BIOGEOGRAPHY of SOUTHERN POLAR BRYOZOANS D Barnes, S De Grave

Total Page:16

File Type:pdf, Size:1020Kb

BIOGEOGRAPHY of SOUTHERN POLAR BRYOZOANS D Barnes, S De Grave BIOGEOGRAPHY OF SOUTHERN POLAR BRYOZOANS D Barnes, S de Grave To cite this version: D Barnes, S de Grave. BIOGEOGRAPHY OF SOUTHERN POLAR BRYOZOANS. Vie et Milieu / Life & Environment, Observatoire Océanologique - Laboratoire Arago, 2000, pp.261-273. hal- 03186927 HAL Id: hal-03186927 https://hal.sorbonne-universite.fr/hal-03186927 Submitted on 31 Mar 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. VIE ET MILIEU, 2000, 50 (4) : 261-273 BIOGEOGRAPHY OF SOUTHERN POLAR BRYOZOANS D.K.A. BARNES* S. DE GRAVE** * Department of Zoology and Animal Ecology, University Collège Cork, Lee Mailings, Cork, Ireland ** The Oxford University Muséum of Natural History, Parks Road, Oxford, 0X1 3PW, United Kingdom ANTARCTICA ABSTRACT. - Despite the central rôle of Antarctica in the history and dynamics of BRYOZOANS oceanography in mid to high latitudes of the southern hémisphère there remains a POLAR FRONTAL ZONE paucity of biogeographic investigation. Substantial monographs over the last centu- ZOOQEOORAPHY ry coupled with major récent revisions have removed many obstacles to modem évaluation of many taxa. Bryozoans, being particularly abundant and speciose in the Southern Océan, have many useful traits for investigating biogeographic pat- terns in the southern polar région. They fossilise well, transitory morpho-stages between species are brief and most bryozoans have reduced dispersai opportunities due to possession of benthic larvae. Further to previously described broad faunistic patterns we demonstrate that bryozoans show sub-patterns within the Polar Frontal Zone. Four bryozoogeographical zones are recognised in Antarctica waters: East Antarctic seas, West Antarctic seas, the Antarctic Peninsula and the Scotia Arc. We discuss différences between species, genus and family level patterns in three ma- rine orders (of differing geological âge) and factors responsible for création of such distributions. ANTARCTIQUE RÉSUME. - En dépit du rôle central de l'Antarctique dans l'histoire et la dyna- BRYOZOAIRES mique de l'océanographie des latitudes moyennes à élevées de l'hémisphère sud, ZONE FRONTALE POLAIRE les investigations en biogéographie restent rares. Les monographies substancielles ZOOGÉOGRAPHIE des dernières décennies associées aux révisions majeures récentes ont levé divers obstacles dans l'évaluation moderne de nombreux taxons. Les Bryozoaires de l'Océan Sud, particulièrement abondants et riches en espèces, présentent de nom- breux traits significatifs pour les investigations sur la distribution biogéographique dans la région polaire du Sud. Ils se fossilisent bien, les morpho-stades ontogénéti- ques sont brefs et la plupart des Bryozoaires offrent peu d'opportunités à la disper- sion en raison de leurs larves benthiques. Au-delà des patterns à grande échelle déjà décrits, nous démontrons que les Bryozoaires présentent des sous-ensembles dans la Zone Frontale Polaire. Quatre zones zoogéographiques du groupe peuvent être reconnues dans les eaux antarctiques: les mers de l'Est et de l'Ouest antarctique, la Péninsule antarctique et l'Arc Scotia. Nous discutons des différences entre patterns au niveau des espèces, des genres et des familles appartenant à trois ordres marins (d'âge géologique différent) et des facteurs responsables d'une telle répartition. INTRODUCTION and fauna (Sara et al. 1992, Beu et al. 1997, Glasby & Alvarez 1999). Essentially, the results of thèse studies are in agreement with the biogeographic The continent of Antarctica and outlying scheme proposed by Hedgpeth (1969) and further subantarctic islands are isolated from most of the elaborated upon by Dell (1972). The basic feature land and continental shelves of the globe both of this scheme is three concentric zones denoting oceanographically (by the Antarctic Circumpolar the High Antarctic région around the continent it- Current) and bathymetry (by abyssal depths). His- self, the Antarctic Région extending to the Polar torically however, various plant and animal taxa Frontal Zone (PFZ) and the Subantarctic Région common to the austral landmasses bear testimony north of the PFZ. Within this tripartite division, a to a