Wright State University CORE Scholar Computer Science and Engineering Faculty Publications Computer Science & Engineering 10-2001 Convergence Classes and Spaces of Partial Functions Anthony K. Seda Roland Heinze Pascal Hitzler
[email protected] Follow this and additional works at: https://corescholar.libraries.wright.edu/cse Part of the Computer Sciences Commons, and the Engineering Commons Repository Citation Seda, A. K., Heinze, R., & Hitzler, P. (2001). Convergence Classes and Spaces of Partial Functions. Domain Theory, Logic and Computation, 75-115. https://corescholar.libraries.wright.edu/cse/199 This Conference Proceeding is brought to you for free and open access by Wright State University’s CORE Scholar. It has been accepted for inclusion in Computer Science and Engineering Faculty Publications by an authorized administrator of CORE Scholar. For more information, please contact
[email protected]. Convergence Classes and Spaces of Partial Functions∗ Roland Heinze Institut f¨urInformatik III Rheinische Friedrich-Wilhelms-Universit¨atBonn R¨omerstr. 164, 53117 Bonn, Germany Pascal Hitzler† Artificial Intelligence Institute, Dresden University of Technology 01062 Dresden, Germany Anthony Karel Seda Department of Mathematics, University College Cork Cork, Ireland Abstract We study the relationship between convergence spaces and convergence classes given by means of both nets and filters, we consider the duality between them and we identify in convergence terms when a convergence space coincides with a convergence class. We examine the basic operators in the Vienna Development Method of formal systems devel- opment, namely, extension, glueing, restriction, removal and override, from the perspective of the Logic for Computable Functions. Thus, we examine in detail the Scott continuity, or otherwise, of these operators when viewed as operators on the domain (X → Y ) of partial functions mapping X into Y .