Topology Proceedings

Total Page:16

File Type:pdf, Size:1020Kb

Topology Proceedings Topology Proceedings Web: http://topology.auburn.edu/tp/ Mail: Topology Proceedings Department of Mathematics & Statistics Auburn University, Alabama 36849, USA E-mail: [email protected] ISSN: 0146-4124 COPYRIGHT °c by Topology Proceedings. All rights reserved. TOPOLOGY PROCEEDINGS Volume 27, No. 2, 2003 Pages 601{612 ACTION OF CONVERGENCE GROUPS NANDITA RATH Abstract. This is a preliminary report on the continuous action of convergence groups on convergence spaces. In par- ticular, the convergence structure on the homeomorphism group and its continuous action are investigated in this pa- per. Also, attempts have been made to establish a one-to-one correspondence between continuous action of a convergence group and its homeomorphic representation on a convergence space. 1. Introduction In algebra, a homomorphism of a group G into the symmetric group S(Ω) of all permutations on the phase space Ω is known as a permutation representation of G on Ω [5]. It is also known that there exists a one-to-one correspondence between the permu- tation representations of G on Ω and the actions of G on Ω: If Ω = X is a compact or a locally compact topological space and G is a topological group, then there is a one-to-one correspondence between continuous homomorphisms of a topological group G into the homeomorphism group H(X) and the continuous group actions of G on X [12]: However, for general topological spaces this one-to- one correspondence is not available, since in such case H(X) does not have a group topology which is admissible [11]. 2000 Mathematics Subject Classification. Primary 57E05, 57S05, 54A20; Secondary 22F05. Key words and phrases. Homeomorphism group, continuous group action, convergence space, limit space, pseudotopology. 601 602 NANDITA RATH So in establishing such a one-to-one correspondence between con- tinuous representations and continuous group actions of a topolog- ical group, the question of existence of an appropriate geometric structure on X which induces an admissible and compatible struc- ture on H(X) is crucial. Recently, Di Concilio [4] has proved that a Tychonoff space X; which is also rim-compact induces an admis- sible and compatible topological structure on H(X): This result can be further generalized by replacing the topology by a special type of convergence structure [10]. In Section 4 of this paper the author tries to investigate the nature of convergence structure on H(X) corresponding to the existing convergence structure on X: In Section 5 attempts have been made to establish a one-to-one corre- spondence between the homeomorphic representations and contin- uous group actions of a special type of convergence group, called limit group. 2. Preliminaries For basic definitions and terminologies related to filters the reader is referred to [14], though a few of the definitions and notations, which are frequently used will be mentioned here. Let F(X) de- note the collection of all filters on X and P(X) denote all the subsets of X: If B is a base [14] of the filter , then is said to be generated by B and we write = [B]: ForF each x F X; x_ = [ x ] is the fixed ultra filter containingF x . If and 2 F(X)f andg F G = φ for all F , G f, theng F denotesG 2 the filter generated\ 6 by F G :2F F and2 GG F_G. If F and G such that F Gf =\φ, then2 we F say that 2 Gg fails9 to2 exist F . If (X;2 :G) is a group, then\ we can define a binaryF _G operation ` ' on F(X) as 1 ◦ 1 = [ FG : F and G ]; and − = [ F − : F ]: However,FG f in general,2 F (F(X), 2) G is a monoid,F notf a group2 , since Fg e_ 1; where e is the identity◦ element in (X; :): ≥ FF − For a set X, consider q F(X) X. Conventionally, for ( ; x) F(X) X, we write ⊆q x; and× say that `q convergesF to2 x ', whenever× ( ; x) F!q: F − F 2 Definition 2.1. Let X and q be as above. For , F(X) and x X, consider the following conditions. F G 2 2 q (c1)_x x for each x X. ! 