Floating-Point Extensions for C — Part 1: Binary Floating-Point Arithmetic

Total Page:16

File Type:pdf, Size:1020Kb

Floating-Point Extensions for C — Part 1: Binary Floating-Point Arithmetic © ISO/IEC 2013 – All rights reserved Draft Technical Specification – November 5, 2013 ISO/IEC JTC 1/SC 22/WG 14 N1778 Date: yyyy-mm-dd Reference number of document: ISO/IEC TS 18661-1 5 Committee identification: ISO/IEC JTC 1/SC 22/WG 14 Secretariat: ANSI Information Technology — Programming languages, their environments, and system software interfaces — Floating-point extensions for C — Part 1: Binary floating-point arithmetic 10 Technologies de l’information — Langages de programmation, leurs environnements et interfaces du logiciel système — Extensions à virgule flottante pour C — Partie I: Binaire arithmétique flottante Warning This document is not an ISO International Standard. It is distributed for review and comment. It is subject to 15 change without notice and may not be referred to as an International Standard. Recipients of this draft are invited to submit, with their comments, notification of any relevant patent rights of which they are aware and to provide supporting documentation. Document type: Technical Specification Document subtype: Document stage: (20) Preparation Document language: E ISO/IEC TS 18661-1 Draft Technical Specification – November 5, 2013 WG 14 N1778 Copyright notice This ISO document is a working draft or committee draft and is copyright-protected by ISO. While the reproduction of working drafts or committee drafts in any form for use by participants in the ISO standards development process is permitted without prior permission from ISO, neither this document 5 nor any extract from it may be reproduced, stored or transmitted in any form for any other purpose without prior written permission from ISO. Requests for permission to reproduce this document for the purpose of selling it should be addressed as shown below or to ISO’s member body in the country of the requester: ISO copyright office 10 Case postale 56 CH-1211 Geneva 20 Tel. +41 22 749 01 11 Fax + 41 22 749 09 47 E-mail [email protected] Web www.iso.org 15 Reproduction for sales purposes may be subject to royalty payments or a licensing agreement. Violators may be prosecuted. ii © ISO/IEC 2013 – All rights reserved WG 14 N1778 Draft Technical Specification – November 5, 2013 ISO/IEC TS 18661-1 Contents Page Introduction ....................................................................................................................................................... v! Background ................................................................................................................................................... v! IEC 60559 floating-point standard ........................................................................................................... v! 5 C support for IEC 60559 ........................................................................................................................... vi! Purpose ........................................................................................................................................................ vii! 1! Scope ........................................................................................................................................................... 1! 2! Conformance ............................................................................................................................................... 1! 3! Normative references ................................................................................................................................. 1! 10 4! Terms and definitions ................................................................................................................................. 1! 5! C standard conformance ............................................................................................................................ 2! 5.1! Freestanding implementations ............................................................................................................... 2! 5.2! Predefined macros ................................................................................................................................... 2! 5.3! Standard headers ..................................................................................................................................... 3! 15 6! Revised floating-point standard ................................................................................................................ 5! 7! Types ............................................................................................................................................................ 6! 7.1! Terminology ............................................................................................................................................. 6! 7.2! Canonical representation ........................................................................................................................ 7! 8! Operation binding ....................................................................................................................................... 8! 20 9! Floating to integer conversion ................................................................................................................ 13! 10! Conversions between floating types and character sequences ........................................................ 13! 10.1! Conversions with decimal character sequences .............................................................................. 13! 10.2! Conversions to character sequences ................................................................................................ 14! 11! Constant rounding directions ................................................................................................................ 