period when South America, Africa and the séries of districts is recognised, largely centred southern Australasian islands formed the around the various islands groups of the supercontinent Gondwana. Various attempts have Subantarctic Région. Bryozoans are potentially in- been made at biogeographic investigations of the valuable for historical zoogeographic comparisons, southern Austral marine flora (e.g. Clayton 1994) in view of their limited dispersai through a pre- 262 BARNES DKA, DE GRAVE S dominance of benthic short duration larvae abun- Here we investigate the distributions and affini- dance. Furthermore the taxon is highly abundant in ties of bryozoans south of 47° in the southern hémi- Southern Océan waters and is easily accessible due sphère, including Magellanic Chile, Argentina, the to its pre-dominance in shallow waters. Bryozoans Falkland Islands, South Georgia, Bouvet Island, have some interesting biogeographical links be- Crozet Islands, Prince Edward Islands, Kerguelen tween the cool water margins of the southern At- Islands, Heard Island, Campbell Islands, South lantic, Pacific and Indian Océans (see Gordon Sandwhich Islands, South Orkney Islands, South 1989, Moyano 1996). Within Antarctic waters, Shetland Islands, Antarctic Peninsula, Weddell bryozoan collections have been made for more than Sea, Bellingshausen Sea, Ross Sea and East Ant- a century but from an early stage (Waters 1904) the arctic marine régions. diversity of the bryofauna was realised. Although major monographs were undertaken on some bryo- zoan groups, such as the Cyclostomatida (Borg 1926, 1944), others, such as the Cheilostomatida, METHOD were in a state of taxonomic flux. When combined with the level of Southern Océan exploration, high rate of species discovery and description of new The taxonomic référence material used in this study gênera and lack of tertiary fossil knowledge it is were the works of Busk (1884), Borg (1926, 1944), Has- unsurprising that comprehensive bryozoogeo- tings (1943), Brown (1952), Rogick (1965), Androsova graphical analyses have not been undertaken. The (1968), Lopez Gappa (1978), d'Hondt & Redier (1977), last few décades have seen a dramatic explosion of d'Hondt (1984), Moyano (1982, 1983, 1985, 1991, 1996, taxonomic and ecological work in southern polar 1999), Gordon (1984, 1986, 1989), the studies of Hay- waters for various reasons. Many new Antarctic ward and co-workers summarised in Hayward (1995) cheilostomatid bryozoan species and gênera have and Ostrovsky & Taylor (1996). In addition samples were collected over 8 years (from 1990-1998) from Tier- been described, whilst the taxonomic status of ra del Fuego, the Falkland Islands, South Georgia and many others has been elucidated (see Hayward Bird Island, the South Orkney Islands, the South She- 1995 and références therein). Early collections tland Islands, the Northern Antarctic Peninsula and Sou- from the subantarctic islands were studied by Busk thern Antarctic Peninsula. The main study localities and (1884) and further explored by d'Hondt & Redier islands are shown in Fig. 1. (1977) and d'Hondt (1984). In neighbouring ré- A species (présence-absence only) matrix by sites gions Moyano (1974) and Lopez Gappa (1978) de- was constructed for Cheilostomatida, Ctenostomatida scribed Chilean and Argentinian species, whilst and Cyclostomatida separately. This matrix was subjec- Hayward & Cook (1979, 1983) named South Afri- ted to Detrended Correspondence Analysis, as ordina- can species and Brown (1952), Powell (1967) and tion techniques are more appropriate if the underlying Gordon (1984, 1986, 1989) listed the rich fauna of structure in the data matrix consists of a gradient, rather New Zealand waters. than a more divisive structure. In common with ail ordi- nation techniques, DCA arranges the sites in a two-di- The Southern Océan has been found, at certain mensional (or higher) space, in which the points (i.e. depths, to be highly diverse (Brey et al. 1994) with sites) are arranged such that the points close together certain groups such as the polycheates and bryo- correspond to sites with similar species composition and zoans being particularly well represented (Clarke points that are far apart correspond to sites that are dissi- 1992) whilst other taxa most notably decapod and milar in species composition. DCA is considered a more balanamorph crustaceans largely being absent superior ordination technique, as it corrects for two of south of 54°. Some (but few) bryozoan taxa are the major faults of earlier techniques, i.e. the fact that common to Antarctica, South America, South Af- the ends of the axes are often compressed relative to the rica and Australasia (Moyano 1985). The extensive middle of the axes and the fact that the second axis often work on Magellanic species have demonstrated shows a systematic relation with the first axis. In the présent analysis, only the first two axes
