RIESZ SPACES " Given by Prof

Total Page:16

File Type:pdf, Size:1020Kb

RIESZ SPACES EUR 3140.Θ ÄO!·'· 1 \n\< tl '*·»ΤΗΗΊ)ίβ§"ίί IJM llHi 'li»**. 'tí fe É!>?jpfc EUROPEAN ATOMIC ENERGY COMMUNITY EURATOM LECTURES ON " RIESZ SPACES " given by Prof. A. C. ZAANEN iiil^{TT"1! i ■ BIT' '.'I . * . Ι'βΗΤ Editor : R. F. GLODEN !!i>M!?ÄÉ«il Siffifi 1966 loint Nuclear Research Center Ispra Establishment - Italy Scientific Information Processing Center - CETIS »»cm*if'-WW;flW4)apro 'BfiW»¡kHh;i.u·^: 2Λ*.;;, tf! :1Γ:«Μ$ ■ ■ J'ÎHO *sUr! if nb-. I;·"'-ii ;Γ^*Ε»"^Β1 hiik*MW!?5?'J.-i,K^ fill"; UP» LEGAL NOTICE This document was prepared under the sponsorship of the Commission of the European Atomic Energy Community (EURATOM). Neither the EURATOM Commission, its contractors nor any person acting- on their behalf : Make any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this document, or that the use of any information, apparatus, method, or process disclosed in this document may not infringe privately owned rights ; or Assume any liability with respect to the use of, or for damages resulting from the use of any information, apparatus, method or process disclosed in this document. This report is on sale at the addresses listed on cover page 4 at the price of FF 8.50 FB 85 DM 6.80 Lit. 1060 Fl. 6.20 When ordering, please quote the EUR number and the titl which are indicated on the cover of each report. m ■pejs!« EUR 3140.e LECTURES ON « RIESZ SPACES » given by Prof. A.C. ZAANEN Editor : R.F. GLODEN European Atomic Energy Community — EURATOM Joint Nuclear Research Center — Ispra Establishment (Italy) Scientific Information Processing Center — CETIS Brussels, October 1965 — 66 Pages — 26 Figures — FB 85 This report contains a sequence of lectures on functional analysis given by A.C. ZAANEN, professor at the University of Leyden, invitated by the Euratom Scientific Information Processing Center (Ispra Establishment), during the period from April 4 to April 21, 1966. The present lectures are devoted to the theory of RIESZ spaces (linear vector lattices; lineare Vektorverbände; espaces de RIESZ). Contributions to the theory, founded by F. RIESZ around 1930, are EUR 3140.e LECTURES ON « RIESZ SPACES » given by Prof. A.C. ZAANEN Editor : R.F. GLODEN European Atomic Energy Community — EURATOM Joint Nuclear Research Center — Ispra Establishment (Italy) Scientific Information Processing Center — CETIS Brussels, October 1965 — 66 Pages — 26 Figures — FB 85 This report contains a sequence of lectures on functional analysis given by A.C. ZAANEN, professor at the University of Leyden, invitated by the Euratom Scientific Information Processing Center (Ispra Establishment), during the period from April 4 to April 21, 1966. The present lectures are devoted to the theory of RIESZ spaces (linear vector lattices ; lineare Vektorverbände ; espaces de RIESZ). Contributions to the theory, founded by F. RIESZ around 1930, are EUR 3140.e LECTURES ON « RIESZ SPACES » given by Prof. A.C. ZAANEN Editor : R.F. GLODEN European Atomic Energy Community — EURATOM Joint Nuclear Research Center — Ispra Establishment (Italy) Scientific Information Processing Center — CETIS Brussels, October I960 — 66 Pages — 26 Figures — FB 85 This report contains a sequence of lectures on functional analysis given by A.C. ZAANEN, professor at the University of Leyden, invitated by the Euratom Scientific Information Processing Center (Ispra Establishment), during the period from April 4 to April 21, 1966. The present lectures are devoted to the theory of