Linux Audio Conference 2019

Total Page:16

File Type:pdf, Size:1020Kb

Linux Audio Conference 2019 Proceedings of the Linux Audio Conference 2019 March 23rd – 26th, 2019 Center for Computer Research in Music and Acoustics (CCRMA) Stanford University, USA “In Ping(uins) e trust! Published by CCRMA, Stanford University, California, US March 2019 All copyrights remain with the authors http://lac.linuxaudio.org/2019 ISBN 978-0-359-46387-9 Credits Layout: Frank Neumann and Romain Michon Typesetting: LATEX and pdfLaTeX Logo Design: The Linuxaudio.org logo and its variations copyright Thorsten Wilms c 2006, imported into "LAC 2014" logo by Robin Gareus Thanks to: Martin Monperrus for his webpage "Creating proceedings from PDF files" ii Partners and Sponsors Linuxaudio.org iii iv Foreword Welcome everyone to LAC 2019 at CCRMA! For the second time in its seventeen year history, the Linux Audio Conference (LAC) is hosted in the United Stated of America by the Center for Computer Research in Mu- sic and Acoustics (CCRMA) at Stanford University. With its informal workshop-like at- mosphere, LAC is a blend of scientific and technical papers, tutorials, sound installations, and concerts centered on the free GNU/Linux operating system and open-source free soft- ware for audio, multimedia, and musical applications. LAC is a unique platform during which members of this community gather to exchange ideas, draft new projects, and see old friends. In these times of increasing political tensions and of rising extremism throughout the world, we believe that emphasizing and promoting the universality of this type of event is of the utmost importance. The Linux audio community exists worldwide; we believe it should remain a priority to diversify LAC’s geographical location from year to year for the benefit of those who can’t afford to travel to the other side of the world. This year, a large portion of presenters and performers is coming from the Americas and Asia. LAC-19 features six paper sessions, five concerts, four workshops, one keynote, as well as various posters, demos, and side events happening in various locations on Stanford University campus. We wish you a pleasant stay at Stanford and we hope that you will enjoy the conference! Romain Michon (LAC-19 Co-Chair) CCRMA, Stanford University (USA) & GRAME-CNCM, Lyon (France) v vi Conference Organization Core Team • Romain Michon – Co-Chair & Organizer • Fernando Lopez-Lezcano – Co-Chair & Organizer • Constantin Basica – Music Chair & Organizer • Elliot Canfield-Dafilou – Organizer • Carlos Sanchez – CCRMA System Administrator & Organizer • Matthew Wright – CCRMA Technical Director & Organizer • Nette Worthey – CCRMA Administrator • Chris Chafe – CCRMA Director • Bruno Ruviaro – Organizer Volunteers • Alex Chechile • David Goedicke • Benjamin J. Josie • Kyle O. Laviana • Vidya Rangasayee • Travis Skare • Xingxing Yang Paper Chair/Administration and Proceedings • Frank Neumann Stream Team • David Kerr • Carlos Sanchez vii Keynote Speaker • Fernando Lopez-Lezcano Also Thanks to • Session Chairs: – Chris Chafe – Albert Gräf – Elliot Kermit Canfield-Dafilou – Fernando Lopez-Lezcano – Yann Orlarey – Julius O. Smith • Santa Clara University Laptop Orchestra (SCLOrk) viii Review Committee Joachim Heintz University for Music Drama and Media Hanover, Germany IOhannes Zmölnig IEM, University of Music and Performing Arts (KUG), Graz, Austria Elliot Canfield-Dafilou CCRMA, Stanford University, United States Robin Gareus Germany Martin Rumori Institute of Electronic Music and Acoustics, Graz, Austria Orchisama Das CCRMA, Stanford University, United States Henrik von Coler Technische Universität Berlin, Germany Mark Rau CCRMA, Stanford University, United States Stéphane Letz GRAME-CNCM, France Romain Michon GRAME-CNCM, France & CCRMA - Stanford University, USA Jörn Nettingsmeier Netherlands David Runge Native Instruments, Germany Fons