2 ACTION OF CONVERGENCE GROUPS 603 q q (c2) and x = x: F ≤q G F! q)G! (c3) x = x_ x: F!q )F\q ! q (c4) x; G x = x: F! ! )F\G! q q (c5) If for each ultrafilter ; x, then x: G ≥q F G! F! q (c6) For each x X; νq(x) x; where νq(x) = : x : 2 ! \fF F! g (c7) For each x X; and for each V νq(x); W νq(x) such 2 2 9 2 that W V and y W V νq(y). ⊆ 2 ) 2 The function q is called a preconvergence structure (respect- ively, convergence; limit; pseudotopology; pretopology; topology) if it satisfies (c1) (c2)(respectively; (c1) (c3); (c1) (c4); (c1) − − − − (c5); (c1) (c6); (c1) (c7)). It should be noted that all these ax- − − ioms are not independent. For example, (c1)and (c4) imply (c3) and (c2)and (c6) imply (c5):Convergence space, limit space, pseu- dotopological space, pretopological space and topological space are defined likewise. More details on convergence spaces and related topics can be found in [9]. Note that limit spaces used to be called convergence spaces by Binz [2], Park [10] and several contemporary topologists. For any x X; let q(x) = F(X): q x : 2 fF 2 F! g A convergence space (X; q) is said to be q T2 or Hausdorff iff x = y; whenever any filter x; y: · Compact iff each ultrafilter on X converges to at leastF! one point in ·X: A mapping f :(X; q) (Y; p) is continuous iff whenever q x; f( ) p f(x): Furthermore,! a continuous mapping f F! F ! 1 is a homeomorphism, if it is bijective and f − is also continuous. The set H(X) (respectively, C(X)) denotes the set of all self home- omorphisms (respectively, continuous functions) on X. H(X) forms a group with respect to composition of maps. Next, another important category of spaces is introduced which exists in literature mostly as a means to generalize the comple- tion theory for uniform spaces [13]. For a detailed information on Cauchy spaces the reader is referred to [9]. Definition 2.2. Let C be a set of filters on a set X. The pair (X; C) is called a Cauchy space, if (1)x _ C, for each x X. (2) 2 C and 2implies C. (3) F, 2 C andF ≤ G existsG imply 2 C. F G 2 F _G F \ G 2 604 NANDITA RATH Associated with each Cauchy structure C on X, there is a qc convergence structure qc, which is defined as x; iff x_ C. A Cauchy space is said to be completeF!, if every F\ 2 C is qc-convergent. Note that every convergence space is notF 2 a Cauchy space. A convergence structure q on X is said to be Cauchy compatible, if there exists a Cauchy structure on X such that q = qc. Lemma 2.3. [9] A convergence space (X; q) is Cauchy compatible if and only if it is a limit space and for any x = y X; either q(x) = q(y) or q(x) q(y) = φ.( ) 6 2 \ ∗ 3. Convergence Groups Convergence groups, especially limit groups have been studied in detail in the last half century. For clarity of notations and ter- minologies the reader is referred to [6, 8, 10]. Definition 3.1. A triplet (X; q; ) is a pre convergence group, if · − (cg1)(X; q) is a pre-convergence space (cg2)(X; ) is a group · q q 1 q 1 (cg3) x and y implies that − xy− : Note thatF! the binaryG! operation `.' andFG the inverse! operation in the group (X; :) are continuous with respect to the pre-convergence structure q. A pre-convergence group is a convergence group (re- spectively, limit group, pseudotopological group, pretopological group, topological group), iff (X; q) is a convergence space (respec- tively, limit space, pseudotopological space, pretopological space, topological space). Lemma 3.2. [8] If e denotes the identity element in this group, then xνq(e) = νq(e)x = νq(x); x X: 8 2 Lemma 3.3. [8] The left translation x ax; for a fixed a G ! 1 2 (respectively, the right translation x xa), the map x x− and 1! ! the inner automorphisms x axa− are all homeomorphisms of X onto X. ! The proof of the lemma follows from (cg3). Note that every pre- convergence group is homogeneous. So some of the local properties can be proved at a single point. Lemma 3.4. The property ( ) in Lemma 2.3. always holds in a pre-convergence group (X; q; )∗. · ACTION OF CONVERGENCE GROUPS 605 Proof. Suppose q(x) q(y) = φ and let be such that q x and q \ 6 1 Fq F! y: Let q(x): Then, − e; where e is the identity F! G 2 1F G!q q in X: This implies that − y; since y: Therefore =e _ q y: Similarly, weFF canG! show that q(y)F!q(x). G G! ⊆ Lemma 3.5. Let , F(X), where (X; ) is a group. Then exists impliesF thatG 2 1 : · F_G F \ G ≥ FG− G Proof. Let F and G1;G2 : Since G1 G2 = φ, 1 2 F 2 G \ 6 1 F FG− G2: Also, G exists implies that G2 FG− G2: ⊂ 1 F_ ⊂ 1 This proves the lemma. Lemma 3.6.
