Sense and Reference in Semantics Examples
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Semantics and Pragmatics
Semantics and Pragmatics Christopher Gauker Semantics deals with the literal meaning of sentences. Pragmatics deals with what speakers mean by their utterances of sentences over and above what those sentences literally mean. However, it is not always clear where to draw the line. Natural languages contain many expressions that may be thought of both as contributing to literal meaning and as devices by which speakers signal what they mean. After characterizing the aims of semantics and pragmatics, this chapter will set out the issues concerning such devices and will propose a way of dividing the labor between semantics and pragmatics. Disagreements about the purview of semantics and pragmatics often concern expressions of which we may say that their interpretation somehow depends on the context in which they are used. Thus: • The interpretation of a sentence containing a demonstrative, as in “This is nice”, depends on a contextually-determined reference of the demonstrative. • The interpretation of a quantified sentence, such as “Everyone is present”, depends on a contextually-determined domain of discourse. • The interpretation of a sentence containing a gradable adjective, as in “Dumbo is small”, depends on a contextually-determined standard (Kennedy 2007). • The interpretation of a sentence containing an incomplete predicate, as in “Tipper is ready”, may depend on a contextually-determined completion. Semantics and Pragmatics 8/4/10 Page 2 • The interpretation of a sentence containing a discourse particle such as “too”, as in “Dennis is having dinner in London tonight too”, may depend on a contextually determined set of background propositions (Gauker 2008a). • The interpretation of a sentence employing metonymy, such as “The ham sandwich wants his check”, depends on a contextually-determined relation of reference-shifting. -
Reference and Sense
REFERENCE AND SENSE y two distinct ways of talking about the meaning of words y tlkitalking of SENSE=deali ng with relationshippggs inside language y talking of REFERENCE=dealing with reltilations hips bbtetween l. and the world y by means of reference a speaker indicates which things (including persons) are being talked about ege.g. My son is in the beech tree. II identifies persons identifies things y REFERENCE-relationship between the Enggplish expression ‘this p pgage’ and the thing you can hold between your finger and thumb (part of the world) y your left ear is the REFERENT of the phrase ‘your left ear’ while REFERENCE is the relationship between parts of a l. and things outside the l. y The same expression can be used to refer to different things- there are as many potential referents for the phrase ‘your left ear’ as there are pppeople in the world with left ears Many expressions can have VARIABLE REFERENCE y There are cases of expressions which in normal everyday conversation never refer to different things, i.e. which in most everyday situations that one can envisage have CONSTANT REFERENCE. y However, there is very little constancy of reference in l. Almost all of the fixing of reference comes from the context in which expressions are used. y Two different expressions can have the same referent class ica l example: ‘the MiMorning St’Star’ and ‘the Evening Star’ to refer to the planet Venus y SENSE of an expression is its place in a system of semantic relati onshi ps wit h other expressions in the l. -
The Meaning of Language
01:615:201 Introduction to Linguistic Theory Adam Szczegielniak The Meaning of Language Copyright in part: Cengage learning The Meaning of Language • When you know a language you know: • When a word is meaningful or meaningless, when a word has two meanings, when two words have the same meaning, and what words refer to (in the real world or imagination) • When a sentence is meaningful or meaningless, when a sentence has two meanings, when two sentences have the same meaning, and whether a sentence is true or false (the truth conditions of the sentence) • Semantics is the study of the meaning of morphemes, words, phrases, and sentences – Lexical semantics: the meaning of words and the relationships among words – Phrasal or sentential semantics: the meaning of syntactic units larger than one word Truth • Compositional semantics: formulating semantic rules that build the meaning of a sentence based on the meaning of the words and how they combine – Also known as truth-conditional semantics because the speaker’ s knowledge of truth conditions is central Truth • If you know the meaning of a sentence, you can determine under what conditions it is true or false – You don’ t need to know whether or not a sentence is true or false to understand it, so knowing the meaning of a sentence means knowing under what circumstances it would be true or false • Most sentences are true or false depending on the situation – But some sentences are always true (tautologies) – And some are always false (contradictions) Entailment and Related Notions • Entailment: one sentence entails another if whenever the first sentence is true the second one must be true also Jack swims beautifully. -
Operational Semantics Page 1
