Concurrency Semantics in Continuation-Passing Style∗ — The Companion Technical Report — Eneia Nicolae Todoran Technical University of Cluj-Napoca Department of Computer Science Baritiu Str. 28, 400027, Cluj-Napoca, Romania.
[email protected] Nikolaos S. Papaspyrou National Technical University of Athens School of Electrical and Computer Engineering Software Engineering Laboratory Polytechnioupoli, 15780 Zografou, Greece.
[email protected] Abstract By using the mathematical framework of metric semantics we develop a denotational semantics designed in continuation-passing style for an abstract concurrent language providing a general mech- anism of interaction between multisets of distributed actions. The basic laws of concurrent systems are satisfied in this semantics. Next, by customizing the behavior of continuations we obtain denota- tional semantics for a couple of concurrent languages incorporating mechanisms for multiparty and binary interactions. We offer denotational semantics for two imperative concurrent languages based on Hoare’s CSP and a process algebra for DNA computing introduced by Cardelli. Keywords: continuation-passing style, denotational semantics, metric spaces, concurrency semantics 1 Introduction Continuations are a very powerful control-flow mechanism. As abstract representations of control flow, they were introduced in the 1960s and soon came into prominence in the field of denotational semantics for modelling the semantics of programming languages [23, 38, 34]. In a few words, a continuation represents control flow by capturing the notion of “the rest of the program”, after the current point during the program’s execution. Some functional languages, such as Scheme [22] and SML/NJ [37], provide direct support for capturing and invoking continuations, which are treated as first-class values.