Adriaensen Huawei Research, Germany Harry van Haaren OpenAV, Ireland Steven Yi United States ix x Table of Contents Papers • Creating a sonified Spacecraft Game using Happybrackets and Stellarium 1 Angelo Fraietta, Ollie Bown • Browser-based Sonification 9 Chris Chafe • Sequoia: A Library for Generative Musical Sequencers 17 Chris Chronopoulos • A JACK Sound Server Backend to synchronize to an IEEE1722 AVTP Mediaclock Stream 21 Christoph Kuhr, Alexander Carôt • tpf-tools - a multi-instance JackTrip clone 29 Roman Haefeli, Johannes Schütt • A Cross-Platform Development Toolchain for JIT-compilation in Multimedia Software 37 Jean-Michaël Celerier • Bringing the GRAIL to the CCRMA Stage 43 Fernando Lopez-Lezcano, Christopher Jette • Rendering of Heterogeneous Spatial Audio Scenes 51 Nicolas Bouillot, Michał Seta, Émile Ouellet-Delorme, Zack Settel, Emmanuel Durand • A JACK-based Application for Spectro-Spatial Additive Synthesis 57 Henrik von Coler • GPU-Accelerated Modal Processors and Digital Waveguides 63 Travis Skare, Jonathan Abel • CPU consumption for AM/FM audio effects 71 Antonio Jose Homsi Goulart, Marcelo Queiroz, Joseph Timoney, Victor Lazzarini • Formalizing Mass-Interaction Physical Modeling in Faust 75 James Leonard and Jérôme Villeneuve, Romain Michon, Yann Orlarey and Stéphane Letz • Are Praat’s default settings optimal for Infant Cry Analysis? 83 Giulio Gabrieli, Leck Wan Qing, Andrea Bizzego, Gianluca Esposito • Isochronous Control + Audio Streams for Acoustic Interfaces 89 Max Neupert, Clemens Wegener xi • Game|lan:Co-Designing and Co-Creating an Orchestra of Digital Musical Instruments within the Fab Lab Network 95 Alexandros Kontogeorgakopoulos, Olivia Kotsifa • Finding Shimi’s voice: fostering human-robot communication with music and a NVIDIA Jetson TX2 101 Richard Savery, Ryan Rose, Gil Weinberg • A Scalable Haptic Floor dedicated to large Immersive Spaces 107 Nicolas Bouillot, Michał Seta • midizap: Controlling Multimedia Applications with MIDI 113 Albert Gräf • sc-hacks: A Live Coding Framework for Gestural Performance and Electroacoustic Music 121 Iannis Zannos Posters • Bipscript: A Simple Scripting Language For Interactive Music 129 John Hammen • Switching "Le SCRIME" over to Linux as a complete novice 133 Thibauld Keller, Jean-Michaël Celerier • SoundPrism: A Real-Time Sound Analysis Server and Dashboard 135 Michael Simpson xii Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, March 23–26, 2019 CREATING A SONIFIED SPACECRAFT GAME USING HAPPYBRACKETS AND STELLARIUM Angelo Fraietta Ollie Bown UNSW Art and Design UNSW Art and Design University of New South Wales, Australia University of New South Wales, Australia [email protected] [email protected] ABSTRACT the field of view. For example, Figure 2 shows how the player might view Saturn from Earth, while Figure 3 shows how the player may This paper presents the development of a virtual spacecraft simula- view Saturn from their spacecraft. The sonic poi generates sound tor game, where the goal for the player is to navigate their way to that is indicative of the player’s field of view. Additionally, the poi various planetary or stellar objects in the sky with a sonified poi. provides audible feedback when the player zooms in or out. The project utilises various open source hardware and software plat- forms including Stellarium, Raspberry Pi, HappyBrackets and the Azul Zulu Java Virtual Machine. The resulting research could be used as a springboard for developing an interactive science game to facilitate the understanding of the cosmos for children. We will describe the challenges related to hardware, software and network integration and the strategies we employed to overcome them. 1. INTRODUCTION HappyBrackets is an open source Java based programming environ- ment for creative coding of multimedia systems using Internet of Things (IoT) technologies [1]. Although HappyBrackets has