induction on HEK293T and K562 Cells Shinya Mitsuhashi 1, Akiko Saito 2,3, Noriyuki Nakajima 4, Hiroshi Shima 5 and Makoto Ubukata 1,* 1 Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo 060-8589, Japan; E-mail: [email protected] (S. M.) 2 Biotechnology Center, Toyama Prefecture, Kosugi, Toyama 939-0398, Japan 3 Present address: Antibiotics Laboratory, Discovery Research Institute, RIKEN 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan; E-mail: [email protected] (A. S.) 4 Biotechnology Research Center, Toyama Prefectural University, Kosugi, Toyama 939-0398, Japan; E-mail: [email protected] (N. N.) 5 Division of Cancer Chemotherapy, Research Institute, Miyagi Cancer Center, Natori, Japan; E- mail: [email protected] (H. S.) * Author to whom correspondence should be addressed; E-mail: [email protected]; Tel. +81 11 706 3638, Fax: +81 11 706 3638. Received: 28 October 2008; in revised form: 27 November 2008 / Accepted: 3 December 2008 / Published: 4 December 2008 Abstract: As multiple mechanisms account for polyphenol-induced cytotoxicity, the development of structure-activity relationships (SARs) may facilitate research on cancer therapy. We studied SARs of representatives of 10 polyphenol structural types: (+)- catechin (1), (-)-epicatechin (2), (-)-epigallocatechin (3), (-)-epigallocatechin gallate (4), gallic acid (5), procyanidin B2 (6), procyanidin B3 (7), procyanidin B4 (8), procyanidin C1 (9), and procyanidin C2 (10). -
Water-Based Extraction of Bioactive Principles from Hawthorn, Blackcurrant Leaves and Chrysanthellum Americanum
Water-Based Extraction of Bioactive Principles from Hawthorn, Blackcurrant Leaves and Chrysanthellum Americanum : from Experimental Laboratory Research to Homemade Preparations Phu Cao Ngoc To cite this version: Phu Cao Ngoc. Water-Based Extraction of Bioactive Principles from Hawthorn, Blackcurrant Leaves and Chrysanthellum Americanum : from Experimental Laboratory Research to Homemade Prepa- rations. Analytical chemistry. Université Montpellier, 2020. English. NNT : 2020MONTS051. tel-03173592 HAL Id: tel-03173592 https://tel.archives-ouvertes.fr/tel-03173592 Submitted on 18 Mar 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE POUR OBTENIR LE GRADE DE DOCTEUR DE L’UNIVERSITÉ DE MONTPELLIER En Chimie Analytique École doctorale sciences Chimiques Balard ED 459 Unité de recherche Institut des Biomolecules Max Mousseron Water-Based Extraction of Bioactive Principles from Hawthorn, Blackcurrant Leaves and Chrysanthellum americanum: from Experimental Laboratory Research to Homemade Preparations Présentée par Phu Cao Ngoc Le 27 Novembre 2020 -
Effects of Polyphenols from Grape Seeds on Oxidative Damage to Cellular DNA
____________________________________________________________________________http://www.paper.edu.cn Molecular and Cellular Biochemistry 267: 67–74, 2004. c 2004 Kluwer Academic Publishers. Printed in the Netherlands. Effects of polyphenols from grape seeds on oxidative damage to cellular DNA Peihong Fan and Hongxiang Lou School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, P.R. China Received 23 December 2003; accepted 26 May 2004 Abstract Grape seed polyphenols have been reported to exhibit a broad spectrum of biological properties. In this study, eleven phenolic phytochemicals from grape seeds were purified by gel chromatography and high performance liquid chromatography (HPLC). The antioxidant activities of five representative compounds with different structure type were assessed by the free radical- scavenging tests and the effects of the more potent phytochemicals on oxidative damage to DNA in mice spleen cells were investigated. Procyanidin B4, catechin, epicatechin and gallic acid reduced ferricyanide ion and scavenged the stable free radical, α, α-diphenyl-β-picrylhydrazyl (DPPH) much more effectively than the known antioxidant vitamin ascorbic acid, while epicatechin lactone A, an oxidative derivative of epicatechin, did not reduce ferricyanide ion appreciably at concentrations used and was only about half as effective on free radical-scavenging as epicatechin. Mice spleen cells, when pre-incubated with relatively low concentration of procyanidin B4, catechin or gallic acid, were less susceptible to DNA damage induced by hydrogen peroxide (H2O2), as evaluated by the comet assay. In contrast, noticeable DNA damage was induced in mice spleen cells by incubating with higher concentration (150 µM) of catechin. Collectively, these data suggest that procyanidin B4, catechin, gallic acid were good antioxidants, at low concentration they could prevent oxidative damage to cellular DNA. -
Idowu Et Al., Afr J Tradit Complement Altern Med. (2016) 13(5):182-189
Idowu et al., Afr J Tradit Complement Altern Med. (2016) 13(5):182-189 doi:10.21010/ajtcam.v13i5.24 ISOLATION AND CHARACTERIZATION OF CHEMICAL CONSTITUENTS FROM Chrysophyllum albidum G. DON-HOLL. STEM-BARK EXTRACTS AND THEIR ANTIOXIDANT AND ANTIBACTERIAL PROPERTIES T.O. Idowu1*; A. O. Ogundaini1, S. A. Adesanya2, G.O. Onawunmi3, M. O. Osungunna3, E. M. Obuotor4, and B. M. Abegaz5, 6 1. Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria, 2Department of Pharmacognosy, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria. 3 Department of Pharmaceutics, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria, 4Department of Biochemistry, Faculty of Science, Obafemi Awolowo University, Ile-Ife, Nigeria, 5African Academy of Sciences, Nairobi, Kenya, 6Department of Chemistry, University of Botswana, Gaborone, Botswana Corresponding Author Email: [email protected] / [email protected] Abstract Background: The plant, Chrysophyllum albidum is indigenous to Nigeria and its stem-bark has found relevance in folkloric medicine for infections and oxidative stress linked diseases medicaments. The study targets to isolate the chemical constituents accountable for the antioxidant and antibacterial actions of the plant stem-bark to substantiate some of its ethnomedicinal uses. Materials and Methods: Stem-bark extract of Chrysophyllum albidum was obtained from 80 % ethanol was partitioned in sequence with ethyl acetate (EtOAc) and n-butanol. The solvent fractions and isolated compounds were verified for antioxidant chattels utilizing 2-2-diphenyl-1-picrylhydrazyl. Antibacterial actions were also assessed by agency of agar-diffusion and broth micro dilution methods. EtOAc fraction was on many occasions chromatographed on silica and Sephadex LH-20 column to afford four compounds and their chemical structures were proven with the employment of NMR (1D and 2D) and MS.