Multi-Scale Physics in Coronal Heating and Solar Wind Acceleration - from the Sun Into the Inner Heliosphere
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Digital Society
B56133 The Science Magazine of the Max Planck Society 4.2018 Digital Society POLITICAL SCIENCE ASTRONOMY BIOMEDICINE LEARNING PSYCHOLOGY Democracy in The oddballs of A grain The nature of decline in Africa the solar system of brain children’s curiosity SCHLESWIG- Research Establishments HOLSTEIN Rostock Plön Greifswald MECKLENBURG- WESTERN POMERANIA Institute / research center Hamburg Sub-institute / external branch Other research establishments Associated research organizations Bremen BRANDENBURG LOWER SAXONY The Netherlands Nijmegen Berlin Italy Hanover Potsdam Rome Florence Magdeburg USA Münster SAXONY-ANHALT Jupiter, Florida NORTH RHINE-WESTPHALIA Brazil Dortmund Halle Manaus Mülheim Göttingen Leipzig Luxembourg Düsseldorf Luxembourg Cologne SAXONY DanielDaniel Hincapié, Hincapié, Bonn Jena Dresden ResearchResearch Engineer Engineer at at Marburg THURINGIA FraunhoferFraunhofer Institute, Institute, Bad Münstereifel HESSE MunichMunich RHINELAND Bad Nauheim PALATINATE Mainz Frankfurt Kaiserslautern SAARLAND Erlangen “Germany,“Germany, AustriaAustria andand SwitzerlandSwitzerland areare knownknown Saarbrücken Heidelberg BAVARIA Stuttgart Tübingen Garching forfor theirtheir outstandingoutstanding researchresearch opportunities.opportunities. BADEN- Munich WÜRTTEMBERG Martinsried Freiburg Seewiesen AndAnd academics.comacademics.com isis mymy go-togo-to portalportal forfor jobjob Radolfzell postings.”postings.” Publisher‘s Information MaxPlanckResearch is published by the Science Translation MaxPlanckResearch seeks to keep partners and -
Solar Orbiter and Sentinels
HELEX: Heliophysical Explorers: Solar Orbiter and Sentinels Report of the Joint Science and Technology Definition Team (JSTDT) PRE-PUBLICATION VERSION 1 Contents HELEX Joint Science and Technology Definition Team .................................................................. 3 Executive Summary ................................................................................................................................. 4 1.0 Introduction ........................................................................................................................................ 6 1.1 Heliophysical Explorers (HELEX): Solar Orbiter and the Inner Heliospheric Sentinels ........ 7 2.0 Science Objectives .............................................................................................................................. 8 2.1 What are the origins of the solar wind streams and the heliospheric magnetic field? ............. 9 2.2 What are the sources, acceleration mechanisms, and transport processes of solar energetic particles? ........................................................................................................................................ 13 2.3 How do coronal mass ejections evolve in the inner heliosphere? ............................................. 16 2.4 High-latitude-phase science ......................................................................................................... 19 3.0 Measurement Requirements and Science Implementation ........................................................ 20 -
Abstract Book
Table of Contents: Item: Page Background Information a Committees b Sponsors c Hotel d Conference Venue e Local Area f Social Programme g Timetable h Conference Programme & List of Posters i - xviii Programme Abstracts 1 – 63 Poster Abstracts P1 – P231 a SOHO 17: 10 Years of SOHO and Beyond Background: The Solar and Heliospheric Observatory (SOHO) is a mission of international cooperation between ESA and NASA to study the Sun, from its deep core to the outer corona, the solar wind, and the interaction with the interstellar medium. It was launched a decade ago on 2 December 1995, and in April 2006 it will have completed 10 years of successful scientific operations. In celebration of this milestone, we are organizing a meeting to review the many and varied scientific accomplishments of SOHO. An important focus of the meeting will be the