RIESZ spaces (linear vector lattices ; lineare Vektorverbände ; espaces de RIESZ). Contributions to the theory, founded by F. RIESZ around 1930, are due mainly to Japanese mathematicians (H. NAKANO and his school ; T. OGASAWARA and his school) and Soviet mathematicians (KANTOROVITCH and his school). Recently, new results were ob• tained by W.A.J. LUXEMBURG (Pasadena, USA) and the present lecturer. In the first ten lectures every statement is proved ; in the last two lectures some proofs are only indicated or altogether omitted. due mainly to Japanese mathematicians (H. NAKANO and his school ; T. OGASAWARA and his school) and Soviet mathematicians (KANTOROVITCH and his school). Recently, new results were ob• tained by W.A.J. LUXEMBURG (Pasadena, USA) and the present lecturer. In the first ten lectures every statement is proved ; in the last two lectures some proofs are only indicated or altogether omitted. due mainly to Japanese mathematicians (H. NAKANO and his school ; T. OGASAWARA and his school) and Soviet mathematicians (KANTOROVITCH and his school). Recently, new results were ob• tained by W.A.J. LUXEMBURG (Pasadena, USA) and the present lecturer. In the first ten lectures every statement is proved ; in the last two lectures some proofs are only indicated or altogether omitted. EUR 3140.e EUROPEAN ATOMIC ENERGY COMMUNITY - EURATOM LECTURES ON " RIESZ SPACES " given by Prof. A. C. ZAANEN Editor : R. F. GLODEN 1966 Joint Nuclear Research Center Ispra Establishment - Italy Scientific Information Processing Center - CETIS CONTENTS Lecture 1 : Ordered vector epace, RIESZ space; Positive cone Simple properties of f and f 1 Lecture 2 : Properties of sup (f,g) and inf (f,g)i Standard decomposition of an element; Triangle inequality; Distributive laws · 6 Lecture 3 î More on the distributive laws; BIRKHOFF's inequali­ ties; Disjointness 11 Lecture k i Disjointness; Monotone sequences; Dominated decom­ position theorem; Directed sets 18 Lecture 5 '· Examples of RIESZ spaces 23 Lecture 6 : The ordered vector space of all HERMITIAN operatore on a HILBERT space; RIESZ subspaces, ideals and bands; Examples; Ideal or band generated by a subset ....... 28 Lecture 7 '· Algebraic and direct sums of ideale or bands; Dis­ joint complements J>h Lecture 8 : The BOOLEAN algebra of all disjoint complements; ARCHIMEDEAN RIESZ spaces hO Lecture 9 : DEDEKIND complete and DEDEKIND (T-complete spaces; Projection bands *t6 Lecture 10: Positive and order bounded linear functional6; Order dual of a RIESZ space 31 Lecture 11: DEDEKIND completeness of the order dual; Integrale and singular functionals · 36 Lecture 12: Normed RIESZ spaces 61 SUMMARY This report contains a sequence of lectures on functional analysis given by A.C. ZAANEN, professor at the University of Leyden, invitated by the Euratom Scientific Information Processing Center (Ispra Establishment), during the period from April 4 to April 21, 1966. The present lectures are devoted to the theory of RIESZ spaces (linear vector lattices ; lineare Vektorverbände ; espaces de RIESZ). Contributions to the theory, founded by P. RIESZ around 1930, are due mainly to Japanese mathematicians (H. NAKANO and his school ; T. OGASAWARA and his school) and Soviet mathematicians (KANTOROVITCH and his school). Recently, new results were ob• tained by W.A.J. LUXEMBURG (Pasadena, USA) and the present lecturer. In the first ten lectures every statement is proved ; in the last two lectures some proofs are only indicated or altogether omitted. - 1 - 1 Leoture Definition of an