Recommended publications
  • Ciona Intestinalis (Linnaeus, 1767) in an Invading Population from Placentia Bay Newfoundland and Labrador
    Recruitment patterns and post-metamorphic attachment by the solitary ascidian, Ciona intestinalis (Linnaeus, 1767) in an invading population from Placentia Bay Newfoundland and Labrador By ©Vanessa N. Reid A thesis submitted to the School of Graduate Studies in partial fulfillment of the requirements of the degree of MASTER OF SCIENCE AQUACULTURE MEMORIAL UNIVERSITY OF NEWFOUNDLAND JANUARY 2017 ST. JOHN’S NEWFOUNDLAND AND LABRADOR CANADA ABSTRACT Ciona intestinalis (Linneaus, 1767) is a non-indigenous species discovered in Newfoundland (NL) in 2012. It is a bio-fouler with potential to cause environmental distress and economic strain for the aquaculture industry. Key in management of this species is site-specific knowledge of life history and ecology. This study defines the environmental tolerances, recruitment patterns, habitat preferences, and attachment behaviours of C. intestinalis in Newfoundland. Over two years of field work, settlement plates and surveys were used to determine recruitment patterns, which were correlated with environmental data. The recruitment season extended from mid June to late November. Laboratory experiments defined the growth rate and attachment behaviours of Ciona intestinalis. I found mean growth rates of 10.8% length·d-1. The ability for C. intestinalis to undergo metamorphosis before substrate attachment, forming a feeding planktonic juvenile, thus increasing dispersal time was also found. These planktonic juveniles were then able to attach to available substrates post-metamorphosis. ii TABLE OF CONTENTS
    [Show full text]
  • Field Work Report
    TESTING OF MONITORING PROTOCOL FOR CORALLIGENOUS COMMUNITY 2013 FIELD REPORT CASE STUDY - CROATIA The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of UNEP/MAP-RAC/SPA concerning the legal status of any State, Territory, city or area, or of its authorities, or concerning the delimitation of their frontiers or boundaries. The views expressed in this publication do not necessarily reflect those of UNEP/MAP-RAC/SPA. Published by: RAC/SPA Copyright: © 2015 - RAC/SPA Reproduction of this publication for educational or other non-commercial purposes is authorized without prior written permission from the copyright holder provided the source is fully acknowledged. Reproduction of this publication for resale or other commercial purposes is prohibited without prior written permission of the copyright holder. For bibliographic purposes, this volume may be cited as: RAC/SPA - UNEP/MAP, 2014. Testing of monitoring protocol for coralligenous community: 2013 Field Report. By Garrabou J., Kipson S. Ed. RAC/SPA - MedMPAnet Project, Tunis: 101 p + annexes. Cover photo credit: Ante_Zuljevic. This document has been elaborated within the framework of the Regional Project for the Development of a Mediterranean Marine and Coastal Protected Areas (MPAs) Network through the boosting of Mediterranean MPAs Creation and Management (MedMPAnet Project). The MedMPAnet Project is implemented in the framework of the UNEP/MAP-GEF MedPartnership, with the financial support of EC, AECID and FFEM. Data analysis, report preparation: Joaquim Garrabou Institut de Ciències del Mar, Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain, [email protected] Field work coordination, data collection and analysis, report preparation: Silvija Kipson University of Zagreb, Faculty of Science, Zoology Department, Rooseveltov trg 6, 10000 Zagreb, Croatia, [email protected] Collection of field data: Sara Kaleb Department of Life Science, University of Trieste, Via L.