conceptual and theoretical advances that coordinated multi- instrument and multi-mission observations of the Sun have helped us make in the last decade, and to examine the role that the continued observations of SOHO will play within the context of future missions. The meeting will cover the full breadth of SOHO science, organised around the following seven sessions: 1) Solar Interior: From Exploration to Experimentation Invited speakers: D. Gough, S. Basu, T. Corbard 2) Magnetic Variability: From the Tachocline to the Heliosphere Invited speakers: L. Gizon, S. Tobias, Z. Mikic 3) Atmospheric Heating and Solar Wind Origin: MHD vs. Plasma Physics Invited speakers: J. Klimchuk, V. Hansteen, G. Poletto 4) Solar Variability and its Effects on the Heliosphere and the Earth Invited speakers: P. -
An Insight Into Space Weather Ashish Mishra1*, Mukul Kumar1,2* 1 Department of Physics, Indian Institute of Science Education and Research Bhopal, India
Advanced Journal of Graduate Research ISSN:2456-7108 Volume 2, Issue 1, pp. 46-57, July 2017 GRADUATE REVIEW ARTICLE An Insight into Space Weather Ashish Mishra1*, Mukul Kumar1,2* 1 Department of Physics, Indian Institute of Science Education and Research Bhopal, India. 2 State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing, China. doi : https://doi.org/10.21467/ajgr.2.1.46-57 ABSTRACT * Corresponding Author email: The present article gives a brief overview of space weather and 1 [email protected] its drivers. The space weather is of immense importance for the 2 [email protected] spaceborne and ground-based technological systems. The Article History satellites, the power grids, telecommunication and in severe Received: 27 November 2017 conditions the human lives are at risk. The article covers the Revised: 26 December 2017 effects of solar transient activities (e.g. Solar flares, Coronal mass Accepted: 27 December 2017 ejections and Solar winds etc.) and their consequences on the Published: 27 December 2017 Earth’s atmosphere. The space weather is the change in the conditions of interplanetary space because of the solar transient Student(s) activities. We also discussed the importance of the solar wind • Ashish Mishra which is a continuous flow of the charged energy particles from the Sun to the Earth in respect of the space weather. This article Academic Year: 2015-16, 1st Semester also put light on the Sun-Earth connection and effects of the Course Level: Bachelor Degree space weather on it. The Earth’s magnetosphere, formed by the Course Name: BS-MS dual degree program interaction of solar wind and Earth’s magnetic field behaves like 4th Year / 8th Semester Course year: a shield for the Earth against the solar wind. -
Experimental Investigation of Plasma Dynamics in Jets and Bubbles
University of New Mexico UNM Digital Repository Electrical and Computer Engineering ETDs Engineering ETDs Fall 11-14-2016 Experimental Investigation of Plasma Dynamics in Jets and Bubbles Using a Compact Coaxial Plasma Gun in a Background Magnetized Plasma Yue Zhang University of New Mexico Follow this and additional works at: https://digitalrepository.unm.edu/ece_etds Part of the Electrical and Computer Engineering Commons, and the Plasma and Beam Physics Commons Recommended Citation Zhang, Yue. "Experimental Investigation of Plasma Dynamics in Jets and Bubbles Using a Compact Coaxial Plasma Gun in a Background Magnetized Plasma." (2016). https://digitalrepository.unm.edu/ece_etds/309 This Dissertation is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in Electrical and Computer Engineering ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected]. Yue Zhang Candidate Electrical and Computer Engineering Department This dissertation is approved, and it is acceptable in quality and form for publication: Approved by the Dissertation Committee: Mark Gilmore, Chairperson Edl Schamilogu Scott Hsu Ylva M Pihlstrom EXPERIMENTAL INVESTIGATION OF PLASMA DYNAMICS IN JETS AND BUBBLES USING A COMPACT COAXIAL PLASMA GUN IN A BACKGROUND MAGNETIZED PLASMA By YUE ZHANG B.S., Electrical Engineering, Xi'an Jiaotong University, 2003 M.S., Electrical Engineering, Xi'an Jiaotong University, 2006 DISSERTATION Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Engineering The University of New Mexico Albuquerque, New Mexico December, 2016 Dedication To my parents Zhiping Zhang and Fenghong Ji iii Acknowledgements I would like to my dissertation committee, Dr. -