focused primarily on audio digital signal processing—including synthesis, sampling, granular sample playback, and a suite of basic effects–we Figure 2: Saturn viewed from the ground from Stellarium. created a virtual spacecraft game that added the functionality of con- trolling a planetarium display through the use of WiFi enabled Rasp- berry Pis. The player manoeuvres the spacecraft by manipulating a sonic poi1, which is usually played in the manner shown in Figure 1. The poi contains an inertial measurement unit (IMU), consisting of an accelerometer and gyroscope; and a single button. The goal of the Figure 3: A closer view of Saturn from Stellarium. The University of New South Wales required a display for their open day to showcase some of the work conducted in the Interactive Figure 1: The conventional way of playing a sonic poi. Media Lab. The opportunity to develop an environment whereby vis- itors could engage with the technology we were developing would not only facilitate attracting possible future students, it was also a game is for a player to choose an astronomical object, for example a way to develop and test the integration of various research compo- planet or star, and to fly towards that object. This enables the player nents we were conducting. Many managers and business seek to en- to view other objects, including planets, moons, stars and galaxies in gage new customers through gamification [3]—in this case, prospec- 1"Poi spinning is a performance art, related to juggling, where weights on tive customers were potential students. Furthermore, research indi- the ends of short chains are swung to make interesting patterns." [2, p. 173] cates that visualisation and interpretation of software behaviour de- 1 Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford
Recommended publications
  • Proceedings 2005
    LAC2005 Proceedings 3rd International Linux Audio Conference April 21 – 24, 2005 ZKM | Zentrum fur¨ Kunst und Medientechnologie Karlsruhe, Germany Published by ZKM | Zentrum fur¨ Kunst und Medientechnologie Karlsruhe, Germany April, 2005 All copyright remains with the authors www.zkm.de/lac/2005 Content Preface ............................................ ............................5 Staff ............................................... ............................6 Thursday, April 21, 2005 – Lecture Hall 11:45 AM Peter Brinkmann MidiKinesis – MIDI controllers for (almost) any purpose . ....................9 01:30 PM Victor Lazzarini Extensions to the Csound Language: from User-Defined to Plugin Opcodes and Beyond ............................. .....................13 02:15 PM Albert Gr¨af Q: A Functional Programming Language for Multimedia Applications .........21 03:00 PM St´ephane Letz, Dominique Fober and Yann Orlarey jackdmp: Jack server for multi-processor machines . ......................29 03:45 PM John ffitch On The Design of Csound5 ............................... .....................37 04:30 PM Pau Arum´ıand Xavier Amatriain CLAM, an Object Oriented Framework for Audio and Music . .............43 Friday, April 22, 2005 – Lecture Hall 11:00 AM Ivica Ico Bukvic “Made in Linux” – The Next Step .......................... ..................51 11:45 AM Christoph Eckert Linux Audio Usability Issues .......................... ........................57 01:30 PM Marije Baalman Updates of the WONDER software interface for using Wave Field Synthesis . 69 02:15 PM Georg B¨onn Development of a Composer’s Sketchbook ................. ....................73 Saturday, April 23, 2005 – Lecture Hall 11:00 AM J¨urgen Reuter SoundPaint – Painting Music ........................... ......................79 11:45 AM Michael Sch¨uepp, Rene Widtmann, Rolf “Day” Koch and Klaus Buchheim System design for audio record and playback with a computer using FireWire . 87 01:30 PM John ffitch and Tom Natt Recording all Output from a Student Radio Station .