ordered vector space L is called : ordered vector space, if (i) li is a real linear vector space, (ii) L is a partially ordered set, (i.e. for elements f, g, h,... and f ί g, we have f « g and g < h=>f * h f i f for all f f ί g and g « f=*f = g). These two structures are compatible,L is such that a) f « gs$>f+h « g+h for all h ( L, b) f < g=»>af « ag for all real a > 0. Let us recall the following definitions : If L is partially ordered and A is a subset of L, than the element g « L is called an upper bound of A if f c g for all f f A. If, in addition, g « g. for every other upper bound g. of A, then g is called the least upper bound of A, or the supremum of A« Notation : g = sup A or g = sup Γ f : f « A1 Similarly, if h { f for all f β A, then h is a lower bound of A. If h * h. for any other lower bound h. of A, then h is the greatest lower bound of A, or the infimum of A. Notation : h = inf A or h = inf ff : f c A[ Manuscript received on July 29, 1966. - 2 - Definition of a RIESZ space The ordered vector space (o.v. sp.) L is called a RIESZ space if for every pair ?t & € L, there exist sup(f,g) and inf(f,g). Examples (i) The real numbers, i.e. R . o (ii) The plan R . Partial order defined by f1 * «1 t < g4» f2« g2 fig. I, 1 (iii) The spaoe 0([_0,ΐ3)» being the set of all real continuous functions on [0,1] . Definition of f « g : f(x) * g(x) for χ c [0,lj süp(f g) ; \^ fig. 1,2 fig. I, 3 Positive cone of L The positive cone of L, called L*. is by definition I f ; f > 0 0 being the null element of L. Grephio representation of L for the above examples (i) L+ -j ■ 1 1 1 1—I »—< 1 1—·—t- fig. I, if - 3 - Fig. I, 5 (iii) Fig. I, 6 Cone properties t,6 < L+:=*f+g < L+ f * 0=^af * 0 for real a * 0 f, -f e L+=4f = 0 f > 0=4f+g ;> g * 0=^f+g > 0 f > 0Ì =4f = o f < oj Simple properties (i) f > g«f-g e L+ (ii) f)(Hf> sup(f>g) and g = inf(f,g) Λ af ï ag for a > 0 (ui) f>*g* ^ af < ag for a < 0 Indeed f > g<F*f-g * 0<=}-f < -g - k - (iv) sup (f,g) and inf (f,g) : sup (f,g) » - inf (-f, -g) indeed, if h : upper bound of f,g then -h: lower bound of -f, -g.
Recommended publications
  • The Semi-M Property for Normed Riesz Spaces Compositio Mathematica, Tome 34, No 2 (1977), P
    COMPOSITIO MATHEMATICA EP DE JONGE The semi-M property for normed Riesz spaces Compositio Mathematica, tome 34, no 2 (1977), p. 147-172 <http://www.numdam.org/item?id=CM_1977__34_2_147_0> © Foundation Compositio Mathematica, 1977, tous droits réservés. L’accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l’accord avec les conditions géné- rales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infrac- tion pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ COMPOSITIO MATHEMATICA, Vol. 34, Fasc. 2, 1977, pag. 147-172 Noordhoff International Publishing Printed in the Netherlands THE SEMI-M PROPERTY FOR NORMED RIESZ SPACES Ep de Jonge 1. Introduction It is well-known that if (0394, F, IL) is a u-finite measure space and if 1 ~ p 00, then the Banach dual L *p of the Banach space Lp = Lp(0394, IL) can be identified with Lq = Lq(L1, 03BC), where p-1 + q-1 = 1. For p =00 the situation is different; the space Li is a linear subspace of L*, and only in a very trivial situation (the finite-dimensional case) we have Li = Lfi. Restricting ourselves to the real case, the Banach dual L *~ is a (real) Riesz space, i.e., a vector lattice, and Li is now a band in L*. The disjoint complement (i.e., the set of all elements in L* disjoint to all elements in LI) is also a band in L*, called the band of singular linear functionals on Loo.
