Coleoptera: Dytiscidae)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Coleoptera: Dytiscidae) Rasa Bukontaite1,2*, Kelly B Miller3 and Johannes Bergsten1
Bukontaite et al. BMC Evolutionary Biology 2014, 14:5 http://www.biomedcentral.com/1471-2148/14/5 RESEARCH ARTICLE Open Access The utility of CAD in recovering Gondwanan vicariance events and the evolutionary history of Aciliini (Coleoptera: Dytiscidae) Rasa Bukontaite1,2*, Kelly B Miller3 and Johannes Bergsten1 Abstract Background: Aciliini presently includes 69 species of medium-sized water beetles distributed on all continents except Antarctica. The pattern of distribution with several genera confined to different continents of the Southern Hemisphere raises the yet untested hypothesis of a Gondwana vicariance origin. The monophyly of Aciliini has been questioned with regard to Eretini, and there are competing hypotheses about the intergeneric relationship in the tribe. This study is the first comprehensive phylogenetic analysis focused on the tribe Aciliini and it is based on eight gene fragments. The aims of the present study are: 1) to test the monophyly of Aciliini and clarify the position of the tribe Eretini and to resolve the relationship among genera within Aciliini, 2) to calibrate the divergence times within Aciliini and test different biogeographical scenarios, and 3) to evaluate the utility of the gene CAD for phylogenetic analysis in Dytiscidae. Results: Our analyses confirm monophyly of Aciliini with Eretini as its sister group. Each of six genera which have multiple species are also supported as monophyletic. The origin of the tribe is firmly based in the Southern Hemisphere with the arrangement of Neotropical and Afrotropical taxa as the most basal clades suggesting a Gondwana vicariance origin. However, the uncertainty as to whether a fossil can be used as a stem-or crowngroup calibration point for Acilius influenced the result: as crowngroup calibration, the 95% HPD interval for the basal nodes included the geological age estimate for the Gondwana break-up, but as a stem group calibration the basal nodes were too young. -
Learning from the Extraordinary: How the Highly Derived Larval Eyes of the Sunburst Diving Beetle Can Give Insights Into Aspects Of
Learning from the extraordinary: How the highly derived larval eyes of the Sunburst Diving Beetle can give insights into aspects of holometabolous insect visual systems A dissertation submitted to the Division of Research and Advanced Studies of the University of Cincinnati In partial fulfillment of the requirements for the degree of Doctorate of Philosophy (Ph.D.) In the department of Biological Sciences of the College of Arts and Sciences 2011 by Nadine Stecher B.S., University of Rostock, 2001 M.S., University of Rostock, 2005 Committee Chair: Elke K. Buschbeck, Ph.D. Abstract Stemmata, the eyes of holometabolous insect larvae, vary greatly in number, structure and task. The stemmata of the Sunburst Diving Beetle, Thermonectus marmoratus, are among the most sophisticated. The predatory larvae have six eyes and a potentially light-sensitive spot (eye spot) adjacent to the stemmata. The forward-pointing tubular eyes Eye 1 (E1) and Eye 2 (E2) are involved in prey capture, and possess a biconvex lens, a cellular crystalline cone-like structure, and tiered retinal tissue. A distal and a proximal retina can be distinguished, which differ not only in morphology but possibly also in function. E1 has an additional retina which runs medially alongside the crystalline cone-like structure. Using transmission electron microscopic preparations, I described the ultrastructure of the retinas of the principal eyes E1 and E2. The proximal retinas are composed of photoreceptors with predominantly parallel microvilli, and neighboring rhabdomeres are oriented approximately orthogonally to each another. This rhabdomeric arrangement is typical for eyes that are polarization sensitive. A similar organization is observed in a portion of the medial retina of E1, but not in either of the distal retinas. -