    [Show full text]
  • Moving Average Filters
    CHAPTER 15 Moving Average Filters The moving average is the most common filter in DSP, mainly because it is the easiest digital filter to understand and use. In spite of its simplicity, the moving average filter is optimal for a common task: reducing random noise while retaining a sharp step response. This makes it the premier filter for time domain encoded signals. However, the moving average is the worst filter for frequency domain encoded signals, with little ability to separate one band of frequencies from another. Relatives of the moving average filter include the Gaussian, Blackman, and multiple- pass moving average. These have slightly better performance in the frequency domain, at the expense of increased computation time. Implementation by Convolution As the name implies, the moving average filter operates by averaging a number of points from the input signal to produce each point in the output signal. In equation form, this is written: EQUATION 15-1 Equation of the moving average filter. In M &1 this equation, x[ ] is the input signal, y[ ] is ' 1 % y[i] j x [i j ] the output signal, and M is the number of M j'0 points used in the moving average. This equation only uses points on one side of the output sample being calculated. Where x[ ] is the input signal, y[ ] is the output signal, and M is the number of points in the average. For example, in a 5 point moving average filter, point 80 in the output signal is given by: x [80] % x [81] % x [82] % x [83] % x [84] y [80] ' 5 277 278 The Scientist and Engineer's Guide to Digital Signal Processing As an alternative, the group of points from the input signal can be chosen symmetrically around the output point: x[78] % x[79] % x[80] % x[81] % x[82] y[80] ' 5 This corresponds to changing the summation in Eq.
    [Show full text]
  • Discrete-Time Fourier Transform 7
    Table of Chapters 1. Overview of Digital Signal Processing 2. Review of Analog Signal Analysis 3. Discrete-Time Signals and Systems 4. Sampling and Reconstruction of Analog Signals 5. z Transform 6. Discrete-Time Fourier Transform 7. Discrete Fourier Series and Discrete Fourier Transform 8. Responses of Digital Filters 9. Realization of Digital Filters 10. Finite Impulse Response Filter Design 11. Infinite Impulse Response Filter Design 12. Tools and Applications Chapter 1: Overview of Digital Signal Processing Chapter Intended Learning Outcomes: (i) Understand basic terminology in digital signal processing (ii) Differentiate digital signal processing and analog signal processing (iii) Describe basic digital signal processing application areas H. C. So Page 1 Signal: . Anything that conveys information, e.g., . Speech . Electrocardiogram (ECG) . Radar pulse . DNA sequence . Stock price . Code division multiple access (CDMA) signal . Image . Video H. C. So Page 2 0.8 0.6 0.4 0.2 0 vowel of "a" -0.2 -0.4 -0.6 0 0.005 0.01 0.015 0.02 time (s) Fig.1.1: Speech H. C. So Page 3 250 200 150 100 ECG 50 0 -50 0 0.5 1 1.5 2 2.5 time (s) Fig.1.2: ECG H. C. So Page 4 1 0.5 0 -0.5 transmitted pulse -1 0 0.2 0.4 0.6 0.8 1 time 1 0.5 0 -0.5 received pulse received t -1 0 0.2 0.4 0.6 0.8 1 time Fig.1.3: Transmitted & received radar waveforms H. C. So Page 5 Radar transceiver sends a 1-D sinusoidal pulse at time 0 It then receives echo reflected by an object at a range of Reflected signal is noisy and has a time delay of which corresponds to round trip propagation time of radar pulse Given the signal propagation speed, denoted by , is simply related to as: (1.1) As a result, the radar pulse contains the object range information H.
    [Show full text]
  • Finite Impulse Response (FIR) Digital Filters (II) Ideal Impulse Response Design Examples Yogananda Isukapalli
    Finite Impulse Response (FIR) Digital Filters (II) Ideal Impulse Response Design Examples Yogananda Isukapalli 1 • FIR Filter Design Problem Given H(z) or H(ejw), find filter coefficients {b0, b1, b2, ….. bN-1} which are equal to {h0, h1, h2, ….hN-1} in the case of FIR filters. 1 z-1 z-1 z-1 z-1 x[n] h0 h1 h2 h3 hN-2 hN-1 1 1 1 1 1 y[n] Consider a general (infinite impulse response) definition: ¥ H (z) = å h[n] z-n n=-¥ 2 From complex variable theory, the inverse transform is: 1 n -1 h[n] = ò H (z)z dz 2pj C Where C is a counterclockwise closed contour in the region of convergence of H(z) and encircling the origin of the z-plane • Evaluating H(z) on the unit circle ( z = ejw ) : ¥ H (e jw ) = åh[n]e- jnw n=-¥ 1 p h[n] = ò H (e jw )e jnwdw where dz = jejw dw 2p -p 3 • Design of an ideal low pass FIR digital filter H(ejw) K -2p -p -wc 0 wc p 2p w Find ideal low pass impulse response {h[n]} 1 p h [n] = H (e jw )e jnwdw LP ò 2p -p 1 wc = Ke jnwdw 2p ò -wc Hence K h [n] = sin(nw ) n = 0, ±1, ±2, …. ±¥ LP np c 4 Let K = 1, wc = p/4, n = 0, ±1, …, ±10 The impulse response coefficients are n = 0, h[n] = 0.25 n = ±4, h[n] = 0 = ±1, = 0.225 = ±5, = -0.043 = ±2, = 0.159 = ±6, = -0.053 = ±3, = 0.075 = ±7, = -0.032 n = ±8, h[n] = 0 = ±9, = 0.025 = ±10, = 0.032 5 Non Causal FIR Impulse Response We can make it causal if we shift hLP[n] by 10 units to the right: K h [n] = sin((n -10)w ) LP (n -10)p c n = 0, 1, 2, ….