15! 25 12! NaN support ............................................................................................................................................ 22! 13! Integer width macros .............................................................................................................................. 27! 14! Mathematics <math.h> .......................................................................................................................... 29! 14.1! Nearest integer functions .................................................................................................................... 29! 14.1.1! Round to integer value in floating type ............................................................................................ 29! 30 14.1.2! Convert to integer type ...................................................................................................................... 31! 14.2! The llogb functions ............................................................................................................................ 34! 14.3! Max-min magnitude functions ............................................................................................................ 35! 14.4! The nextup and nextdown functions ................................................................................................ 36! 14.5! Functions that round result to narrower type ................................................................................... 37! 35 14.6! Comparison macros ............................................................................................................................ 40! 14.7! Classification macros .......................................................................................................................... 41! 14.8! Total order functions ........................................................................................................................... 43! 14.9! Canonicalize functions ........................................................................................................................ 44! 14.10! NaN functions ..................................................................................................................................... 45! 40 15! The floating-point environment <fenv.h> ........................................................................................... 47! 15.1! The fesetexcept function ................................................................................................................. 47! 15.2! The fetestexceptflag function ...................................................................................................... 48! 15.3! Control modes ...................................................................................................................................... 48! 16! Type-generic math <tgmath.h> ........................................................................................................... 50! 45 Bibliography .................................................................................................................................................... 52! © ISO/IEC 2013 – All rights reserved iii ISO/IEC TS 18661-1 Draft Technical Specification – November 5, 2013 WG 14 N1778 Foreword ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been 5 established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also
Recommended publications
  • Fujitsu SPARC64™ X+/X Software on Chip Overview for Developers]
    White paper [Fujitsu SPARC64™ X+/X Software on Chip Overview for Developers] White paper Fujitsu SPARC64™ X+/X Software on Chip Overview for Developers Page 1 of 13 www.fujitsu.com/sparc White paper [Fujitsu SPARC64™ X+/X Software on Chip Overview for Developers] Table of Contents Table of Contents 1 Software on Chip Innovative Technology 3 2 SPARC64™ X+/X SIMD Vector Processing 4 2.1 How Oracle Databases take advantage of SPARC64™ X+/X SIMD vector processing 4 2.2 How to use of SPARC64™ X+/X SIMD instructions in user applications 5 2.3 How to check if the system and operating system is capable of SIMD execution? 6 2.4 How to check if SPARC64™ X+/X SIMD instructions indeed have been generated upon compilation of a user source code? 6 2.5 Is SPARC64™ X+/X SIMD implementation compatible with Oracle’s SPARC SIMD? 6 3 SPARC64™ X+/X Decimal Floating Point Processing 8 3.1 How Oracle Databases take advantage of SPARC64™ X+/X Decimal Floating-Point 8 3.2 Decimal Floating-Point processing in user applications 8 4 SPARC64™ X+/X Extended Floating-Point Registers 9 4.1 How Oracle Databases take advantage of SPARC64™ X+/X Decimal Floating-Point 9 5 SPARC64™ X+/X On-Chip Cryptographic Processing Capabilities 10 5.1 How to use the On-Chip Cryptographic Processing Capabilities 10 5.2 How to use the On-Chip Cryptographic Processing Capabilities in user applications 10 6 Conclusions 12 Page 2 of 13 www.fujitsu.com/sparc White paper [Fujitsu SPARC64™ X+/X Software on Chip Overview for Developers] Software on Chip Innovative Technology 1 Software on Chip Innovative Technology Fujitsu brings together innovations in supercomputing, business computing, and mainframe computing in the Fujitsu M10 enterprise server family to help organizations meet their business challenges.
    [Show full text]
  • Decimal Layouts for IEEE 754 Strawman3