    [Show full text]
  • Bryozoan Studies 2019
    BRYOZOAN STUDIES 2019 Edited by Patrick Wyse Jackson & Kamil Zágoršek Czech Geological Survey 1 BRYOZOAN STUDIES 2019 2 Dedication This volume is dedicated with deep gratitude to Paul Taylor. Throughout his career Paul has worked at the Natural History Museum, London which he joined soon after completing post-doctoral studies in Swansea which in turn followed his completion of a PhD in Durham. Paul’s research interests are polymatic within the sphere of bryozoology – he has studied fossil bryozoans from all of the geological periods, and modern bryozoans from all oceanic basins. His interests include taxonomy, biodiversity, skeletal structure, ecology, evolution, history to name a few subject areas; in fact there are probably none in bryozoology that have not been the subject of his many publications. His office in the Natural History Museum quickly became a magnet for visiting bryozoological colleagues whom he always welcomed: he has always been highly encouraging of the research efforts of others, quick to collaborate, and generous with advice and information. A long-standing member of the International Bryozoology Association, Paul presided over the conference held in Boone in 2007. 3 BRYOZOAN STUDIES 2019 Contents Kamil Zágoršek and Patrick N. Wyse Jackson Foreword ...................................................................................................................................................... 6 Caroline J. Buttler and Paul D. Taylor Review of symbioses between bryozoans and primary and secondary occupants of gastropod
    [Show full text]
  • Discovery Reports
    9<S Q 7.*// DISCOVERY REPORTS Issued by the Discovery Committee Colonial Office, London on behalf of the Government of the Dependencies of the Falkland Islands VOLUME XXII CAMBRIDGE AT THE UNIVERSITY PRESS r 943 [Discovery Reports. Vol. XXII, pp. 301-510, Plates V-XIII, September 1943] POLYZOA (BRYOZOA) I. SCRUPOCELLARIIDAE, EPISTOMIIDAE, FARCIMINARIIDAE, BICELLARIELLIDAE, AETEIDAE, SCRUPARIIDAE By ANNA B. HASTINGS, M.A., Ph.D. British Museum (Natural History) CONTENTS Introduction PaSe 3°3 Interpretation of Busk's work 303 Acknowledgements 304 List of stations, and of the species collected at each 305 List of species discussed 318 Systematic descriptions 319 Geographical distribution of species 477 The relation between hydrological conditions and the distribution of the species 491 Geographical distribution of genera 492 Seasonal distribution of ancestrulae 497 Note on the vermiform bodies found in some Polyzoa 499 Addendum 501 References 501 Index 506 Plates V-XIII following page 510 ; POLYZOA (BRYOZOA) I. SCRUPOCELLARIIDAE, EPISTOMIIDAE, FARCIMINARI1DAE, BICELLARIELLIDAE, AETEIDAE, SCRUPARIIDAE By Anna B. Hastings, M.A., Ph.D. British Museum (Natural History) (Plates V-XIII ; Text-figs. 1-66) INTRODUCTION Discovery Investigations an exceptionally fine collection of In the course of the Antarctic and sub-Antarctic Polyzoa has been made, as well as small collections from South Africa, New Zealand and certain islands in the tropical Atlantic. Together with this Discovery material I have studied the collections made by the National 1 Antarctic Expedition (190 1-4) and the British Antarctic ('Terra Nova') Expedition; the South Georgian Polyzoa collected by the Shackleton-Rowett (' Quest ') Expedition and collections from the Falkland Islands lent to me by the Hamburg Museum and the U.S.