The Genus Thermonectus Dejean, 1833 in Belize (Coleoptera: Dytiscidae)
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/341495123 The genus Thermonectus Dejean, 1833 in Belize (Coleoptera: Dytiscidae) Article in Bulletin de la Société royale belge d’Entomologie/Bulletin van de Koninklijke Belgische vereniging voor entomologie · March 2020 CITATIONS READ 0 1 2 authors, including: Kevin Scheers Research Institute for Nature and Forest 39 PUBLICATIONS 57 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Watervlakken : polygonenkaart van stilstaand water in Vlaanderen; Een instrument voor onderzoek, water-, milieu- en natuurbeleid View project Water beetles of Belize (Central America) View project All content following this page was uploaded by Kevin Scheers on 19 May 2020. The user has requested enhancement of the downloaded file. Bulletin de la Société royale belge d’Entomologie / Bulletin van de Koninklijke Belgische Vereniging voor Entomologie, 156 (2020): 52–57 The genus Thermonectus Dejean, 1833 in Belize (Coleoptera: Dytiscidae) Kevin SCHEERS1,2* & Arno THOMAES1 1 Research Institute for Nature and Forest (INBO), Havenlaan 88 bus 73, B-1000 Brussels, Belgium. 2 Biodiversity Inventory for Conservation NPO (BINCO), Walmersumstraat 44, B-3380 Glabbeek, Belgium. * Corresponding author: [email protected]. Abstract This paper deals with the taxonomic composition, distribution and ecology of the genus Thermonectus Dejean, 1833 in Belize. During a field survey in 2015 three species were found: Thermonectus basillaris (Harris, 1829), T. circumscriptus (Latreille, 1809) and T. margineguttatus (Aubé, 1838). These are the first records of this genus in Belize. Keywords: water beetles, Hydradephaga, British Honduras, Central America, Neotropical region Samenvatting In dit artikel wordt de taxonomische compositie, verspreiding en ecologie van het Genus Thermonectus Dejean, 1833 in Belize besproken. -
A Rapid Biological Assessment of the Upper Palumeu River Watershed (Grensgebergte and Kasikasima) of Southeastern Suriname
Rapid Assessment Program A Rapid Biological Assessment of the Upper Palumeu River Watershed (Grensgebergte and Kasikasima) of Southeastern Suriname Editors: Leeanne E. Alonso and Trond H. Larsen 67 CONSERVATION INTERNATIONAL - SURINAME CONSERVATION INTERNATIONAL GLOBAL WILDLIFE CONSERVATION ANTON DE KOM UNIVERSITY OF SURINAME THE SURINAME FOREST SERVICE (LBB) NATURE CONSERVATION DIVISION (NB) FOUNDATION FOR FOREST MANAGEMENT AND PRODUCTION CONTROL (SBB) SURINAME CONSERVATION FOUNDATION THE HARBERS FAMILY FOUNDATION Rapid Assessment Program A Rapid Biological Assessment of the Upper Palumeu River Watershed RAP (Grensgebergte and Kasikasima) of Southeastern Suriname Bulletin of Biological Assessment 67 Editors: Leeanne E. Alonso and Trond H. Larsen CONSERVATION INTERNATIONAL - SURINAME CONSERVATION INTERNATIONAL GLOBAL WILDLIFE CONSERVATION ANTON DE KOM UNIVERSITY OF SURINAME THE SURINAME FOREST SERVICE (LBB) NATURE CONSERVATION DIVISION (NB) FOUNDATION FOR FOREST MANAGEMENT AND PRODUCTION CONTROL (SBB) SURINAME CONSERVATION FOUNDATION THE HARBERS FAMILY FOUNDATION The RAP Bulletin of Biological Assessment is published by: Conservation International 2011 Crystal Drive, Suite 500 Arlington, VA USA 22202 Tel : +1 703-341-2400 www.conservation.org Cover photos: The RAP team surveyed the Grensgebergte Mountains and Upper Palumeu Watershed, as well as the Middle Palumeu River and Kasikasima Mountains visible here. Freshwater resources originating here are vital for all of Suriname. (T. Larsen) Glass frogs (Hyalinobatrachium cf. taylori) lay their -