    IEEE 754-2008 ECMA TC39/TG1 – 25 September 2008 Mike Cowlishaw IBM Fellow Overview • Summary of the new standard • Binary and decimal specifics • Support in hardware, standards, etc. • Questions? 2 Copyright © IBM Corporation 2008. All rights reserved. IEEE 754 revision • Started in December 2000 – 7.7 years – 5.8 years in committee (92 participants + e-mail) – 1.9 years in ballot (101 voters, 8 ballots, 1200+ comments) • Removes many ambiguities from 754-1985 • Incorporates IEEE 854 (radix-independent) • Recommends or requires more operations (functions) and more language support 3 Formats • Separates sets of floating-point numbers (and the arithmetic on them) from their encodings (‘interchange formats’) • Includes the 754-1985 basic formats: – binary32, 24 bits (‘single’) – binary64, 53 bits (‘double’) • Adds three new basic formats: – binary128, 113 bits (‘quad’) – decimal64, 16-digit (‘double’) – decimal128, 34-digit (‘quad’) 4 Why decimal? A web page… • Parking at Manchester airport… • £4.20 per day … … for 10 days … … calculated on-page using ECMAScript Answer shown: 5 Why decimal? A web page… • Parking at Manchester airport… • £4.20 per day … … for 10 days … … calculated on-page using ECMAScript Answer shown: £41.99 (Programmer must have truncated to two places.) 6 Where it costs real money… • Add 5% sales tax to a $ 0.70 telephone call, rounded to the nearest cent • 1.05 x 0.70 using binary double is exactly 0.734999999999999986677323704 49812151491641998291015625 (should have been 0.735) • rounds to $ 0.73, instead of $ 0.74
    [Show full text]
  • Chapter 2 DIRECT METHODS—PART II
    Chapter 2 DIRECT METHODS—PART II If we use finite precision arithmetic, the results obtained by the use of direct methods are contaminated with roundoff error, which is not always negligible. 2.1 Finite Precision Computation 2.2 Residual vs. Error 2.3 Pivoting 2.4 Scaling 2.5 Iterative Improvement 2.1 Finite Precision Computation 2.1.1 Floating-point numbers decimal floating-point numbers The essence of floating-point numbers is best illustrated by an example, such as that of a 3-digit floating-point calculator which accepts numbers like the following: 123. 50.4 −0.62 −0.02 7.00 Any such number can be expressed as e ±d1.d2d3 × 10 where e ∈{0, 1, 2}. (2.1) Here 40 t := precision = 3, [L : U] := exponent range = [0 : 2]. The exponent range is rather limited. If the calculator display accommodates scientific notation, e g., 3.46 3 −1.56 −3 then we might use [L : U]=[−9 : 9]. Some numbers have multiple representations in form (2.1), e.g., 2.00 × 101 =0.20 × 102. Hence, there is a normalization: • choose smallest possible exponent, • choose + sign for zero, e.g., 0.52 × 102 → 5.20 × 101, 0.08 × 10−8 → 0.80 × 10−9, −0.00 × 100 → 0.00 × 10−9. −9 Nonzero numbers of form ±0.d2d3 × 10 are denormalized. But for large-scale scientific computation base 2 is preferred. binary floating-point numbers This is an important matter because numbers like 0.2 do not have finite representations in base 2: 0.2=(0.001100110011 ···)2.
    [Show full text]
  • Decimal Floating Point for Future Processors Hossam A
    1 Decimal Floating Point for future processors Hossam A. H. Fahmy Electronics and Communications Department, Cairo University, Egypt Email: [email protected] Tarek ElDeeb, Mahmoud Yousef Hassan, Yasmin Farouk, Ramy Raafat Eissa SilMinds, LLC Email: [email protected] F Abstract—Many new designs for Decimal Floating Point (DFP) hard- Simple decimal fractions such as 1=10 which might ware units have been proposed in the last few years. To date, only represent a tax amount or a sales discount yield an the IBM POWER6 and POWER7 processors include internal units for infinitely recurring number if converted to a binary decimal floating point processing. We have designed and tested several representation. Hence, a binary number system with a DFP units including an adder, multiplier, divider, square root, and fused- multiply-add compliant with the IEEE 754-2008 standard. This paper finite number of bits cannot accurately represent such presents the results of using our units as part of a vector co-processor fractions. When an approximated representation is used and the anticipated gains once the units are moved on chip with the in a series of computations, the final result may devi- main processor. ate from the correct result expected by a human and required by the law [3], [4]. One study [5] shows that in a large billing application such an error may be up to 1 WHY DECIMAL HARDWARE? $5 million per year. Ten is the natural number base or radix for humans Banking, billing, and other financial applications use resulting in a decimal number system while a binary decimal extensively.
    [Show full text]
  • Floating Point Representation (Unsigned) Fixed-Point Representation
    Floating point representation (Unsigned) Fixed-point representation The numbers are stored with a fixed number of bits for the integer part and a fixed number of bits for the fractional part. Suppose we have 8 bits to store a real number, where 5 bits store the integer part and 3 bits store the fractional part: 1 0 1 1 1.0 1 1 $ 2& 2% 2$ 2# 2" 2'# 2'$ 2'% Smallest number: Largest number: (Unsigned) Fixed-point representation Suppose we have 64 bits to store a real number, where 32 bits store the integer part and 32 bits store the fractional part: "# "% + /+ !"# … !%!#!&. (#(%(" … ("% % = * !+ 2 + * (+ 2 +,& +,# "# "& & /# % /"% = !"#× 2 +!"&× 2 + ⋯ + !&× 2 +(#× 2 +(%× 2 + ⋯ + ("%× 2 0 ∞ (Unsigned) Fixed-point representation Range: difference between the largest and smallest numbers possible. More bits for the integer part ⟶ increase range Precision: smallest possible difference between any two numbers More bits for the fractional part ⟶ increase precision "#"$"%. '$'#'( # OR "$"%. '$'#'(') # Wherever we put the binary point, there is a trade-off between the amount of range and precision. It can be hard to decide how much you need of each! Scientific Notation In scientific notation, a number can be expressed in the form ! = ± $ × 10( where $ is a coefficient in the range 1 ≤ $ < 10 and + is the exponent. 1165.7 = 0.0004728 = Floating-point numbers A floating-point number can represent numbers of different order of magnitude (very large and very small) with the same number of fixed bits. In general, in the binary system, a floating number can be expressed as ! = ± $ × 2' $ is the significand, normally a fractional value in the range [1.0,2.0) .