    [Show full text]
  • Informatique Et MAO 1 : Configurations MAO (1)
    Ce fichier constitue le support de cours “son numérique” pour les formations Régisseur Son, Techniciens Polyvalent et MAO du GRIM-EDIF à Lyon. Elles ne sont mises en ligne qu’en tant qu’aide pour ces étudiants et ne peuvent être considérées comme des cours. Elles utilisent des illustrations collectées durant des années sur Internet, hélas sans en conserver les liens. Veuillez m'en excuser, ou me contacter... pour toute question : [email protected] 4ème partie : Informatique et MAO 1 : Configurations MAO (1) interface audio HP monitoring stéréo microphone(s) avec entrées/sorties ou surround analogiques micro-ordinateur logiciels multipistes, d'édition, de traitement et de synthèse, plugins etc... (+ lecteur-graveur CD/DVD/BluRay) surface de contrôle clavier MIDI toutes les opérations sont réalisées dans l’ordinateur : - l’interface audio doit permettre des latences faibles pour le jeu instrumental, mais elle ne nécessite pas de nombreuses entrées / sorties analogiques - la RAM doit permettre de stocker de nombreux plugins (et des quantités d’échantillons) - le processeur doit être capable de calculer de nombreux traitements en temps réel - l’espace de stockage et sa vitesse doivent être importants - les périphériques de contrôle sont réduits au minimum, le coût total est limité SON NUMERIQUE - 4 - INFORMATIQUE 2 : Configurations MAO (2) HP monitoring stéréo microphones interface audio avec de nombreuses ou surround entrées/sorties instruments analogiques micro-ordinateur Effets logiciels multipistes, d'édition et de traitement, plugins (+
    [Show full text]
  • The Book of Audacity
    THE BOOK OF AUDACITY Record, Edit, Mix, and Master with the Free Audio Editor by Carla Schroder San Francisco THE BOOK OF AUDACITY. Copyright © 2011 by Carla Schroder. All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage or retrieval system, without the prior written permission of the copyright owner and the publisher. 15 14 13 12 11 1 2 3 4 5 6 7 8 9 ISBN-10: 1-59327-270-7 ISBN-13: 978-1-59327-270-8 Publisher: William Pollock Production Editor: Serena Yang Cover and Interior Design: Octopod Studios Developmental Editor: Tyler Ortman Technical Reviewer: Alvin Goats Copyeditor: Kim Wimpsett Compositor: Serena Yang Proofreader: Paula L. Fleming Indexer: Nancy Guenther For information on book distributors or translations, please contact No Starch Press, Inc. directly: No Starch Press, Inc. 38 Ringold Street, San Francisco, CA 94103 phone: 415.863.9900; fax: 415.863.9950; [email protected]; www.nostarch.com Library of Congress Cataloging-in-Publication Data Schroder, Carla. The book of Audacity : record, edit, mix, and master with the free audio editor / by Carla Schroder. p. cm. Includes bibliographical references. ISBN-13: 978-1-59327-270-8 ISBN-10: 1-59327-270-7 1. Audacity (Computer file) 2. Digital audio editors. I. Title. ML74.4.A84S37 2010 781.3’4536-dc22 2010037594 No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other product and company names mentioned herein may be the trademarks of their respective owners.