    [Show full text]
  • Vector Lattice Covers of Ideals and Bands in Pre-Riesz Spaces
    Vector lattice covers of ideals and bands in pre-Riesz spaces Anke Kalauch,∗ Helena Malinowski† November 12, 2018 Abstract Pre-Riesz spaces are ordered vector spaces which can be order densely embedded into vector lattices, their so-called vector lattice covers. Given a vector lattice cover Y for a pre-Riesz space X, we address the question how to find vector lattice covers for subspaces of X, such as ideals and bands. We provide conditions such that for a directed ideal I in X its smallest extension ideal in Y is a vector lattice cover. We show a criterion for bands in X and their extension bands in Y as well. Moreover, we state properties of ideals and bands in X which are generated by sets, and of their extensions in Y . 1 Introduction In the analysis of partially ordered vector spaces, subspaces as ideals and bands play a central role. In vector lattices, problems involving those subspaces are broadly discussed in the literature, see e.g. [1, 15, 22]. Directed ideals in partially ordered vector spaces were introduced in [6, Definition 2.2] and studied in [2, 3, 14, 5]; for a more recent overview see [12]. The investigation of disjointness and bands in partially ordered vector spaces starts in [9], where for the definition of disjointness sets of upper bounds are used instead of lattice operations. Here a band is defined to be a set that equals its double-disjoint complement, analogously to the notion in arXiv:1801.07191v2 [math.FA] 8 Nov 2018 Archimedean vector lattices. Ideals and bands are mostly considered in pre-Riesz spaces.
    [Show full text]
  • Locally Solid Riesz Spaces with Applications to Economics / Charalambos D
    http://dx.doi.org/10.1090/surv/105 alambos D. Alipr Lie University \ Burkinshaw na University-Purdue EDITORIAL COMMITTEE Jerry L. Bona Michael P. Loss Peter S. Landweber, Chair Tudor Stefan Ratiu J. T. Stafford 2000 Mathematics Subject Classification. Primary 46A40, 46B40, 47B60, 47B65, 91B50; Secondary 28A33. Selected excerpts in this Second Edition are reprinted with the permissions of Cambridge University Press, the Canadian Mathematical Bulletin, Elsevier Science/Academic Press, and the Illinois Journal of Mathematics. For additional information and updates on this book, visit www.ams.org/bookpages/surv-105 Library of Congress Cataloging-in-Publication Data Aliprantis, Charalambos D. Locally solid Riesz spaces with applications to economics / Charalambos D. Aliprantis, Owen Burkinshaw.—2nd ed. p. cm. — (Mathematical surveys and monographs, ISSN 0076-5376 ; v. 105) Rev. ed. of: Locally solid Riesz spaces. 1978. Includes bibliographical references and index. ISBN 0-8218-3408-8 (alk. paper) 1. Riesz spaces. 2. Economics, Mathematical. I. Burkinshaw, Owen. II. Aliprantis, Char­ alambos D. III. Locally solid Riesz spaces. IV. Title. V. Mathematical surveys and mono­ graphs ; no. 105. QA322 .A39 2003 bib'.73—dc22 2003057948 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society.
    [Show full text]
  • A Note on Riesz Spaces with Property-$ B$
    Czechoslovak Mathematical Journal Ş. Alpay; B. Altin; C. Tonyali A note on Riesz spaces with property-b Czechoslovak Mathematical Journal, Vol. 56 (2006), No. 2, 765–772 Persistent URL: http://dml.cz/dmlcz/128103 Terms of use: © Institute of Mathematics AS CR, 2006 Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use. This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz Czechoslovak Mathematical Journal, 56 (131) (2006), 765–772 A NOTE ON RIESZ SPACES WITH PROPERTY-b S¸. Alpay, B. Altin and C. Tonyali, Ankara (Received February 6, 2004) Abstract. We study an order boundedness property in Riesz spaces and investigate Riesz spaces and Banach lattices enjoying this property. Keywords: Riesz spaces, Banach lattices, b-property MSC 2000 : 46B42, 46B28 1. Introduction and preliminaries All Riesz spaces considered in this note have separating order duals. Therefore we will not distinguish between a Riesz space E and its image in the order bidual E∼∼. In all undefined terminology concerning Riesz spaces we will adhere to [3]. The notions of a Riesz space with property-b and b-order boundedness of operators between Riesz spaces were introduced in [1]. Definition. Let E be a Riesz space. A set A E is called b-order bounded in ⊂ E if it is order bounded in E∼∼. A Riesz space E is said to have property-b if each subset A E which is order bounded in E∼∼ remains order bounded in E.