    [Show full text]
  • IEEE Standard 754 for Binary Floating-Point Arithmetic
    Work in Progress: Lecture Notes on the Status of IEEE 754 October 1, 1997 3:36 am Lecture Notes on the Status of IEEE Standard 754 for Binary Floating-Point Arithmetic Prof. W. Kahan Elect. Eng. & Computer Science University of California Berkeley CA 94720-1776 Introduction: Twenty years ago anarchy threatened floating-point arithmetic. Over a dozen commercially significant arithmetics boasted diverse wordsizes, precisions, rounding procedures and over/underflow behaviors, and more were in the works. “Portable” software intended to reconcile that numerical diversity had become unbearably costly to develop. Thirteen years ago, when IEEE 754 became official, major microprocessor manufacturers had already adopted it despite the challenge it posed to implementors. With unprecedented altruism, hardware designers had risen to its challenge in the belief that they would ease and encourage a vast burgeoning of numerical software. They did succeed to a considerable extent. Anyway, rounding anomalies that preoccupied all of us in the 1970s afflict only CRAY X-MPs — J90s now. Now atrophy threatens features of IEEE 754 caught in a vicious circle: Those features lack support in programming languages and compilers, so those features are mishandled and/or practically unusable, so those features are little known and less in demand, and so those features lack support in programming languages and compilers. To help break that circle, those features are discussed in these notes under the following headings: Representable Numbers, Normal and Subnormal, Infinite
    [Show full text]
  • IEEE 754 Format (From Last Time)
    IEEE 754 Format (from last time) ● Single precision format S Exponent Significand 1 8 23 The exponent is represented in bias 127 notation. Why? ● Example: 52.25 = 00110100.010000002 5 Normalize: 001.10100010000002 x 2 (127+5) 0 10000100 10100010000000000000000 0100 0010 0101 0001 0000 0000 0000 0000 52.25 = 0x42510000 08/29/2017 Comp 411 - Fall 2018 1 IEEE 754 Limits and Features ● SIngle precision limitations ○ A little more than 7 decimal digits of precision ○ Minimum positive normalized value: ~1.18 x 10-38 ○ Maximum positive normalized value: ~3.4 x 1038 ● Inaccuracies become evident after multiple single precision operations ● Double precision format 08/29/2017 Comp 411 - Fall 2018 2 IEEE 754 Special Numbers ● Zero - ±0 A floating point number is considered zero when its exponent and significand are both zero. This is an exception to our “hidden 1” normalization trick. There are also a positive and negative zeros. S 000 0000 0 000 0000 0000 0000 0000 0000 ● Infinity - ±∞ A floating point number with a maximum exponent (all ones) is considered infinity which can also be positive or negative. S 111 1111 1 000 0000 0000 0000 0000 0000 ● Not a Number - NaN for ±0/±0, ±∞/±∞, log(-42), etc. S 111 1111 1 non-zero 08/29/2017 Comp 411 - Fall 2018 3 A Quick Wake-up exercise What decimal value is represented by 0x3f800000, when interpreted as an IEEE 754 single precision floating point number? 08/29/2017 Comp 411 - Fall 2018 4 Bits You can See The smallest element of a visual display is called a “pixel”.