Operational Semantics Page 1 Operational Semantics Class notes for a lecture given by Mooly Sagiv Tel Aviv University 24/5/2007 By Roy Ganor and Uri Juhasz Reference Semantics with Applications, H. Nielson and F. Nielson, Chapter 2. http://www.daimi.au.dk/~bra8130/Wiley_book/wiley.html Introduction Semantics is the study of meaning of languages. Formal semantics for programming languages is the study of formalization of the practice of computer programming. A computer language consists of a (formal) syntax – describing the actual structure of programs and the semantics – which describes the meaning of programs. Many tools exist for programming languages (compilers, interpreters, verification tools, … ), the basis on which these tools can cooperate is the formal semantics of the language. Formal Semantics When designing a programming language, formal semantics gives an (hopefully) unambiguous definition of what a program written in the language should do. This definition has several uses: • People learning the language can understand the subtleties of its use • The model over which the semantics is defined (the semantic domain) can indicate what the requirements are for implementing the language (as a compiler/interpreter/…) • Global properties of any program written in the language, and any state occurring in such a program, can be understood from the formal semantics • Implementers of tools for the language (parsers, compilers, interpreters, debuggers etc) have a formal reference for their tool and a formal definition of its correctness/completeness -
Two-Dimensionalism: Semantics and Metasemantics
Two-Dimensionalism: Semantics and Metasemantics YEUNG, \y,ang -C-hun ...:' . '",~ ... ~ .. A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Philosophy In Philosophy The Chinese University of Hong Kong January 2010 Abstract of thesis entitled: Two-Dimensionalism: Semantics and Metasemantics Submitted by YEUNG, Wang Chun for the degree of Master of Philosophy at the Chinese University of Hong Kong in July 2009 This ,thesis investigates problems surrounding the lively debate about how Kripke's examples of necessary a posteriori truths and contingent a priori truths should be explained. Two-dimensionalism is a recent development that offers a non-reductive analysis of such truths. The semantic interpretation of two-dimensionalism, proposed by Jackson and Chalmers, has certain 'descriptive' elements, which can be articulated in terms of the following three claims: (a) names and natural kind terms are reference-fixed by some associated properties, (b) these properties are known a priori by every competent speaker, and (c) these properties reflect the cognitive significance of sentences containing such terms. In this thesis, I argue against two arguments directed at such 'descriptive' elements, namely, The Argument from Ignorance and Error ('AlE'), and The Argument from Variability ('AV'). I thereby suggest that reference-fixing properties belong to the semantics of names and natural kind terms, and not to their metasemantics. Chapter 1 is a survey of some central notions related to the debate between descriptivism and direct reference theory, e.g. sense, reference, and rigidity. Chapter 2 outlines the two-dimensional approach and introduces the va~ieties of interpretations 11 of the two-dimensional framework. -
Denotational Semantics
Denotational Semantics CS 6520, Spring 2006 1 Denotations So far in class, we have studied operational semantics in depth. In operational semantics, we define a language by describing the way that it behaves. In a sense, no attempt is made to attach a “meaning” to terms, outside the way that they are evaluated. For example, the symbol ’elephant doesn’t mean anything in particular within the language; it’s up to a programmer to mentally associate meaning to the symbol while defining a program useful for zookeeppers. Similarly, the definition of a sort function has no inherent meaning in the operational view outside of a particular program. Nevertheless, the programmer knows that sort manipulates lists in a useful way: it makes animals in a list easier for a zookeeper to find. In denotational semantics, we define a language by assigning a mathematical meaning to functions; i.e., we say that each expression denotes a particular mathematical object. We might say, for example, that a sort implementation denotes the mathematical sort function, which has certain properties independent of the programming language used to implement it. In other words, operational semantics defines evaluation by sourceExpression1 −→ sourceExpression2 whereas denotational semantics defines evaluation by means means sourceExpression1 → mathematicalEntity1 = mathematicalEntity2 ← sourceExpression2 One advantage of the denotational approach is that we can exploit existing theories by mapping source expressions to mathematical objects in the theory. The denotation of expressions in a language is typically defined using a structurally-recursive definition over expressions. By convention, if e is a source expression, then [[e]] means “the denotation of e”, or “the mathematical object represented by e”. -
Quantum Weakest Preconditions