Microsoft Outlook
Joey Steil From: Leslie Jordan <[email protected]> Sent: Tuesday, September 25, 2018 1:13 PM To: Angela Ruberto Subject: Potential Environmental Beneficial Users of Surface Water in Your GSA Attachments: Paso Basin - County of San Luis Obispo Groundwater Sustainabilit_detail.xls; Field_Descriptions.xlsx; Freshwater_Species_Data_Sources.xls; FW_Paper_PLOSONE.pdf; FW_Paper_PLOSONE_S1.pdf; FW_Paper_PLOSONE_S2.pdf; FW_Paper_PLOSONE_S3.pdf; FW_Paper_PLOSONE_S4.pdf CALIFORNIA WATER | GROUNDWATER To: GSAs We write to provide a starting point for addressing environmental beneficial users of surface water, as required under the Sustainable Groundwater Management Act (SGMA). SGMA seeks to achieve sustainability, which is defined as the absence of several undesirable results, including “depletions of interconnected surface water that have significant and unreasonable adverse impacts on beneficial users of surface water” (Water Code §10721). The Nature Conservancy (TNC) is a science-based, nonprofit organization with a mission to conserve the lands and waters on which all life depends. Like humans, plants and animals often rely on groundwater for survival, which is why TNC helped develop, and is now helping to implement, SGMA. Earlier this year, we launched the Groundwater Resource Hub, which is an online resource intended to help make it easier and cheaper to address environmental requirements under SGMA. As a first step in addressing when depletions might have an adverse impact, The Nature Conservancy recommends identifying the beneficial users of surface water, which include environmental users. This is a critical step, as it is impossible to define “significant and unreasonable adverse impacts” without knowing what is being impacted. To make this easy, we are providing this letter and the accompanying documents as the best available science on the freshwater species within the boundary of your groundwater sustainability agency (GSA). -
Mirasorvone: a Masked 20-Ketopregnane from the Defensive Secretion of a Diving Beetle (Thermonectus Marmoratus) (Steroids͞hemiketal͞dytiscidae)
Proc. Natl. Acad. Sci. USA Vol. 95, pp. 2733–2737, March 1998 Chemistry Mirasorvone: A masked 20-ketopregnane from the defensive secretion of a diving beetle (Thermonectus marmoratus) (steroidsyhemiketalyDytiscidae) JERROLD MEINWALD*, QING HUANG*, JAN VRKOCˇ*†,KITHSIRI B. HERATH*, ZHI-CAI YANG*, FRANK SCHRODER¨ *, ATHULA B. ATTYGALLE*, VIKRAM K. IYENGAR‡,RANDY C. MORGAN§, AND THOMAS EISNER‡ *Department of Chemistry and ‡Section of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853; and §The Insectarium, Cincinnati Zoo and Botanical Gardens, Cincinnati, OH 45220 Contributed by Jerrold Meinwald, December 29, 1997 ABSTRACT The sunburst diving beetle, Thermonectus marmoratus, ejects a milky fluid from its prothoracic defensive glands when disturbed. Two major volatile components of this secretion are steroids; cybisterone (structure 7) constitutes about 20% of the volatiles, and a new steroid, mirasorvone, about 50%. Mirasorvone is assigned an 18-oxygenated preg- nane structure (structure 9) on the basis of extensive spec- troscopic data. Although no 18-oxygenated steroid has been described previously from an insect source, a closely related hormone with mineralocorticoid activity, 18-hydroxydeoxy- 1 corticosterone (structure 13), has been isolated from the have studied the defensive chemistry of Thermonectus mar- adrenal glands of rats. moratus, an aposematic dytiscid beetle recently named the ‘‘sunburst diving beetle’’ (12) (Fig. 1), and report the chemical In the mind of the general public, steroids loom large. Consider characterization of two steroida1 components from the secre- cholesterol (1). Millions of Americans are aware of their blood tion of its prothoracic defensive glands. cholesterol levels, and many take cholesterol biosynthesis inhibitors regularly. Steroidal oral contraceptives have been responsible for a quiet social revolution, and closely related MATERIALS AND METHODS steroids are widely used for the relief of postmenopausal The Beetle. -