    [Show full text]
  • Bryozoa of the Caspian Sea
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/339363855 Bryozoa of the Caspian Sea Article in Inland Water Biology · January 2020 DOI: 10.1134/S199508292001006X CITATIONS READS 0 90 1 author: Valentina Ivanovna Gontar Russian Academy of Sciences 58 PUBLICATIONS 101 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Freshwater Bryozoa View project Evolution of spreading of marine invertebrates in the Northern Hemisphere View project All content following this page was uploaded by Valentina Ivanovna Gontar on 19 February 2020. The user has requested enhancement of the downloaded file. ISSN 1995-0829, Inland Water Biology, 2020, Vol. 13, No. 1, pp. 1–13. © Pleiades Publishing, Ltd., 2020. Russian Text © The Author(s), 2020, published in Biologiya Vnutrennykh Vod, 2020, No. 1, pp. 3–16. AQUATIC FLORA AND FAUNA Bryozoa of the Caspian Sea V. I. Gontar* Institute of Zoology, Russian Academy of Sciences, St. Petersburg, Russia *e-mail: [email protected] Received April 24, 2017; revised September 18, 2018; accepted November 27, 2018 Abstract—Five bryozoan species of the class Gymnolaemata and a single Plumatella emarginata species of the class Phylactolaemata are found in the Caspian Sea. The class Gymnolaemata is represented by bryozoans of the orders Ctenostomatida (Amathia caspia, Paludicella articulata, and Victorella pavida) and Cheilostoma- tida (Conopeum grimmi and Lapidosella ostroumovi). Two species (Conopeum grimmi and Amatia caspia) are Caspian endemics. Lapidosella ostroumovi was identified in the Caspian Sea for the first time. The systematic position, illustrated morphological descriptions, and features of ecology of the species identified are pre- sented.
    [Show full text]
  • Ctenostomatous Bryozoa from São Paulo, Brazil, with Descriptions of Twelve New Species
    Zootaxa 3889 (4): 485–524 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3889.4.2 http://zoobank.org/urn:lsid:zoobank.org:pub:0256CD93-AE8A-475F-8EB7-2418DF510AC2 Ctenostomatous Bryozoa from São Paulo, Brazil, with descriptions of twelve new species LEANDRO M. VIEIRA1,2, ALVARO E. MIGOTTO2 & JUDITH E. WINSTON3 1Departamento de Zoologia, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Recife, PE 50670-901, Brazil. E-mail: [email protected] 2Centro de Biologia Marinha, Universidade de São Paulo, São Sebastião, SP 11600–000, Brazil. E-mail: [email protected] 3Smithsonian Marine Station, 701 Seaway Drive, Fort Pierce, FL 34949, USA. E-mail: [email protected] Abstract This paper describes 21 ctenostomatous bryozoans from the state of São Paulo, Brazil, based on specimens observed in vivo. A new family, Jebramellidae n. fam., is erected for a newly described genus and species, Jebramella angusta n. gen. et sp. Eleven other species are described as new: Alcyonidium exiguum n. sp., Alcyonidium pulvinatum n. sp., Alcyonidium torquatum n. sp., Alcyonidium vitreum n. sp., Bowerbankia ernsti n. sp., Bowerbankia evelinae n. sp., Bow- erbankia mobilis n. sp., Nolella elizae n. sp., Panolicella brasiliensis n. sp., Sundanella rosea n. sp., Victorella araceae n. sp. Taxonomic and ecological notes are also included for nine previously described species: Aeverrillia setigera (Hincks, 1887), Alcyonidium hauffi Marcus, 1939, Alcyonidium polypylum Marcus, 1941, Anguinella palmata van Beneden, 1845, Arachnoidella evelinae (Marcus, 1937), Bantariella firmata (Marcus, 1938) n. comb., Nolella sawayai Marcus, 1938, Nolella stipata Gosse, 1855 and Zoobotryon verticillatum (delle Chiaje, 1822).