Quantum Weakest Preconditions Ellie D’Hondt ∗ Prakash Panangaden †‡ Abstract We develop a notion of predicate transformer and, in particular, the weak- est precondition, appropriate for quantum computation. We show that there is a Stone-type duality between the usual state-transformer semantics and the weakest precondition semantics. Rather than trying to reduce quantum com- putation to probabilistic programming we develop a notion that is directly taken from concepts used in quantum computation. The proof that weak- est preconditions exist for completely positive maps follows from the Kraus representation theorem. As an example we give the semantics of Selinger’s language in terms of our weakest preconditions. 1 Introduction Quantum computation is a field of research that is rapidly acquiring a place as a significant topic in computer science. To be sure, there are still essential tech- nological and conceptual problems to overcome in building functional quantum computers. Nevertheless there are fundamental new insights into quantum com- putability [Deu85, DJ92], quantum algorithms [Gro96, Gro97, Sho94, Sho97] and into the nature of quantum mechanics itself [Per95], particularly with the emer- gence of quantum information theory [NC00]. These developments inspire one to consider the problems of programming full-fledged general purpose quantum computers. Much of the theoretical re- search is aimed at using the new tools available - superposition, entanglement and linearity - for algorithmic efficiency. However, the fact that quantum algorithms are currently done at a very low level only - comparable to classical computing 60 years ago - is a much less explored aspect of the field. The present paper is ∗Centrum Leo Apostel , Vrije Universiteit Brussel, Brussels, Belgium, [email protected]. -
Scope Ambiguity in Syntax and Semantics
Scope Ambiguity in Syntax and Semantics Ling324 Reading: Meaning and Grammar, pg. 142-157 Is Scope Ambiguity Semantically Real? (1) Everyone loves someone. a. Wide scope reading of universal quantifier: ∀x[person(x) →∃y[person(y) ∧ love(x,y)]] b. Wide scope reading of existential quantifier: ∃y[person(y) ∧∀x[person(x) → love(x,y)]] 1 Could one semantic representation handle both the readings? • ∃y∀x reading entails ∀x∃y reading. ∀x∃y describes a more general situation where everyone has someone who s/he loves, and ∃y∀x describes a more specific situation where everyone loves the same person. • Then, couldn’t we say that Everyone loves someone is associated with the semantic representation that describes the more general reading, and the more specific reading obtains under an appropriate context? That is, couldn’t we say that Everyone loves someone is not semantically ambiguous, and its only semantic representation is the following? ∀x[person(x) →∃y[person(y) ∧ love(x,y)]] • After all, this semantic representation reflects the syntax: In syntax, everyone c-commands someone. In semantics, everyone scopes over someone. 2 Arguments for Real Scope Ambiguity • The semantic representation with the scope of quantifiers reflecting the order in which quantifiers occur in a sentence does not always represent the most general reading. (2) a. There was a name tag near every plate. b. A guard is standing in front of every gate. c. A student guide took every visitor to two museums. • Could we stipulate that when interpreting a sentence, no matter which order the quantifiers occur, always assign wide scope to every and narrow scope to some, two, etc.? 3 Arguments for Real Scope Ambiguity (cont.) • But in a negative sentence, ¬∀x∃y reading entails ¬∃y∀x reading. -
Operational Semantics with Hierarchical Abstract Syntax Graphs*
Operational Semantics with Hierarchical Abstract Syntax Graphs* Dan R. Ghica Huawei Research, Edinburgh University of Birmingham, UK This is a motivating tutorial introduction to a semantic analysis of programming languages using a graphical language as the representation of terms, and graph rewriting as a representation of reduc- tion rules. We show how the graphical language automatically incorporates desirable features, such as a-equivalence and how it can describe pure computation, imperative store, and control features in a uniform framework. The graph semantics combines some of the best features of structural oper- ational semantics and abstract machines, while offering powerful new methods for reasoning about contextual equivalence. All technical details are available in an extended technical report by Muroya and the author [11] and in Muroya’s doctoral dissertation [21]. 1 Hierarchical abstract syntax graphs Before proceeding with the business of analysing and transforming the source code of a program, a com- piler first parses the input text into a sequence of atoms, the lexemes, and then assembles them into a tree, the Abstract Syntax Tree (AST), which corresponds to its grammatical structure. The reason for preferring the AST to raw text or a sequence of lexemes is quite obvious. The structure of the AST incor- porates most of the information needed for the following stage of compilation, in particular identifying operations as nodes in the tree and operands as their branches. This makes the AST algorithmically well suited for its purpose. Conversely, the AST excludes irrelevant lexemes, such as separators (white-space, commas, semicolons) and aggregators (brackets, braces), by making them implicit in the tree-like struc- ture. -
Making Classes Provable Through Contracts, Models and Frames