    [Show full text]
  • Photo Editing
    All recommendations are from: http://www.mediabistro.com/10000words/7-essential-multimedia-tools-and-their_b376 Photo Editing Paid Free Photoshop Splashup Photoshop may be the industry leader when it comes to photo editing and graphic design, but Splashup, a free online tool, has many of the same capabilities at a much cheaper price. Splashup has lots of the tools you’d expect to find in Photoshop and has a similar layout, which is a bonus for those looking to get started right away. Requires free registration; Flash-based interface; resize; crop; layers; flip; sharpen; blur; color effects; special effects Fotoflexer/Photobucket Crop; resize; rotate; flip; hue/saturation/lightness; contrast; various Photoshop-like effects Photoshop Express Requires free registration; 2 GB storage; crop; rotate; resize; auto correct; exposure correction; red-eye removal; retouching; saturation; white balance; sharpen; color correction; various other effects Picnik “Auto-fix”; rotate; crop; resize; exposure correction; color correction; sharpen; red-eye correction Pic Resize Resize; crop; rotate; brightness/contrast; conversion; other effects Snipshot Resize; crop; enhancement features; exposure, contrast, saturation, hue and sharpness correction; rotate; grayscale rsizr For quick cropping and resizing EasyCropper For quick cropping and resizing Pixenate Enhancement features; crop; resize; rotate; color effects FlauntR Requires free registration; resize; rotate; crop; various effects LunaPic Similar to Microsoft Paint; many features including crop, scale
    [Show full text]
  • Porting Portaudio API on ASIO
    GRAME - Computer Music Research Lab. Technical Note - 01-11-06 Porting PortAudio API on ASIO Stéphane Letz November 2001 Grame - Computer Music Research Laboratory 9, rue du Garet BP 1185 69202 FR - LYON Cedex 01 [email protected] Abstract This document describes a port of the PortAudio API using the ASIO API on Macintosh and Windows. It explains technical choices used, buffer size adaptation techniques that guarantee minimal additional latency, results and limitations. 1 The ASIO API ASIO (Audio Streaming Input Ouput) is an API defined and proposed by Steinberg. It addesses the area of efficient audio processing, synchronization, low latency and extentibility on the hardware side. ASIO allows the handling of multi-channel professional audio cards, and different sample rates (32 kHz to 96 kHz), different sample formats (16, 24, 32 bits of 32/64 floating point formats). ASIO is available on MacOS and Windows. 2 PortAudio API PortAudio is a library that provides streaming audio input and output. It is a cross-platform API that works on Windows, Macintosh, Linux, SGI, FreeBSD and BeOS. This means that programs that need to process or generate an audio signal, can run on several different computers just by recompiling the source code. PortAudio is intended to promote the exchange of audio synthesis software between developers on different platforms. 3 Technical choices Porting PortAudio to ASIO means that some technical choices have to be made. The life cycle of the ASIO driver must be “mapped” to the life cycle of a PortAudio application. Each PortAudio function will be implemented using one or more ASIO functions.