    [Show full text]
  • Projection Bands and Atoms in Pervasive Pre-Riesz Spaces
    Projection bands and atoms in pervasive pre-Riesz spaces Anke Kalauch,∗ Helena Malinowski† March 31, 2020 Abstract In vector lattices, the concept of a projection band is a basic tool. We deal with projection bands in the more general setting of an Archimedean pre-Riesz space X. We relate them to projection bands in a vector lattice cover Y of X. If X is pervasive, then a projection band in X extends to a projection band in Y , whereas the restriction of a projection band B in Y is not a projection band in X, in general. We give conditions under which the restriction of B is a projection band in X. We introduce atoms and discrete elements in X and show that every atom is discrete. The converse implication is true, provided X is pervasive. In this setting, we link atoms in X to atoms in Y . If X contains an atom a> 0, we show that the principal band generated by a is a projection band. Using atoms in a finite dimensional Archimedean pre-Riesz space X, we establish that X is pervasive if and only if it is a vector lattice. Keywords: order projection, projection band, band projection, principal band, atom, discrete element, extremal vector, pervasive, weakly pervasive, Archimedean directed ordered vector space, pre-Riesz space, vector lattice cover Mathematics Subject Classification (2010): 46A40, 06F20, 47B65 1 Introduction arXiv:1904.10420v2 [math.FA] 29 Mar 2020 Projection bands and atoms are both fundamental concepts in the vector lattice theory. For an Archimedean vector lattice Y , a band B in Y is called a projection band if Y = B ⊕ Bd, where Bd is the disjoint complement of B.
    [Show full text]
  • On the Schur, Positive Schur and Weak Dunford-Pettis Properties in Fr
    On the Schur, positive Schur and weak Dunford-Pettis properties in Fr´echet lattices Geraldo Botelho∗ and Jos´eLucas P. Luiz† Abstract We prove some general results on sequential convergence in Fr´echet lattices that yield, as particular instances, the following results regarding a closed ideal I of a Banach lattice E: (i) If two of the lattices E, I and E/I have the positive Schur property (the Schur property, respectively) then the third lattice has the positive Schur property (the Schur property, respectively) as well; (ii) If I and E/I have the dual positive Schur property, then E also has this property; (iii) If I has the weak Dunford-Pettis property and E/I has the positive Schur property, then E has the weak Dunford-Pettis property. Examples and applications are provided. 1 Introduction In the realm of Banach spaces, the Schur property (weakly null sequences are norm null) is a 3-space property in the weak sense that a Banach space E has the Schur property whenever a closed subspace F of E and the quotient space E/F have the Schur property (see, e.g., [8]). But it is not a 3-space property in the strong sense that, given a closed subspace F of the Banach space E, if two of the spaces E, F and E/F have the Schur property, then the third one also has this property. To see that, just remember that c0 is a quotient of ℓ1. In the setting of Banach lattices, for the quotient E/F of a Banach lattice E over a closed subspace F to be a Banach lattice, F should be an ideal of E (see, e.g., [3]).
    [Show full text]
  • Version of 4.9.09 Chapter 35 Riesz Spaces the Next Three Chapters Are
    Version of 4.9.09 Chapter 35 Riesz spaces The next three chapters are devoted to an abstract description of the ‘function spaces’ described in Chapter 24, this time concentrating on their internal structure and relationships with their associated measure algebras. I find that any convincing account of these must involve a substantial amount of general theory concerning partially ordered linear spaces, and in particular various types of Riesz space or vector lattice. I therefore provide an introduction to this theory, a kind of appendix built into the middle of the volume. The relation of this chapter to the next two is very like the relation of Chapter 31 to Chapter 32. As with Chapter 31, it is not really meant to be read for its own sake; those with a particular interest in Riesz spaces might be better served by Luxemburg & Zaanen 71, Schaefer 74, Zaanen 83 or my own book Fremlin 74a. I begin with three sections in an easy gradation towards the particular class of spaces which we need to understand: partially ordered linear spaces (§351), general Riesz spaces (§352) and Archimedean Riesz spaces (§353); the last includes notes on Dedekind (σ-)complete spaces. These sections cover the fragments of the algebraic theory of Riesz spaces which I will use. In the second half of the chapter, I deal with normed Riesz spaces (in particular, L- and M-spaces)(§354), spaces of linear operators (§355) and dual Riesz spaces (§356). Version of 16.10.07 351 Partially ordered linear spaces I begin with an account of the most basic structures which involve an order relation on a linear space, partially ordered linear spaces.