Recommended publications
  • Diagonal Cauchy Spaces D.C
    BULL. AUSTRAL. MATH. SOC. 54E15, 54D10, 54D35, 54A20 VOL. 54 (1996) [255-265] DIAGONAL CAUCHY SPACES D.C. KENT AND G.D. RICHARDSON A diagonal condition is defined which internally characterises those Cauchy spaces which have topological completions. The T? diagonal Cauchy spaces allow both a finest and a coarsest T2 diagonal completion. The former is a completion functor, while the latter preserves uniformisability and has an extension property relative to ^-continuous maps. INTRODUCTION In 1954, Kowalsky [2] defined a diagonal axiom for convergence spaces subject to which every pretopological space is topological. In 1967, Cook and Fischer [1] gave a stronger version of the Kowalsky axiom relative to which a larger class of convergence spaces was shown to be topological. In [4], we showed that any convergence space satisfying the Cook-Fischer diagonal axiom is topological. In this paper, we introduce a diagonal axiom for Cauchy spaces which reduces to the Cook-Fischer axiom when the Cauchy space is complete. A diagonal Cauchy space is one which satisfies this axiom. We show that a Cauchy space is diagonal if and only if every Cauchy equivalence class contains a smallest Cauchy filter, and this smallest Cauchy filter has a base of open sets. Equivalently, a Cauchy space is diagonal if and only if it allows a diagonal (that is, topological) completion. The category of diagoaal Cauchy spaces and Cauchy continuous maps is shown to be a topological category. It is shown that a Ti diagonal Cauchy space has both a finest and a coarsest T2 diagonal completion. The "fine diagonal completion" determines a completion functor on the category of T2, diagonal Cauchy spaces.
    [Show full text]
  • $ G $-Metrizable Spaces and the Images of Semi-Metric Spaces
    Czechoslovak Mathematical Journal Ying Ge; Shou Lin g-metrizable spaces and the images of semi-metric spaces Czechoslovak Mathematical Journal, Vol. 57 (2007), No. 4, 1141–1149 Persistent URL: http://dml.cz/dmlcz/128231 Terms of use: © Institute of Mathematics AS CR, 2007 Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use. This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz Czechoslovak Mathematical Journal, 57 (132) (2007), 1141–1149 g-METRIZABLE SPACES AND THE IMAGES OF SEMI-METRIC SPACES Ying Ge, Jiangsu, Shou Lin, Fujian (Received November 8, 2005) Abstract. In this paper, we prove that a space X is a g-metrizable space if and only if X is a weak-open, π and σ-image of a semi-metric space, if and only if X is a strong sequence-covering, quotient, π and mssc-image of a semi-metric space, where “semi-metric” can not be replaced by “metric”. Keywords: g-metrizable spaces, sn-metrizable spaces, weak-open mappings, strong sequence-covering mappings, quotient mappings, π-mappings, σ-mappings, mssc-mappings MSC 2000 : 54C10, 54D55, 54E25, 54E35, 54E40 1. Introduction g-metrizable spaces as a generalization of metric spaces have many important properties [17]. To characterize g-metrizable spaces as certain images of metric spaces is an interesting question in the theory of generalized metric spaces, and many “nice” characterizations of g-metrizable spaces have been obtained ([6], [8], [7], [13], [18], [19]).