    [Show full text]
  • A Decimal Floating-Point Speciftcation
    A Decimal Floating-point Specification Michael F. Cowlishaw, Eric M. Schwarz, Ronald M. Smith, Charles F. Webb IBM UK IBM Server Division P.O. Box 31, Birmingham Rd. 2455 South Rd., MS:P310 Warwick CV34 5JL. UK Poughkeepsie, NY 12601 USA [email protected] [email protected] Abstract ing is required. In the fixed point formats, rounding must be explicitly applied in software rather than be- Even though decimal arithmetic is pervasive in fi- ing provided by the hardware. To address these and nancial and commercial transactions, computers are other limitations, we propose implementing a decimal stdl implementing almost all arithmetic calculations floating-point format. But what should this format be? using binary arithmetic. As chip real estate becomes This paper discusses the issues of defining a decimal cheaper it is becoming likely that more computer man- floating-point format. ufacturers will provide processors with decimal arith- First, we consider the goals of the specification. It metic engines. Programming languages and databases must be compliant with standards already in place. are expanding the decimal data types available whale One standard we consider is the ANSI X3.274-1996 there has been little change in the base hardware. As (Programming Language REXX) [l]. This standard a result, each language and application is defining a contains a definition of an integrated floating-point and different arithmetic and few have considered the efi- integer decimal arithmetic which avoids the need for ciency of hardware implementations when setting re- two distinct data types and representations. The other quirements. relevant standard is the ANSI/IEEE 854-1987 (Radix- In this paper, we propose a decimal format which Independent Floating-point Arithmetic) [a].
    [Show full text]
  • Floating Point Numbers
    Floating Point Numbers Yes, this is the moon; our own moon. Not the final frontier but the first out post there to be exploited by our greed of consumable minerals. Soon we the human race will be there blasting the mines and depriving the orb with its riches. Do we know how much is there to steal? Pop Quiz : What is the surface area of moon? 2 Answer : The surface area of a sphere is: 4 * π * R Radius of moon is about 1738.2 KM; plugging the values: 4 * 3.14159265 * 1738.2 * 1738.2 = 37967268 .598162344 KM 2. That would be 37.9 million square kilometers. Two of our biggest states Texas and California are 1.7 and 0.7 million square kilometers respectively. Surface if the Moon would be about 2/3 of the area of North America or about the size of Russia, that is close to the 38 million Sq Km Now you, all mainframe assembly language tool developers i.e. old time MF programmers try doing this calculation in S/390 Assembly. Give yourself few minutes. Address Object Code S/390 Assembly Reg./ Memory after execution 000036 B375 0010 LZDR R1 FPR1 00000000_00000000 00003A ED10 C08C 0024 LDE R1,FOUR FPR1 41400000_00000000 000040 7C10 C090 MDE R1,PIE FPR1 41C90FDC_00000000 000044 7C10 C094 MDE R1,RADIUS FPR1 445552DD_F73CD400 000048 7C10 C094 MDE R1,RADIUS FPR1 47243559_FE390700 00004C B3C9 0011 CGDR R1,0,R1 GR1 0243559F 000050 5010 C098 ST R1,FIXED 000054 4E10 C09C CVD R1,DECIMAL 00000003 7967263C 000088 45B27570 FLOAT DC X'45B27570' 00008C 41400000 FOUR DC E'4' 000090 413243F7 PIE DC E'3.14159265E+0' 000094 436CA333 RADIUS DC E'1.7382E+3' 000098 00000000 FIXED DC F'0' 00009C 0000000000000000 DECIMAL DC 2F'0' This is one way of solving the problem mentioned on previous slide and, of course, we all know that there are several different ways to solve any programming problem and your way is always better than mine.
    [Show full text]
  • Automatic Hardware Generation for Reconfigurable Architectures
    Razvan˘ Nane Automatic Hardware Generation for Reconfigurable Architectures Automatic Hardware Generation for Reconfigurable Architectures PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Technische Universiteit Delft, op gezag van de Rector Magnificus prof. ir. K.C.A.M Luyben, voorzitter van het College voor Promoties, in het openbaar te verdedigen op donderdag 17 april 2014 om 10:00 uur door Razvan˘ NANE Master of Science in Computer Engineering Delft University of Technology geboren te Boekarest, Roemenie¨ Dit proefschrift is goedgekeurd door de promotor: Prof. dr. K.L.M. Bertels Samenstelling promotiecommissie: Rector Magnificus voorzitter Prof. dr. K.L.M. Bertels Technische Universiteit Delft, promotor Prof. dr. E. Visser Technische Universiteit Delft Prof. dr. W.A. Najjar University of California Riverside Prof. dr.-ing. M. Hubner¨ Ruhr-Universitat¨ Bochum Dr. H.P. Hofstee IBM Austin Research Laboratory Dr. ir. A.C.J. Kienhuis Universiteit van Leiden Dr. ir. J.S.S.M Wong Technische Universiteit Delft Prof. dr. ir. Geert Leus Technische Universiteit Delft, reservelid Automatic Hardware Generation for Reconfigurable Architectures Dissertation at Delft University of Technology Copyright c 2014 by R. Nane All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without permission of the author. ISBN 978-94-6186-271-6 Printed by CPI Koninklijke Wohrmann,¨ Zutphen, The Netherlands To my family Automatic Hardware Generation for Reconfigurable Architectures Razvan˘ Nane Abstract ECONFIGURABLE Architectures (RA) have been gaining popularity rapidly in the last decade for two reasons.