    [Show full text]
  • Nonatomic Banach Lattices Can Have /, As a Dual Space E
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 57, Number 1, May 1976 NONATOMIC BANACH LATTICES CAN HAVE /, AS A DUAL SPACE E. LACEYand p. wojtaszczyk Abstract. Examples of nonatomic M spaces whose duals are /, are constructed. In the theory of (separable) Banach lattices it is sometimes true that a space X is purely atomic if and only if X* is (for example, if X is order complete and X* is separable). However, in general, it is not true. The main purpose of this paper is to illustrate this with the following theorem on M spaces. Theorem 1. Let a be a countable ordinal (a > w). Then there is a nonatomic M space X whose dual is linearly order isometric to lx and such that X is linearly isomorphic to C(X,a~). Unexplained terminology shall be that of [5]. By an atom in a Banach lattice we shall mean an element x > 0 such that if 0 < y < x, then y = ax for some a > 0. A purely atomic Banach lattice is one in which every positive element dominates some atom and a nonatomic Banach lattice is one which admits no atoms. By <(1,a) we mean the order interval of ordinals between 1 and a with the usual order topology. The following theorem is known. We state and prove it only as background to the discussion. Theorem 2. Let X be a separable order complete Banach lattice. (a) If X is purely atomic and X* is separable, then X* is purely atomic; (b) If X* is purely atomic, then so is X.
    [Show full text]
  • Preregular Maps Between Banach Lattices
    BULL. AUSTRAL. MATH. SOC. 46A40, 46M05 VOL. II (1974), 231-254. (46BI0, 46BI5) Preregular maps between Banach lattices David A. Birnbaum A continuous linear map from a Banach lattice E into a Banach lattice F is preregular if it is the difference of positive continuous linear maps from E into the bidual F" of F . This paper characterizes Banach lattices B with either of the following properties: (1) for any Banach lattice E , each map in L(E, B) is preregular; (2) for any Banach lattice F , each map in L{B, F) is preregular. It is shown that B satisfies (l) (respectively (2)) if and- only if B' satisfies (2) (respectively (l)). Several order properties of a Banach lattice satisfying (2) are discussed and it is shown that if B satisfies (2) and if B is also an atomic vector lattice then B is isomorphic as a Banach lattice to I (T) for some index set Y . 1. Introduction The following natural question arises in the theory of Banach lattices: Given Banach lattices E and F , is each map in the space L(E, F) of continuous linear maps from E into F the difference of positive (continuous) linear maps? It is known that if F is a C{X) for X an extremally disconnected, compact Hausdorff space X or if E is an A£-space and F has the monotone convergence property then the answer to Received 17 May 1971*. 231 Downloaded from https://www.cambridge.org/core. IP address: 170.106.202.226, on 02 Oct 2021 at 11:23:22, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.