    [Show full text]
  • Basic Properties of Filter Convergence Spaces
    Basic Properties of Filter Convergence Spaces Barbel¨ M. R. Stadlery, Peter F. Stadlery;z;∗ yInstitut fur¨ Theoretische Chemie, Universit¨at Wien, W¨ahringerstraße 17, A-1090 Wien, Austria zThe Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA ∗Address for corresponce Abstract. This technical report summarized facts from the basic theory of filter convergence spaces and gives detailed proofs for them. Many of the results collected here are well known for various types of spaces. We have made no attempt to find the original proofs. 1. Introduction Mathematical notions such as convergence, continuity, and separation are, at textbook level, usually associated with topological spaces. It is possible, however, to introduce them in a much more abstract way, based on axioms for convergence instead of neighborhood. This approach was explored in seminal work by Choquet [4], Hausdorff [12], Katˇetov [14], Kent [16], and others. Here we give a brief introduction to this line of reasoning. While the material is well known to specialists it does not seem to be easily accessible to non-topologists. In some cases we include proofs of elementary facts for two reasons: (i) The most basic facts are quoted without proofs in research papers, and (ii) the proofs may serve as examples to see the rather abstract formalism at work. 2. Sets and Filters Let X be a set, P(X) its power set, and H ⊆ P(X). The we define H∗ = fA ⊆ Xj(X n A) 2= Hg (1) H# = fA ⊆ Xj8Q 2 H : A \ Q =6 ;g The set systems H∗ and H# are called the conjugate and the grill of H, respectively.
    [Show full text]
  • Minimal Convergence Spaces
    transactions of the american mathematical society Volume 160, October 1971 MINIMAL CONVERGENCE SPACES BY D. C. KENT AND G. D. RICHARDSON Abstract. We are primarily concerned with minimal P convergence spaces, where P is one of the following convergence space properties: HausdorfT, T2, A-regular, A-Urysohn, and first countable, A an infinite cardinal number. Our conclusions usually resemble the corresponding topological results, but with some deviations ; for instance, a minimal HausdorfT convergence space is always compact, whereas a countable minimal regular convergence space need not be compact. Introduction. Minimal topological spaces have been extensively studied by various authors (see references). We now extend this study to convergence spaces. The reader is asked to refer to [9] for basic definitions and terminology concerning convergence spaces. However, a brief summary will be given here. A convergence structure qona set S is defined to be a function from the set F(S) of all filters on S into the set of all subsets of S, satisfying the following conditions : (1) x eq(x), all xe S, where x is the principal ultrafilter containing {x}; (2) if & and <Sare in F(S) and ¿F^ <S,then q(^)<=-q(^)\ (3) if x e q(&), then x e q(& n x). The pair (S, q) is called a convergence space. If x e q(&r), then we say that & q-converges to x. The filter ^q(x) obtained by intersecting all filters which ^-converge to x is called the q-neighborhoodfilter at x. lf^q(x) ^-converges to x for each x in S, then q is called a pretopology, and (S, q) a pretopological space.
    [Show full text]
  • Generalized Solutions of Systems of Nonlinear Partial Differential Equations
    Generalized solutions of systems of nonlinear partial differential equations by Jan Harm van der Walt Submitted in partial fulfilment of the requirements of the degree Philosophiae Doctor in the Department of Mathematics and Applied Mathematics in the Faculty of Natural and Agricultural Sciences University of Pretoria Pretoria February 2009 © University of Pretoria i DECLARATION I, the undersigned, hereby declare that the thesis submitted herewith for the degree Philosophiae Doctor to the University of Pretoria contains my own, independent work and has not been submitted for any degree at any other university. Name: Jan Harm van der Walt Date: February 2009 ii Title Generalized solutions of systems of nonlinear partial differential equations Name Jan Harm van der Walt Supervisor Prof E E Rosinger Co-supervisor Prof R Anguelov Department Mathematics and Applied Mathematics Degree Philosophiae Doctor Summary In this thesis, we establish a general and type independent theory for the existence and regularity of generalized solutions of large classes of systems of nonlinear partial differential equations (PDEs). In this regard, our point of departure is the Order Completion Method. The spaces of generalized functions to which the solutions of such systems of PDEs belong are constructed as the completions of suitable uniform convergence spaces of normal lower semi-continuous functions. It is shown that large classes of systems of nonlinear PDEs admit generalized solutions in the mentioned spaces of generalized functions. Furthermore, the gener- alized solutions that we construct satisfy a blanket regularity property, in the sense that such solutions may be assimilated with usual normal lower semi-continuous functions. These fundamental existence and regularity results are obtain as applica- tions of basic topological processes, namely, the completion of uniform convergence spaces, and elementary properties of real valued continuous functions.