Aquatic Insects and Their Potential to Contribute to the Diet of the Globally Expanding Human Population
insects Review Aquatic Insects and their Potential to Contribute to the Diet of the Globally Expanding Human Population D. Dudley Williams 1,* and Siân S. Williams 2 1 Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C1A4, Canada 2 The Wildlife Trust, The Manor House, Broad Street, Great Cambourne, Cambridge CB23 6DH, UK; [email protected] * Correspondence: [email protected] Academic Editors: Kerry Wilkinson and Heather Bray Received: 28 April 2017; Accepted: 19 July 2017; Published: 21 July 2017 Abstract: Of the 30 extant orders of true insect, 12 are considered to be aquatic, or semiaquatic, in either some or all of their life stages. Out of these, six orders contain species engaged in entomophagy, but very few are being harvested effectively, leading to over-exploitation and local extinction. Examples of existing practices are given, ranging from the extremes of including insects (e.g., dipterans) in the dietary cores of many indigenous peoples to consumption of selected insects, by a wealthy few, as novelty food (e.g., caddisflies). The comparative nutritional worth of aquatic insects to the human diet and to domestic animal feed is examined. Questions are raised as to whether natural populations of aquatic insects can yield sufficient biomass to be of practicable and sustained use, whether some species can be brought into high-yield cultivation, and what are the requirements and limitations involved in achieving this? Keywords: aquatic insects; entomophagy; human diet; animal feed; life histories; environmental requirements 1. Introduction Entomophagy (from the Greek ‘entoma’, meaning ‘insects’ and ‘phagein’, meaning ‘to eat’) is a trait that we Homo sapiens have inherited from our early hominid ancestors. -
Vernacular Name BEETLE, SUNBURST DIVING (Aka: Spotted Diving Beetle)
1/4 Vernacular Name BEETLE, SUNBURST DIVING (aka: spotted diving beetle) Adult Larva GEOGRAPHIC RANGE Extreme southern California, Arizona, New Mexico, Texas and Mexico. HABITAT Ponds and lakes, requiring at least a temporary water source. CONSERVATION STATUS • IUCN: Not Evaluated (2012). COOL FACTS • They wear bifocals! The sunburst diving beetle, in its aquatic larval stage, has been found to have, in its principal eyes, 2 retinas and 2 distinct focal planes that are substantially separated, acting like bifocals to switch their vision from up-close to distance. This gives them the easy and efficient ability to capture their prey. This is the first ever recorded use of bifocal technology in the animal world. • Their bright color advertises their bad taste. • They are streamlined, have powerful oar-like hind legs for propulsion and steer with their short forelegs. • Like many aquatic insects, they carry surface air beneath their wings to breathe under water. • These beetles are useful because they eat other invertebrates including mosquito larvae and pupae. DIET • In the wild: mosquito larvae, pupae, small insects and anything unlucky enough to get too close. • In captivity: mealworms and crickets. Sunburst Diving Beetle 2/4 LONGEVITY • In the wild: 2 years. • In captivity: 2 years. ENEMIES - DEFENSE • Enemies: birds, fish. Larvae may be cannibalized by adults. • Defense: - their bright color advertises their bad taste. - they escape some predators by diving deep. MATING - CARE OF THE YOUNG • When it is time to reproduce, female diving beetles enter the water and usually lay their eggs in sand or on the stems of aquatic plants and macro-algae. -