    [Show full text]
  • (Bryozoa, Cheilostomatida) from the Atlantic-Mediterranean Region
    European Journal of Taxonomy 536: 1–33 ISSN 2118-9773 https://doi.org/10.5852/ejt.2019.536 www.europeanjournaloftaxonomy.eu 2019 · Madurell T. et al. This work is licensed under a Creative Commons Attribution License (CC BY 4.0). Research article urn:lsid:zoobank.org:pub:EC4DDAED-11A3-45AB-B276-4ED9A301F9FE Revision of the Genus Schizoretepora (Bryozoa, Cheilostomatida) from the Atlantic-Mediterranean region Teresa MADURELL 1,*, Mary SPENCER JONES 2 & Mikel ZABALA 3 1 Institute of Marine Sciences (ICM-CSIC), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalonia. 2 Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK. 3 Department d’Ecologia, Universitat de Barcelona (UB), Diagonal 645, 08028 Barcelona, Catalonia. * Corresponding author: [email protected] 2 Email: [email protected] 3 Email: [email protected] 1 urn:lsid:zoobank.org:author:AB9762AB-55CD-4642-B411-BDBE45CA2082 2 urn:lsid:zoobank.org:author:0C8C2EBE-17E1-44DA-8FDB-DC35F615F95B 3 urn:lsid:zoobank.org:author:7E533CE7-92CA-4A17-8E41-5C37188D0CDA Abstract. We examined the type specimens and historical collections holding puzzling Atlantic and Mediterranean material belonging to the genus Schizoretepora Gregory, 1893. We performed a detailed study of the colonial characters and re-describe the resulting species and those that have rarely been found or have poor original descriptions. As a result of this revision, nine species are found in the northeast Atlantic and Mediterranean. Six of them are re-described and illustrated: S. aviculifera (Canu & Bassler, 1930), S. calveti d’Hondt, 1975, S. imperati (Busk, 1884), S. sp. nov.? (= S.
    [Show full text]
  • Marlin Marine Information Network Information on the Species and Habitats Around the Coasts and Sea of the British Isles
    MarLIN Marine Information Network Information on the species and habitats around the coasts and sea of the British Isles Hornwrack (Flustra foliacea) MarLIN – Marine Life Information Network Biology and Sensitivity Key Information Review Dr Harvey Tyler-Walters & Susie Ballerstedt 2007-09-11 A report from: The Marine Life Information Network, Marine Biological Association of the United Kingdom. Please note. This MarESA report is a dated version of the online review. Please refer to the website for the most up-to-date version [https://www.marlin.ac.uk/species/detail/1609]. All terms and the MarESA methodology are outlined on the website (https://www.marlin.ac.uk) This review can be cited as: Tyler-Walters, H. & Ballerstedt, S., 2007. Flustra foliacea Hornwrack. In Tyler-Walters H. and Hiscock K. (eds) Marine Life Information Network: Biology and Sensitivity Key Information Reviews, [on-line]. Plymouth: Marine Biological Association of the United Kingdom. DOI https://dx.doi.org/10.17031/marlinsp.1609.2 The information (TEXT ONLY) provided by the Marine Life Information Network (MarLIN) is licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales License. Note that images and other media featured on this page are each governed by their own terms and conditions and they may or may not be available for reuse. Permissions beyond the scope of this license are available here. Based on a work at www.marlin.ac.uk (page left blank) Date: 2007-09-11 Hornwrack (Flustra foliacea) - Marine Life Information Network See online review for distribution map Flustra foliacea. Distribution data supplied by the Ocean Photographer: Keith Hiscock Biogeographic Information System (OBIS).