    [Show full text]
  • Convergence Spaces
    mathematics Article p-Topologicalness—A Relative Topologicalness in >-Convergence Spaces Lingqiang Li Department of Mathematics, Liaocheng University, Liaocheng 252059, China; [email protected]; Tel.: +86-0635-8239926 Received: 24 January 2019; Accepted: 25 February 2019; Published: 1 March 2019 Abstract: In this paper, p-topologicalness (a relative topologicalness) in >-convergence spaces are studied through two equivalent approaches. One approach generalizes the Fischer’s diagonal condition, the other approach extends the Gähler’s neighborhood condition. Then the relationships between p-topologicalness in >-convergence spaces and p-topologicalness in stratified L-generalized convergence spaces are established. Furthermore, the lower and upper p-topological modifications in >-convergence spaces are also defined and discussed. In particular, it is proved that the lower (resp., upper) p-topological modification behaves reasonably well relative to final (resp., initial) structures. Keywords: fuzzy topology; fuzzy convergence; lattice-valued convergence; >-convergence space; relative topologicalness; p-topologcalness; diagonal condition; neighborhood condition 1. Introduction The theory of convergence spaces [1] is natural extension of the theory of topological spaces. The topologicalness is important in the theory of convergence spaces since it mainly researches the condition of a convergence space to be a topological space. Generally, two equivalent approaches are used to characterize the topologicalness in convergence spaces. One approach is stated by the well-known Fischer’s diagonal condition [2], the other approach is stated by Gähler’s neighborhood condition [3]. In [4], by considering a pair of convergence spaces (X, p) and (X, q), Wilde and Kent investigated a kind of relative topologicalness, called p-topologicalness. When p = q, p-topologicalness is equivalent to topologicalness in convergence spaces.
    [Show full text]
  • On Finest Unitary Extensions of Topological Monoids
    Topol. Algebra Appl. 2015; 3:1–10 Research Article Open Access Boris G. Averbukh* On finest unitary extensions of topological monoids Abstract: We prove that the Wyler completion of the unitary Cauchy space on a given Hausdorff topological monoid consisting of the underlying set of this monoid and of the family of unitary Cauchy filters on it, is a T2-topological space and, in the commutative case, an abstract monoid containing the initial one. Keywords: topological monoid, Cauchy space, completion MSC: 22A15, 54D35, 54E15 DOI 10.1515/taa-2015-0001 Received September 11, 2014; accepted November 11, 2014. Introduction For an arbitrary Hausdorff topological monoid, the concept of a unitary Cauchy filter (for brevity, wecallthem C-filters) which was defined in [1], generalizes the notion of a fundamental sequence of reals. Itwasproved in [1] that the underlying set X of this monoid X endowed with the family of such filters forms a Cauchy space called a unitary Cauchy space over X. Its convergence structure defines a T 1 -topology on X which is also 3 2 said to be unitary. In this paper, we begin the consideration of unitary completions of this monoid, i.e. such its extensions where all its C-filters converge. We use some principal ideas of the theory of Cauchy spaces but almost donot use its results since stronger statements are true in our case. However, we adduce all necessary definitions to make the paper as self-contained as it is possible. Each Cauchy space has many completions which have been studied in papers of many authors (see [2– 11]).