Diving Beetle Offspring Oviposited in Amphibian Spawn Prey on the Tadpoles Upon Hatching
bioRxiv preprint doi: https://doi.org/10.1101/666008; this version posted June 10, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. 1 Diving beetle offspring oviposited in amphibian spawn prey on the tadpoles upon hatching John Gould1*, Jose W. Valdez2, Simon Clulow1,3, John Clulow1 1School of Environmental and Life Sciences, University of Newcastle, Callaghan, 2308 NSW, Australia 2 Department of Bioscience - Biodiversity and Conservation, Aarhus University, 8410 Rønde, Denmark 3Department of Biological Sciences, Macquarie University, Sydney, 2019 NSW, Australia * [email protected] Abstract In highly ephemeral freshwater habitats, predatory vertebrates are typically unable to become established, leaving an open niche often filled by macroinvertebrate predators. However, these predators are faced with the challenge of finding sufficient food sources as the rapid rate of desiccation prevents the establishment of extended food chains and limits the number of prey species present. It could therefore be advantageous for adults to oviposit their offspring in the presence of future prey within sites of extreme ephemerality. We report the first case of adult diving beetles ovipositing their eggs within spawn of the sandpaper frog, Lechriodus fletcheri. This behaviour was found among several pools used by L. fletcheri for reproduction. Beetle eggs oviposited in frog spawn were found to hatch within 24 hours of the surrounding L. fletcheri eggs, with the larvae becoming voracious consumers of the hatched tadpoles. -
Fauna Europaea: Coleoptera 2 (Excl. Series Elateriformia, Scarabaeiformia, Staphyliniformia and Superfamily Curculionoidea)
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Digital.CSIC Biodiversity Data Journal 3: e4750 doi: 10.3897/BDJ.3.e4750 Data Paper Fauna Europaea: Coleoptera 2 (excl. series Elateriformia, Scarabaeiformia, Staphyliniformia and superfamily Curculionoidea) Paolo Audisio‡, Miguel-Angel Alonso Zarazaga§, Adam Slipinski|, Anders Nilsson¶#, Josef Jelínek , Augusto Vigna Taglianti‡, Federica Turco ¤, Carlos Otero«, Claudio Canepari», David Kral ˄, Gianfranco Liberti˅, Gianfranco Sama¦, Gianluca Nardi ˀ, Ivan Löblˁ, Jan Horak ₵, Jiri Kolibacℓ, Jirí Háva ₰, Maciej Sapiejewski†,₱, Manfred Jäch ₳, Marco Alberto Bologna₴, Maurizio Biondi ₣, Nikolai B. Nikitsky₮, Paolo Mazzoldi₦, Petr Zahradnik ₭, Piotr Wegrzynowicz₱, Robert Constantin₲, Roland Gerstmeier‽, Rustem Zhantiev₮, Simone Fattorini₩, Wioletta Tomaszewska₱, Wolfgang H. Rücker₸, Xavier Vazquez- Albalate‡‡, Fabio Cassola §§, Fernando Angelini||, Colin Johnson ¶¶, Wolfgang Schawaller##, Renato Regalin¤¤, Cosimo Baviera««, Saverio Rocchi »», Fabio Cianferoni»»,˄˄, Ron Beenen ˅˅, Michael Schmitt ¦¦, David Sassi ˀˀ, Horst Kippenbergˁˁ, Marcello Franco Zampetti₩, Marco Trizzino ₵₵, Stefano Chiari‡, Giuseppe Maria Carpanetoℓℓ, Simone Sabatelli‡, Yde de Jong ₰₰,₱₱ ‡ Sapienza Rome University, Department of Biology and Biotechnologies 'C. Darwin', Rome, Italy § Museo Nacional de Ciencias Naturales, Madrid, Spain | CSIRO Entomology, Canberra, Australia ¶ Umea University, Umea, Sweden # National Museum Prague, Prague, Czech Republic ¤ Queensland Museum, Brisbane, -
Rmrs P067 277 282.Pdf