    [Show full text]
  • Trait-Based Assembly Across Time and Latitude in Marine Communities
    TRAIT-BASED ASSEMBLY ACROSS TIME AND LATITUDE IN MARINE COMMUNITIES ________________________________________________________________________ A dissertation submitted to the Temple University Graduate Board ________________________________________________________________________ In partial fulfillment of the requirements for the degree DOCTOR OF PHILOSOPHY ________________________________________________________________________ By Diana Paola López December 2020 Examining Committee Members: Amy L. Freestone, Advisory Chair, Department of Biology S. Tonia Hsieh, Dissertation Examining Chair, Department of Biology Matthew R. Helmus, Committee Member, Department of Biology Edgardo Londoño-Cruz, External Member, Universidad del Valle © Copyright 2020 by Diana P. López All Rights Reserved ii ABSTRACT One of the central questions of ecology aims to understand the mechanisms that maintain patterns of species coexistence. Community assembly, the process of structuring communities, occurs in ecological time, is influenced by biotic interactions at local scales, and is thought to help maintain diversity patterns. Species invasions, however, as a result of globalization and intense marine trade, are common in coastal ecosystems, and have the potential to change the outcome of biotic interactions and community structure. Human-induced disturbance also disrupts community structure and coastal habitats are at greater risk due to encroachment of human populations near coasts. Changes in community structure are usually quantified as the number and distribution
    [Show full text]
  • An Annotated Checklist of the Marine Macroinvertebrates of Alaska David T
    NOAA Professional Paper NMFS 19 An annotated checklist of the marine macroinvertebrates of Alaska David T. Drumm • Katherine P. Maslenikov Robert Van Syoc • James W. Orr • Robert R. Lauth Duane E. Stevenson • Theodore W. Pietsch November 2016 U.S. Department of Commerce NOAA Professional Penny Pritzker Secretary of Commerce National Oceanic Papers NMFS and Atmospheric Administration Kathryn D. Sullivan Scientific Editor* Administrator Richard Langton National Marine National Marine Fisheries Service Fisheries Service Northeast Fisheries Science Center Maine Field Station Eileen Sobeck 17 Godfrey Drive, Suite 1 Assistant Administrator Orono, Maine 04473 for Fisheries Associate Editor Kathryn Dennis National Marine Fisheries Service Office of Science and Technology Economics and Social Analysis Division 1845 Wasp Blvd., Bldg. 178 Honolulu, Hawaii 96818 Managing Editor Shelley Arenas National Marine Fisheries Service Scientific Publications Office 7600 Sand Point Way NE Seattle, Washington 98115 Editorial Committee Ann C. Matarese National Marine Fisheries Service James W. Orr National Marine Fisheries Service The NOAA Professional Paper NMFS (ISSN 1931-4590) series is pub- lished by the Scientific Publications Of- *Bruce Mundy (PIFSC) was Scientific Editor during the fice, National Marine Fisheries Service, scientific editing and preparation of this report. NOAA, 7600 Sand Point Way NE, Seattle, WA 98115. The Secretary of Commerce has The NOAA Professional Paper NMFS series carries peer-reviewed, lengthy original determined that the publication of research reports, taxonomic keys, species synopses, flora and fauna studies, and data- this series is necessary in the transac- intensive reports on investigations in fishery science, engineering, and economics. tion of the public business required by law of this Department.