    [Show full text]
  • View of Methodology 21
    KNOWLEDGE-GUIDEDMETHODOLOGYFOR SOFTIPANALYSIS BY BHANUPRATAPSINGH Submitted in partial fulfillment of the requirements For the degree of Doctor of Philosophy Dissertation Advisor: Dr. Christos Papachristou Department of Electrical Engineering and Computer Science CASEWESTERNRESERVEUNIVERSITY January 2015 CASEWESTERNRESERVEUNIVERSITY SCHOOLOFGRADUATESTUDIES we hereby approve the thesis of BHANUPRATAPSINGH candidate for the PH.D. degree. chair of the committee DR.CHRISTOSPAPACHRISTOU DR.FRANCISMERAT DR.DANIELSAAB DR.HONGPINGZHAO DR.FRANCISWOLFF date AUG 2 1 , 2 0 1 4 ∗ We also certify that written approval has been obtained for any propri- etary material contained therein. Dedicated to my family and friends. CONTENTS 1 introduction1 1.1 Motivation and Statement of Problem . 1 1.1.1 Statement of Problem . 6 1.2 Major Contributions of the Research . 7 1.2.1 Expert System Based Approach . 7 1.2.2 Specification Analysis Methodology . 9 1.2.3 RTL Analysis Methodology . 9 1.2.4 Spec and RTL Correspondence . 10 1.3 Thesis Outline . 10 2 background and related work 11 Abstract . 11 2.1 Existing Soft-IP Verification Techniques . 11 2.1.1 Simulation Based Methods . 11 2.1.2 Formal Techniques . 13 2.2 Prior Work . 15 2.2.1 Specification Analysis . 15 2.2.2 Reverse Engineering . 17 2.2.3 IP Quality and RTL Analysis . 19 2.2.4 KB System . 20 3 overview of methodology 21 Abstract . 21 3.1 KB System Overview . 21 3.1.1 Knowledge Base Organization . 24 3.2 Specification KB Overview . 26 3.3 RTL KB Overview . 29 iv contents v 3.4 Confidence and Coverage Metrics . 30 3.5 Introduction to CLIPS and XML .
    [Show full text]
  • High Performance Hardware Design of IEEE Floating Point Adder in FPGA with VHDL
    International Journal of Mechatronics, Electrical and Computer Technology Vol. 3(8), Jul, 2013, pp 81 - 101, ISSN: 2305-0543 Available online at: http://www.aeuso.org © Austrian E-Journals of Universal Scientific Organization - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - High Performance Hardware Design Of IEEE Floating Point Adder In FPGA With VHDL Ali Farmani Department of Electrical and Computer Engineering,University of Tabriz,Tabriz,Iran *Corresponding Author's E-mail: [email protected] Abstract In this paper, we present the design and implementation of a floating-point adder that is compliant with the current draft revision of this standard. We provide synthesis results indicating the estimated area and delay for our design when it is pipelined to various depths.Our work is an important design resource for development of floating-point adder hardware on FPGAs. All sub components within the floating-point adder and known algorithms are researched and implemented to provide versatility and flexibility to designers as an alternative to intellectual property where they have no control over the design. The VHDL code is open source and can be used by designers with proper reference. Each of the sub-operation is researched for different implementations and then synthesized onto a Spartan FPGA device to be chosen for best performance. Our implementation of the standard algorithm occupied 370 slices and had an overall delay of 31 ns. The standard algorithm was pipelined into five stages to run at 100 MHz which took an area of 324 slices and power is 30mw. Keywords: Floating Point Adder, FPGA, VHDL, Pipeline. 1. Introduction High performance floating point adders are essential building blocks of microprocessors and floating point DSP data paths.
    [Show full text]