Modular Relaxed Dependencies in Weak Memory Concurrency? Marco Paviotti12, Simon Cooksey2, Anouk Paradis3, Daniel Wright2, Scott Owens2, and Mark Batty2 1 Imperial College London, United Kingdom
[email protected] 2 University of Kent, Canterbury, United Kingdom fm.paviotti, sjc205, daw29, S.A.Owens,
[email protected] 3 ETH Zurich, Switzerland
[email protected] Abstract. We present a denotational semantics for weak memory con- currency that avoids thin-air reads, provides data-race free programs with sequentially consistent semantics (DRF-SC), and supports a com- positional refinement relation for validating optimisations. Our semantics identifies false program dependencies that might be removed by compiler optimisation, and leaves in place just the dependencies necessary to rule out thin-air reads. We show that our dependency calculation can be used to rule out thin-air reads in any axiomatic concurrency model, in particular C++. We present a tool that automatically evaluates litmus tests, show that we can augment C++ to fix the thin-air problem, and we prove that our augmentation is compatible with the previously used compilation mappings over key processor architectures. We argue that our dependency calculation offers a practical route to fixing the long- standing problem of thin-air reads in the C++ specification. Keywords: Thin-air problem · Weak memory concurrency · Compiler Optimisations · Denotational Semantics · Compositionality 1 Introduction It has been a longstanding problem to define the semantics of programming languages with shared memory concurrency in a way that does not allow un- wanted behaviours { especially observing thin-air values [8,7] { and that does not forbid compiler optimisations that are important in practice, as is the case with Java and Hotspot [30,29].