nanomaterials Article New Sustainable, Scalable and One-Step Synthesis of Iron Oxide Nanoparticles by Ion Exchange Process Ludovico Macera 1 , Valeria Daniele 1,* , Claudia Mondelli 2, Marie Capron 3,4 and Giuliana Taglieri 1 1 Department of Industrial and Information Engineering and Economics, University of L’Aquila, Piazzale E. Pontieri 1, Monteluco di Roio, I-67100 L’Aquila, Italy;
[email protected] (L.M.);
[email protected] (G.T.) 2 CNR-IOM-OGG, Institut Laue Langevin, 71 Avenue des Martyrs, CEDEX 9, 38042 Grenoble, France;
[email protected] 3 ESRF—The European Synchrotron, 71 Avenue des Martyrs, CEDEX 9, 38042 Grenoble, France;
[email protected] 4 Partnership for Soft Condensed Matter (PSCM), ESRF—The European Synchrotron, 71 Avenue des Martyrs, CEDEX 9, 38042 Grenoble, France * Correspondence:
[email protected] Abstract: This work introduces an innovative, sustainable, and scalable synthesis of iron oxides nanoparticles (NPs) in aqueous suspension. The method, based on ion exchange process, consists of a one-step procedure, time and energy saving, operating in water and at room temperature, by cheap and renewable reagents. The influence of both oxidation state of the initial reagent and reaction atmosphere is considered. Three kinds of iron nanostructured compounds are obtained (2-lines ferrihydrite; layered-structure iron oxyhydroxide δ-FeOOH; and cubic magnetite), in turn used as precursors to obtain hematite and maghemite NPs. All the produced NPs are characterized by a high purity, small particles dimensions (from 2 to 50 nm), and high specific surface area values up Citation: Macera, L.; Daniele, V.; to 420 m2/g, with yields of production >90%.