    [Show full text]
  • First Record of the Non-Native Bryozoan Amathia (= Zoobotryon) Verticillata (Delle Chiaje, 1822) (Ctenostomata) in the Galápagos Islands
    BioInvasions Records (2015) Volume 4, Issue 4: 255–260 Open Access doi: http://dx.doi.org/10.3391/bir.2015.4.4.04 © 2015 The Author(s). Journal compilation © 2015 REABIC Rapid Communication First record of the non-native bryozoan Amathia (= Zoobotryon) verticillata (delle Chiaje, 1822) (Ctenostomata) in the Galápagos Islands 1 2,5 3 4 5 6 Linda McCann *, Inti Keith , James T. Carlton , Gregory M. Ruiz , Terence P. Dawson and Ken Collins 1Smithsonian Environmental Research Center, 3152 Paradise Drive, Tiburon, CA 94920, USA 2Charles Darwin Foundation, Marine Science Department, Santa Cruz Island, Galápagos, Ecuador 3Maritime Studies Program, Williams College-Mystic Seaport, 75 Greenmanville Avenue, Mystic, Connecticut 06355, USA 4Smithsonian Environmental Research Center, 647 Contees Wharf Road, Edgewater, MD 21037, USA 5School of the Environment, University of Dundee, Perth Road, Dundee, DD1 4HN, UK 6Ocean and Earth Science, University of Southampton, National Oceanography Centre, Southampton, SO14 3ZH, UK E-mail: [email protected] (LM), [email protected] (IK), [email protected] (JC), [email protected] (GMR), [email protected] (TD), [email protected] (KC) *Corresponding author Received: 9 June 2015 / Accepted: 31 August 2015 / Published online: 18 September 2015 Handling editor: Thomas Therriault Abstract The warm water marine bryozoan Amathia (= Zoobotryon) verticillata (delle Chiaje, 1822) is reported for the first time in the Galápagos Islands based upon collections in 2015. Elsewhere, this species is a major fouling organism that can have significant negative ecological and economic effects. Comprehensive studies will be necessary to determine the extent of the distribution of A.
    [Show full text]
  • Bryozoa Taxonomy and Palaeoecology in the Neogene of SE Asia Emanuela Di Martino Supervisor: Paul D
    Bryozoa Taxonomy and Palaeoecology in the Neogene of SE Asia Emanuela Di Martino Supervisor: Paul D. Taylor Palaeontology Department NHM London Contents • What is a bryozoan? • What do we already know about Cenozoic Bryozoans from the Indonesian Archipelago? What is a bryozoan? Hi! We are bryozoans studied by Emanuela What is a bryozoan? • Bryozoans are colonial invertebrates, which are abundant in modern marine environments, and have been important components of the fossil record. Their calcareous skeleton has a good fossilization potential so they can be important rock-forming material Dr Claus Nielsen (University of Copenhagen) What is a bryozoan? Dr Claus Nielsen (University of Copenhagen) What is a bryozoan? The individual functional units are called 'zooids’. Schematic anatomy of anascan cheilostome: - Gut and lophophore - Muscles - Funicular system Dr Claus Nielsen (University of Copenhagen) - Skeleton - Communication pores - Ovicell What is a bryozoan? The individual functional units are called 'zooids’. Schematic anatomy of anascan cheilostome: - Gut and lophophore - Muscles - Funicular system Dr Claus Nielsen (University of Copenhagen) - Skeleton - Communication pores - Ovicell What is a bryozoan? The individual functional units are called 'zooids’. Schematic anatomy of anascan cheilostome: - Gut and lophophore - Muscles - Funicular system Dr Claus Nielsen (University of Copenhagen) - Skeleton - Communication pores - Ovicell What is a bryozoan? The individual functional units are called 'zooids’. Schematic anatomy of anascan cheilostome: - Gut and lophophore - Muscles - Funicular system Dr Claus Nielsen (University of Copenhagen) - Skeleton - Communication pores - Ovicell What is a bryozoan? The individual functional units are called 'zooids’. Schematic anatomy of anascan cheilostome: - Gut and lophophore - Muscles - Funicular system Dr Claus Nielsen (University of Copenhagen) - Skeleton - Communication pores - Ovicell What is a bryozoan? The individual functional units are called 'zooids’.
    [Show full text]