Robotic and Human Lunar Missions Past and Future
VOL. 96 NO. 5 15 MAR 2015 Earth & Space Science News Robotic and Human Lunar Missions Past and Future Increasing Diversity in the Geosciences Do Tiny Mineral Grains Drive Plate Tectonics? Cover Lines Ways To Improve AGU FellowsCover Program Lines Cover Lines Recognize The Exceptional Scientific Contributions And Achievements Of Your Colleagues Union Awards • Prizes • Fellows • Medals Awards Prizes Ambassador Award Climate Communication Prize Edward A. Flinn III Award NEW The Asahiko Taira International Charles S. Falkenberg Award Scientific Ocean Drilling Research Prize Athlestan Spilhaus Award Medals International Award William Bowie Medal Excellence in Geophysical Education Award James B. Macelwane Medal Science for Solutions Award John Adam Fleming Medal Robert C. Cowen Award for Sustained Achievement in Maurice Ewing Medal Science Journalism Robert E. Horton Medal Walter Sullivan Award for Excellence Harry H. Hess Medal in Science Journalism – Features Inge Lehmann Medal David Perlman Award for Excellence in Science Journalism – News Roger Revelle Medal Fellows Scientific eminence in the Earth and space sciences through achievements in research, as demonstrated by one or more of the following: breakthrough or discovery; innovation in disciplinary science, cross-disciplinary science, instrument development, or methods development; or sustained scientific impact. Nominations Deadline: 15 March honors.agu.org Earth & Space Science News Contents 15 MARCH 2015 FEATURE VOLUME 96, ISSUE 5 13 Increasing Diversity in the Geosciences Studies show that increasing students’ “sense of belonging” may help retain underrepresented minorities in geoscience fields. A few programs highlight successes. MEETING REPORT Developing Databases 7 of Ancient Sea Level and Ice Sheet Extents RESEARCH SPOTLIGHT 8 COVER 26 How Robotic Probes Helped Humans Survival of Young Sardines Explore the Moon…and May Again Flushed Out to Open Ocean Despite favorable conditions within eddies Robotic probes paved the way for humankind’s giant leap to the Moon. -
Generation and Dissipation of Alfvén-Cyclotron Turbulence in the Solar Corona and Solar Wind and Related Ion Differential Heating and Acceleration
Generation and dissipation of Alfvén-cyclotron turbulence in the solar corona and solar wind and related ion differential heating and acceleration Dissertation zur Erlangung des mathematisch-naturwissenschaftlichen Doktorgrades “Doctor rerum naturalium” der Georg-August-Universität Göttingen vorgelegt von Yana Georgieva Maneva aus Sofia, Bulgarien Göttingen 2010 Bibliografische Information der Deutschen Nationalbibliothek Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar. Referent: Prof. Dr. Stefan Dreizler Korreferent: Prof. Dr. Eckart Marsch Tag der mündlichen Prüfung: 24.09.2010 ISBN 978-3-942171-39-7 uni-edition GmbH 2010 http://www.uni-edition.de c Yana Georgieva Maneva This work is distributed under a Creative Commons Attribution 3.0 License Printed in Germany Contents Summary 5 1 Introduction 7 1.1 The solar corona and the solar wind - overview and plasma parameters . .7 1.1.1 Solar corona . .7 1.1.2 Solar wind: types and origin . .9 1.1.3 Plasma composition and collisional conditions . 11 1.2 Observations of Alfvén waves in the solar corona and fast solar wind . 16 1.3 Motivation, scope and outline of the present work . 18 2 Plasma kinetics in the corona and the solar wind 23 2.1 Common features, observed in the corona and the fast solar wind . 24 2.1.1 Velocity distributions . 25 2.1.2 Temperature profiles and kinetic temperature ratios . 27 2.1.3 Ion anisotropies and differential streaming . 30 3 Analytical description of nonlinear couplings in multi-species plasmas 35 3.1 Parametric instabilities . -
110112Aef Geschichte