    [Show full text]
  • Ideal Convergence and Completeness of a Normed Space
    mathematics Article Ideal Convergence and Completeness of a Normed Space Fernando León-Saavedra 1 , Francisco Javier Pérez-Fernández 2, María del Pilar Romero de la Rosa 3,∗ and Antonio Sala 4 1 Department of Mathematics, Faculty of Social Sciences and Communication, University of Cádiz, 11405 Jerez de la Frontera, Spain; [email protected] 2 Department of Mathematics, Faculty of Science, University of Cádiz, 1510 Puerto Real, Spain; [email protected] 3 Department of Mathematics, CASEM, University of Cádiz, 11510 Puerto Real, Spain 4 Department of Mathematics, Escuela Superior de Ingeniería, University of Cádiz, 11510 Puerto Real, Spain; [email protected] * Correspondence: [email protected] Received: 23 July 2019; Accepted: 21 September 2019; Published: 25 September 2019 Abstract: We aim to unify several results which characterize when a series is weakly unconditionally Cauchy (wuc) in terms of the completeness of a convergence space associated to the wuc series. If, additionally, the space is completed for each wuc series, then the underlying space is complete. In the process the existing proofs are simplified and some unanswered questions are solved. This research line was originated in the PhD thesis of the second author. Since then, it has been possible to characterize the completeness of a normed spaces through different convergence subspaces (which are be defined using different kinds of convergence) associated to an unconditionally Cauchy sequence. Keywords: ideal convergence; unconditionally Cauchy series; completeness ; barrelledness MSC: 40H05; 40A35 1. Introduction A sequence (xn) in a Banach space X is said to be statistically convergent to a vector L if for any # > 0 the subset fn : kxn − Lk > #g has density 0.
    [Show full text]
  • Convergence Classes and Spaces of Partial Functions
    Wright State University CORE Scholar Computer Science and Engineering Faculty Publications Computer Science & Engineering 10-2001 Convergence Classes and Spaces of Partial Functions Anthony K. Seda Roland Heinze Pascal Hitzler [email protected] Follow this and additional works at: https://corescholar.libraries.wright.edu/cse Part of the Computer Sciences Commons, and the Engineering Commons Repository Citation Seda, A. K., Heinze, R., & Hitzler, P. (2001). Convergence Classes and Spaces of Partial Functions. Domain Theory, Logic and Computation, 75-115. https://corescholar.libraries.wright.edu/cse/199 This Conference Proceeding is brought to you for free and open access by Wright State University’s CORE Scholar. It has been accepted for inclusion in Computer Science and Engineering Faculty Publications by an authorized administrator of CORE Scholar. For more information, please contact [email protected]. Convergence Classes and Spaces of Partial Functions∗ Roland Heinze Institut f¨urInformatik III Rheinische Friedrich-Wilhelms-Universit¨atBonn R¨omerstr. 164, 53117 Bonn, Germany Pascal Hitzler† Artificial Intelligence Institute, Dresden University of Technology 01062 Dresden, Germany Anthony Karel Seda Department of Mathematics, University College Cork Cork, Ireland Abstract We study the relationship between convergence spaces and convergence classes given by means of both nets and filters, we consider the duality between them and we identify in convergence terms when a convergence space coincides with a convergence class. We examine the basic operators in the Vienna Development Method of formal systems devel- opment, namely, extension, glueing, restriction, removal and override, from the perspective of the Logic for Computable Functions. Thus, we examine in detail the Scott continuity, or otherwise, of these operators when viewed as operators on the domain (X → Y ) of partial functions mapping X into Y .
    [Show full text]
  • Duality in Computer Science
    Report of Dagstuhl Seminar 15441 Duality in Computer Science Edited by Mai Gehrke1, Achim Jung2, Victor Selivanov3, and Dieter Spreen4 1 LIAFA, CNRS and Univ. Paris-Diderot, FR, [email protected] 2 University of Birmingham, GB, [email protected] 3 A. P. Ershov Institute – Novosibirsk, RU, [email protected] 4 Universität Siegen, DE, [email protected] Abstract This report documents the programme and outcomes of Dagstuhl Seminar 15441 ‘Duality in Computer Science’. This seminar served as a follow-up seminar to the seminar ‘Duality in Com- puter Science’ (Dagstuhl Seminar 13311). In this seminar, we focused on applications of duality to semantics for probability in computation, to algebra and coalgebra, and on applications in complexity theory. A key objective of this seminar was to bring together researchers from these communities within computer science as well as from mathematics with the goal of uncovering commonalities, forging new collaborations, and sharing tools and techniques between areas based on their common use of topological methods and duality. Seminar October 25–30, 2015 – http://www.dagstuhl.de/15441 1998 ACM Subject Classification F.1.1 Models of Computation, F.3.2 Semantics of Program- ming Languages, F.4.1 Mathematical Logic, F.4.3 Formal Languages Keywords and phrases coalgebra, domain theory, probabilistic systems, recognizability, semantics of non-classical logics, Stone duality Digital Object Identifier 10.4230/DagRep.5.10.66 Edited in cooperation with Samuel J. van Gool 1 Executive Summary Mai Gehrke Achim Jung Victor Selivanov Dieter Spreen License Creative Commons BY 3.0 Unported license © Mai Gehrke, Achim Jung, Victor Selivanov, and Dieter Spreen Aims of the seminar Duality allows one to move between an algebraic world of properties and a spacial world of individuals and their dynamics, thereby leading to a change of perspective that may, and often does, lead to new insights.