Habitat Type and Permanence Determine Local Aquatic Invertebrate Community Structure in the Madrean Sky Islands Michael T. Bogan Oregon State University, Corvallis, Oregon Oscar Gutierrez-Ruacho and J. Andrés Alvarado-Castro, CESUES, Hermosillo, Sonora, Mexico David A. Lytle Oregon State University, Corvallis, Oregon Abstract—Aquatic environments in the Madrean Sky Islands (MSI) consist of a matrix of perennial and intermittent stream segments, seasonal ponds, and human-built cattle trough habitats that support a di- verse suite of aquatic macroinvertebrates. Although environmental conditions and aquatic communities are generally distinct in lotic and lentic habitats, MSI streams are characterized by isolated perennial pools for much of the year, and thus seasonally occur as lentic environments. In this study, we compared habitat characteristics and Coleoptera and Hemiptera assemblages of stream pools with those of true lentic habi- tats (seasonal ponds and cattle troughs) across the MSI. We identified 150 species across the 38 sites, and despite superficial similarities in habitat characteristics, seasonal ponds and stream pools in the MSI support distinct aquatic insect communities. Stream-exclusive species included many long-lived species with poor dispersal abilities, while pond-exclusive species tended to have rapid development times and strong dispersal abilities. We suggest that, in addition to perennial streams, seasonal aquatic habitats should also be a focus of conservation planning in the MSI. Introduction streams are found in the higher elevations (1200-2200 m) of most MSI mountain ranges. While wet winters and monsoon rains can Abiotic factors can be highly influential in determining local aquatic result in high-flow periods where stream pools are scoured and con- invertebrate community structure, including presence or absence of nected to one another, many MSI streams have low to zero flow for flowing water (lotic vs. -
Coleoptera: Dytiscidae: Dytiscinae): the Subgenera Trifurcitus and Megadytes S
Eur. J. Entomol. 107: 377–392, 2010 http://www.eje.cz/scripts/viewabstract.php?abstract=1549 ISSN 1210-5759 (print), 1802-8829 (online) Descriptions of larvae of Megadytes (Coleoptera: Dytiscidae: Dytiscinae): The subgenera Trifurcitus and Megadytes s. str., ground plan of chaetotaxy of the genus and phylogenetic analysis MARIANO C. MICHAT CONICET, Laboratory of Entomology, DBBE, FCEyN, UBA, Buenos Aires, Argentina; e-mail: [email protected] Key words. Diving beetles, Dytiscidae, Cybistrini, Megadytes, Trifurcitus, larva, chaetotaxy, ground plan, phylogenetic relationships Abstract. The three larval instars of Megadytes (M.) carcharias Griffini and M. (Trifurcitus) fallax (Aubé) are described and illus- trated in detail for the first time, with an emphasis on morphometry and chaetotaxy of the cephalic capsule, head appendages, legs, last abdominal segment and urogomphi. The ground plan of chaetotaxy of the genus Megadytes Sharp is described and illustrated based on three of the four recognised subgenera. First-instar larvae of Megadytes are characterised by the presence of a large number of additional sensilla on almost every part of the body. Primary chaetotaxy of the subgenera (Bifurcitus Brinck based on third instar) is very similar, with few differences including (1) shape of the setae on the anterior margin of the frontoclypeus; (2) presence or absence of a ring of multi-branched setae on distal third of mandible; and (3) number of setae on the urogomphus. A cladistic analysis of Dytiscidae, based on 169 larval characters and 34 taxa, indicates that: (1) Trifurcitus Brinck deserves generic status; (2) Cybistrini are not closely related to Hydroporinae; (3) the absence of a galea in Cybistrini is a secondary loss independent of that in Hydroporinae; (4) Cybistrini are well supported by many characters (including several aspects of first-instar chaetotaxy).