Geschichte des Fachverbands Extraterrestrische Physik und der Arbeitsgemeinschaft Extraterrestrische Forschung Geschichte des Fachverbands Extraterrestrische Physik und der Arbeitsgemeinschaft Extraterrestrische Forschung Herausgeber: Jorg¨ Buchner¨ Redaktion: Klaus und Renate Scherer Januar, 2009 Prof. Dr. Jorg¨ Bchner Leiters des FV Extraterrestrische Physik der Deutschen Physikalischen Gesellschaft http://www.dpg-physik.de/dpg/organisation/fachlich/ep.html Vorsitzender des Vorstands der Arbeitsgemeinschaft Extraterrestrische Forschung e.V. http://www.aef-ev.de/ Max–Planck-Str. 2, 37191 Katlenburg–Lindau, Germany Dr. Klaus Scherer Geschaftsfhrer der der Arbeitsgemeinschaft Extraterrestrische Forschung e.V. Max–Planck-Str. 2, 37191 Katlenburg–Lindau, Germany Renate Scherer dat-hex, Obere Straße 11, 37191 Katlenburg–Lindau, Germany ISBN This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re– use of illustrations, recitation, broadcasting, reproduction on microfilms or in other ways, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and a copyright fee must always be paid. Violations fall under the prosecution act of the German Copyright Law. c Copernicus Gesellschaft e.V., Katlenburg–Lindau, Germany 2009 Printed by Schaltungsdienst Lange oHG The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free of general use. Inhalt 1 Vorwort 1 2 Chronologie Deutsche Raumfahrtorganisationen 3 3 Berichte der Vorsitzenden 11 Reimar Lust¨ (1966 - 1971) . -
Dipole Tilt Effects on the Magnetosphereionosphere
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115, A07218, doi:10.1029/2009JA014910, 2010 Dipole tilt effects on the magnetosphere‐ionosphere convection system during interplanetary magnetic field BY‐dominated periods: MHD modeling Masakazu Watanabe,1 Konstantin Kabin,2 George J. Sofko,3 Robert Rankin,2 Tamas I. Gombosi,4 and Aaron J. Ridley4 Received 17 September 2009; revised 8December 2009; accepted 14 January 2010; published 21 July 2010. [1] Using numerical magnetohydrodynamic simulations, we examine the dipole tilt effects on the magnetosphere‐ionosphere convection system when the interplanetary magnetic field is oblique northward (BY =4nT and BZ =2nT). In particular, we clarify the relationship between viscous‐driven convection and reconnection‐driven convection. The azimuthal locations of the two viscous cell centers in the equatorial plane rotate eastward (westward) when the dipole tilt increases as the Northern Hemisphere turns toward (away from) the Sun. This rotation is associated with nearly the same amount of eastward (westward) rotation of the equatorial crossing point of the dayside separator. The reason for this association is that the viscous cell is spatially confined within the Dungey‐type merging cell whose position is controlled by the separator location. The ionospheric convection is basically around/crescent cell pattern, but the round cell in the winter hemisphere is significantly deformed. Between its central lobe cell portion and its outer Dungey‐type merging cell portion, the round cell streamlines are deformed owing to the combined effects of the viscous cell and the hybrid merging cell, the latter of which is driven by both Dungey‐type reconnection and lobe‐closed reconnection. Citation: Watanabe, M., K. -
Observational Signatures of Nonlinear Interactions in the Solar Wind
Observational Signatures of Nonlinear Interactions in the Solar Wind by Trevor Bowen A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Physics in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Stuart Bale, Chair Professor Jonathan Wurtele Professor Eliot Quataert Spring 2019 Copyright 2019 by Trevor Bowen Abstract Observational Signatures of Nonlinear Interactions in the Solar Wind by Trevor Bowen Doctor of Philosophy in Physics University of California, Berkeley Professor Stuart Bale, Chair Spacecraft observations from the interplanetary medium of our solar system reveal the presence of a magnetized super-sonic flow emanating from the sun, commonly known as the solar wind. Empiri- cally, in-situ measurements from spacecraft suggest that the solar wind is in a turbulent state frequently occurring fluid-like systems. Though theories of non-magnetized hydrodynamic turbulence have been successfully adapted to