    [Show full text]
  • Net Convergence Structures with Applications to Vector Lattices
    NET CONVERGENCE STRUCTURES WITH APPLICATIONS TO VECTOR LATTICES M. O’BRIEN, V.G. TROITSKY, AND J.H. VAN DER WALT Abstract. Convergence is a fundamental topic in analysis that is most commonly modelled using topology. However, there are many natural convergences that are not given by any topology; e.g., convergence almost everywhere of a sequence of measurable functions and order convergence of nets in vector lattices. The theory of convergence structures provides a framework for study- ing more general modes of convergence. It also has one particu- larly striking feature: it is formalized using the language of filters. This paper develops a general theory of convergence in terms of nets. We show that it is equivalent to the filter-based theory and present some translations between the two areas. In particular, we provide a characterization of pretopological convergence structures in terms of nets. We also use our results to unify certain topics in vector lattices with general convergence theory. 1. Introduction Convergence is an important part of the toolkit for anyone working in functional analysis, where many deep properties are often expressed in terms of convergent nets and sequences. While convergence is often associated with topology, it has long been known that there are impor- arXiv:2103.01339v1 [math.FA] 1 Mar 2021 tant convergences that are not topological: it was shown in [Ord66] that convergence almost everywhere is not given by a topology. Further- more, there are several important non-topological convergences in the theory of vector lattices, including order convergence, uo-convergence, and relative uniform convergence. The theory of convergence structures was developed in order to han- dle non-topological convergences.
    [Show full text]
  • M. KULA, T3 and T4-Objects in the Topological Category of Cauchy
    Commun. Fac. Sci. Univ. Ank. Sér. A1 Math. Stat. Volume 66, Number 1, Pages 29—42 (2017) DOI: 10.1501/Commua1_0000000772 ISSN 1303—5991 T3 AND T4-OBJECTS IN THE TOPOLOGICAL CATEGORY OF CAUCHY SPACES MUAMMER KULA Abstract. There are various generalization of the usual topological T3 and T4 axioms to topological categories defined in [2] and [7]. [7] is shown that they lead to different T3 and T4 concepts, in general. In this paper, an explicit characterization of each of the separation properties T3 and T4 is given in the topological category of Cauchy spaces. Moreover, specific relationships that arise among the various Ti, i = 0, 1, 2, 3, 4, P reT2, and T2 structures are examined in this category. 1. Introduction In general topology and analysis, a Cauchy space is a generalization of metric spaces and uniform spaces for which the notion of Cauchy convergence still makes sense. When filters came into existence and uniform spaces were introduced, Cauchy filters appeared in topological theory as a generalization of Cauchy sequences. The theory of Cauchy spaces was initiated by H. J. Kowalsky [26]. Cauchy spaces were introduced by H. Keller [22] in 1968, as an axiomatic tool derived from the idea of a Cauchy filter in order to study completeness in topological spaces. In that paper the relation between Cauchy spaces, uniform convergence spaces, and convergence spaces was developed. In the completion theory of uniform convergence spaces and convergence vector spaces, Cauchy spaces play an essential role ([19], [25], [39]). This fact explain why most work on Cauchy spaces deals mainly with completions ([17], [18], [29]).
    [Show full text]