    [Show full text]
  • Python-Sounddevice Release 0.4.2
    python-sounddevice Release 0.4.2 Matthias Geier 2021-07-18 Contents 1 Installation 2 2 Usage 3 2.1 Playback................................................3 2.2 Recording...............................................4 2.3 Simultaneous Playback and Recording................................4 2.4 Device Selection...........................................4 2.5 Callback Streams...........................................5 2.6 Blocking Read/Write Streams.....................................6 3 Example Programs 6 3.1 Play a Sound File...........................................6 3.2 Play a Very Long Sound File.....................................8 3.3 Play a Very Long Sound File without Using NumPy......................... 10 3.4 Play a Web Stream.......................................... 12 3.5 Play a Sine Signal........................................... 14 3.6 Input to Output Pass-Through..................................... 15 3.7 Plot Microphone Signal(s) in Real-Time............................... 17 3.8 Real-Time Text-Mode Spectrogram................................. 19 3.9 Recording with Arbitrary Duration.................................. 21 3.10 Using a stream in an asyncio coroutine............................... 23 3.11 Creating an asyncio generator for audio blocks........................... 24 4 Contributing 26 4.1 Reporting Problems.......................................... 26 4.2 Development Installation....................................... 28 4.3 Building the Documentation..................................... 28 5 API Documentation
    [Show full text]
  • Scummvm Documentation
    ScummVM Documentation CadiH May 10, 2021 The basics 1 Understanding the interface4 1.1 The Launcher........................................4 1.2 The Global Main Menu..................................7 2 Handling game files 10 2.1 Multi-disc games...................................... 11 2.2 CD audio.......................................... 11 2.3 Macintosh games...................................... 11 3 Adding and playing a game 13 3.1 Where to get the games.................................. 13 3.2 Adding games to the Launcher.............................. 13 3.3 A note about copyright.................................. 21 4 Saving and loading a game 22 4.1 Saving a game....................................... 22 4.2 Location of saved game files............................... 27 4.3 Loading a game...................................... 27 5 Keyboard shortcuts 30 6 Changing settings 31 6.1 From the Launcher..................................... 31 6.2 In the configuration file.................................. 31 7 Connecting a cloud service 32 8 Using the local web server 37 9 AmigaOS 4 42 9.1 What you’ll need...................................... 42 9.2 Installing ScummVM.................................... 42 9.3 Transferring game files.................................. 42 9.4 Controls........................................... 44 9.5 Paths............................................ 44 9.6 Settings........................................... 44 9.7 Known issues........................................ 44 10 Android 45 i 10.1 What you’ll need.....................................
    [Show full text]
  • How to Create Music with GNU/Linux
    How to create music with GNU/Linux Emmanuel Saracco [email protected] How to create music with GNU/Linux by Emmanuel Saracco Copyright © 2005-2009 Emmanuel Saracco How to create music with GNU/Linux Warning WORK IN PROGRESS Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is available on the World Wide Web at http://www.gnu.org/licenses/fdl.html. Revision History Revision 0.0 2009-01-30 Revised by: es Not yet versioned: It is still a work in progress. Dedication This howto is dedicated to all GNU/Linux users that refuse to use proprietary software to work with audio. Many thanks to all Free developers and Free composers that help us day-by-day to make this possible. Table of Contents Forword................................................................................................................................................... vii 1. System settings and tuning....................................................................................................................1 1.1. My Studio....................................................................................................................................1 1.2. File system..................................................................................................................................1 1.3. Linux Kernel...............................................................................................................................2
    [Show full text]
  • Qtractor – a Audio/MIDI Multi-Track Sequencer
    Qtractor – A Audio/MIDI multi-track sequencer Rui Nuno CAPELA rncbc.org [email protected] Abstract sequencer for MIDI, thus currently being a Linux- only application. There are not known intentions Qtractor is a MIDI/Audio multi-track sequencer on support to any other platforms. application written in C++ around the Qt4 toolkit Qtractor is free open-source software, licensed using Qt Designer. The initial target platform will be Linux, where the Jack Audio Connection Kit under the GPL and is welcoming all collaboration (JACK) for audio, and the Advanced Linux Sound and review from the Linux Audio developer and Architecture (ALSA) for MIDI, are the main user community in particular and the public in infrastructures to evolve as a fairly-featured Linux general. Desktop Audio Workstation GUI, specially dedicated to the personal home-studio. 2 Installation Keywords 2.1 Requirements Linux, audio, MIDI, JACK, ALSA, multi-track, The software requirements for build and run- recording, sequencer time are listed as follows: 1 Introduction Mandatory: As a new Linux Audio offering, Qtractor targets ● Qt4 (core, gui, xml) [2] and positions itself comfortably tagged as for the ● JACK [3] techno-boy bedroom home-studio. However, in ● ALSA [4] general, it is just yet another digital audio and ● libsndfile[5] MIDI multi-track composition and arranger software application. The design and functionality Optional (opted-in at build time): model takes as fundamental the now usual multi- track composing techniques for modern music- ● libvorbis (enc, file) [6] making. It aims to be intuitive and easy to use. ● libmad [7] Unfortunately, for the classic and erudite ● libsamplerate [8] musician, there are and will be no plans to integrate any kind of score editor.
    [Show full text]