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CiteSeerX DISS. ETH NO. 17610 Making classes provable through contracts, models and frames A dissertation submitted to the SWISS FEDERAL INSTITUTE OF TECHNOLOGY ZURICH (ETH Zurich)¨ for the degree of Doctor of Sciences presented by Bernd Schoeller Diplom-Informatiker, TU Berlin born April 5th, 1974 citizen of Federal Republic of Germany accepted on the recommendation of Prof. Dr. Bertrand Meyer, examiner Prof. Dr. Martin Odersky, co-examiner Prof. Dr. Jonathan S. Ostroff, co-examiner 2007 ABSTRACT Software correctness is a relation between code and a specification of the expected behavior of the software component. Without proper specifica- tions, correct software cannot be defined. The Design by Contract methodology is a way to tightly integrate spec- ifications into software development. It has proved to be a light-weight and at the same time powerful description technique that is accepted by software developers. In its more than 20 years of existence, it has demon- strated many uses: documentation, understanding object-oriented inheri- tance, runtime assertion checking, or fully automated testing. This thesis approaches the formal verification of contracted code. It conducts an analysis of Eiffel and how contracts are expressed in the lan- guage as it is now. It formalizes the programming language providing an operational semantics and a formal list of correctness conditions in terms of this operational semantics. It introduces the concept of axiomatic classes and provides a full library of axiomatic classes, called the mathematical model library to overcome prob- lems of contracts on unbounded data structures. -
A Denotational Semantics Approach to Functional and Logic Programming
A Denotational Semantics Approach to Functional and Logic Programming TR89-030 August, 1989 Frank S.K. Silbermann The University of North Carolina at Chapel Hill Department of Computer Science CB#3175, Sitterson Hall Chapel Hill, NC 27599-3175 UNC is an Equal OpportunityjAfflrmative Action Institution. A Denotational Semantics Approach to Functional and Logic Programming by FrankS. K. Silbermann A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in par tial fulfillment of the requirements for the degree of Doctor of Philosophy in Computer Science. Chapel Hill 1989 @1989 Frank S. K. Silbermann ALL RIGHTS RESERVED 11 FRANK STEVEN KENT SILBERMANN. A Denotational Semantics Approach to Functional and Logic Programming (Under the direction of Bharat Jayaraman.) ABSTRACT This dissertation addresses the problem of incorporating into lazy higher-order functional programming the relational programming capability of Horn logic. The language design is based on set abstraction, a feature whose denotational semantics has until now not been rigorously defined. A novel approach is taken in constructing an operational semantics directly from the denotational description. The main results of this dissertation are: (i) Relative set abstraction can combine lazy higher-order functional program ming with not only first-order Horn logic, but also with a useful subset of higher order Horn logic. Sets, as well as functions, can be treated as first-class objects. (ii) Angelic powerdomains provide the semantic foundation for relative set ab straction. (iii) The computation rule appropriate for this language is a modified parallel outermost, rather than the more familiar left-most rule. (iv) Optimizations incorporating ideas from narrowing and resolution greatly improve the efficiency of the interpreter, while maintaining correctness. -
The Etienne Gilson Series 21
The Etienne Gilson Series 21 Remapping Scholasticism by MARCIA L. COLISH 3 March 2000 Pontifical Institute of Mediaeval Studies This lecture and its publication was made possible through the generous bequest of the late Charles J. Sullivan (1914-1999) Note: the author may be contacted at: Department of History Oberlin College Oberlin OH USA 44074 ISSN 0-708-319X ISBN 0-88844-721-3 © 2000 by Pontifical Institute of Mediaeval Studies 59 Queen’s Park Crescent East Toronto, Ontario, Canada M5S 2C4 Printed in Canada nce upon a time there were two competing story-lines for medieval intellectual history, each writing a major role for scholasticism into its script. Although these story-lines were O created independently and reflected different concerns, they sometimes overlapped and gave each other aid and comfort. Both exerted considerable influence on the way historians of medieval speculative thought conceptualized their subject in the first half of the twentieth cen- tury. Both versions of the map drawn by these two sets of cartographers illustrated what Wallace K. Ferguson later described as “the revolt of the medievalists.”1 One was confined largely to the academy and appealed to a wide variety of medievalists, while the other had a somewhat narrower draw and reflected political and confessional, as well as academic, concerns. The first was the anti-Burckhardtian effort to push Renaissance humanism, understood as combining a knowledge and love of the classics with “the discovery of the world and of man,” back into the Middle Ages. The second was inspired by the neo-Thomist revival launched by Pope Leo XIII, and was inhabited almost exclusively by Roman Catholic scholars.