account for plasma dynamics relevant to the solar wind (e.g. strong magneti- zation, multi-particle composition, non-viscous dissipation, and weak collisionality), there is lacking consensus regarding the physical processes responsible for empirically observed phenomena: e.g. com- pressible fluctuations, intermittent coherent features, injection of energy at large scales, and particle heating. Interpreting in-situ spacecraft measurements is often complicated by limitations associated with single point me which most often consist of a single point (or at best a few points) located near Earth. At the largest physical scales, processes associated with solar wind generation and evolution consist of temporal variation over the 11 year solar cycle, with spatial gradients extending over the large scale heliosphere, ∼ 200 AU. -
SOLAR ORBITER Solar Orbiter
SOLAR ORBITER Solar Orbiter Eckart Marsch Institute for Experimental and Applied Physics (IEAP) Christian Albrechts University at Kiel, Germany Many thanks to Richard Marsden Daniel Müller (ESA) October 2013 SOLAR ORBITER History Mission Proposal in Response to the ESA Call for Mission Proposals for Two Flexi-Missions History I (F2 and F3) Submitted January 27, 2000 Solar Orbiter High-Resolution Mission to the Sun and Inner Heliosphere Assessment Study Report July 2000 SCI(2000)6 Study team members: E. Marsch, Max-Planck-Institut für Aeronomie, Katlenburg-Lindau, D E. Antonucci, Osservatorio Astronomico di Torino, Pino Torinese, I P. Bochsler, University of Bern, Switzerland, CH J.-L. Bougeret, Observatoire de Paris, Meudon, F R. Harrison, Rutherford Appleton Laboratory, Chilton, UK R. Schwenn, Max-Planck-Institut für Aeronomie, Katlenburg-Lindau, D J.-C. Vial, Institut d'Astrophysique Spatiale, Université de Paris-Sud, F ESA study scientists: B. Fleck, ESA/GSFC, Greenbelt, Maryland, USA Launch 2007 R. Marsden, ESA/ESTEC, Noordwijk, The Netherlands, NL SOLAR ORBITER 5 Workshops 2011 Telluride, USA 2012 Brugge, Belgium SOLAR ORBITER Solar Orbiter Status • Solar Orbiter was approved on 4 October 2011 and assigned a budget within ESA’s Cosmic Vision 2015-2025 science programme. • It is now in Phase C that started end of 2012. • Memorandum of understanding with NASA (for provision of launcher and payload elements) has been signed. • The SPICE and EPD-SIS instruments remain in the payload. • System-level PDR was completed successfully in March 2012. • Instrument Principle Design Reviews (PDRs) are all completed. • Work progress is compatible with schedule for July 2017 launch. -
Kinetic Processes and Wave-Particle Interactions in the Solar Wind
Kinetic processes and wave-particle interactions in the solar wind Eckart Marsch Institute for Experimental and Applied Physics (IEAP), Christian Albrechts University at Kiel, 24118 Kiel, Germany Seminar Talk at Uppsala University, Uppsala, Sweden, November 2013 Ion kinetics in the solar wind • Prominent kinetic features observed by Helios are the proton beam and the core temperature anisotropy, Tc⊥ > Tc. • Evidence for pitch- angle scattering and quasilinear diffusion, microinstablities and Coulomb collisions Marsch et al., JGR 1982 Wave-ion kinetic interactions Beams and temperature anisotropies usually occur in solar wind proton velocity distributions. They indicate ubiquitous kinetic wave-particle interactions, which involve cyclotron and Landau resonances with plasma waves. Kinetic instabilities and ion diffusion play key roles in the dissipation of MHD turbulence. “Kinetic Physics of the Solar Corona and Solar Wind” Living Rev. Solar Phys. 3, 2006 http://www.livingreviews.org/lrsp-2006-1 Proton core heating and beam formation Numerical hybrid simulation show: Beam forms through Landau resonance and anisotropy by resonant pitch-angle diffusion. Contour plots of the proton VDF in the vx-vz- plane for the dispersive- wave case at four instants of time. The color coding of the contours corresponds, respectively, to 75 (dark red), 50 (red), 10 (yellow) percent of the maximum. J.A. Araneda, E. Marsch, and A.F. Viñas, Phys. Rev. Lett., 100, 125003, 2008 Kinetic Vlasov-Boltzmann theory Description of particle velocity distribution function