    [Show full text]
  • Integration of Functions with Values in a Riesz Space
    Integration of functions with values in a Riesz space. Willem van Zuijlen Supervisor: Second reader: A.C.M. van Rooij O.W. van Gaans July 2012 Contents Introduction 2 Conventions and Notations 4 1 Preliminaries 7 1.1 The Riesz dual of a Riesz space . .7 1.2 Integrals for functions with values in a Banach space . 12 1.2.1 The Bochner integral . 12 1.2.2 The Pettis integral . 16 2 Integrals for functions with values in a Riesz space 17 2.1 The Bochner integral on Riesz space valued functions . 18 2.2 σ-simple functions . 20 2.3 The R-integral on Riesz space valued functions. 29 2.4 The U-integral on Riesz space valued functions . 37 2.5 The Pettis integral on Riesz space valued functions . 42 3 Comparing the integrals 47 3.1 Comparing the R-integral with the Bochner integral . 47 3.2 Comparing the U-integral with the R-integral . 49 3.3 Comparing the U-integral with the Bochner integral . 50 3.4 Comparing the U-integral with the strong and weak Pettis integral 51 3.5 Comparing the R-integral with the weak Pettis integral . 52 3.6 Comparing the R-integral with the strong Pettis integral . 54 4 Further properties of the R-integral 57 5 Examples 69 References 75 Index 76 1 Introduction In this thesis one will find definitions of integrals for functions with values in a Riesz space. The idea for this subject started when I began to learn about the Bochner integral (which is an integral for functions with values in a Banach space) and about Riesz spaces.
    [Show full text]
  • The Order Convergence Structure
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Available online at www.sciencedirect.com Indagationes Mathematicae 21 (2011) 138–155 www.elsevier.com/locate/indag The order convergence structure Jan Harm van der Walt∗ Department of Mathematics and Applied Mathematics, University of Pretoria, Pretoria 0002, South Africa Received 20 September 2010; received in revised form 24 January 2011; accepted 9 February 2011 Communicated by Dr. B. de Pagter Abstract In this paper, we study order convergence and the order convergence structure in the context of σ- distributive lattices. Particular emphasis is placed on spaces with additional algebraic structure: we show that on a Riesz algebra with σ-order continuous multiplication, the order convergence structure is an algebra convergence structure, and construct the convergence vector space completion of an Archimedean Riesz space with respect to the order convergence structure. ⃝c 2011 Royal Netherlands Academy of Arts and Sciences. Published by Elsevier B.V. All rights reserved. MSC: 06A19; 06F25; 54C30 Keywords: Order convergence; Convergence structure; Riesz space 1. Introduction A useful notion of convergence of sequences on a poset L is that of order convergence; see for instance [2,7]. Recall that a sequence .un/ on L order converges to u 2 L whenever there is an increasing sequence (λn/ and a decreasing sequence (µn/ on L such that sup λn D u D inf µn and λn ≤ un ≤ µn; n 2 N: (1) n2N n2N In case the poset L is a Riesz space, the relation (1) is equivalent to the following: there exists a sequence (λn/ that decreases to 0 such that ju − unj ≤ λn; n 2 N: (2) ∗ Tel.: +27 12 420 2819; fax: +27 12 420 3893.
    [Show full text]
  • A Note on Riesz Space Valued Measures
    Turkish Journal of Mathematics Turk J Math (2016) 40: 114 { 121 http://journals.tubitak.gov.tr/math/ ⃝c TUB¨ ITAK_ Research Article doi:10.3906/mat-1411-23 A note on Riesz space valued measures Ne¸set Ozkan¨ TAN∗ Department of Mathematics, U¸sakUniversity, 1 Eyl¨ulCampus, U¸sak,Turkey Received: 10.11.2014 • Accepted/Published Online: 26.07.2015 • Final Version: 01.01.2016 Abstract: In this paper, some properties of Riesz space valued measures that are defined on an algebra of sets are obtained. The question of under what conditions oba(F;E) =a(F;E) for a given Dedekind complete Riesz space E is answered under natural conditions. The outer measure, which is generated by order bounded Riesz space valued measure, is obtained and its properties are investigated. The concept of hazy convergence that is valid for real valued signed measures is extended to Riesz space valued measures. The consequences of order convergence of f : X ! E , which implies hazy convergence, are given. Key words: Charge, finitely additive measure, outer measure, Riesz space valued measure 1. Introduction For the standard definition and terminology of Riesz space theory, see [6, 10] or [5]. For general measure theory and real valued charge theory, we refer to [1, 4]. Let F be an algebra of subsets of any nonempty set X and let E be a Riesz space. A set function µ : F! E is called a Riesz space valued measure or an additive measure if µ(A[B) = µ(A)+µ(B) holds for each disjoint pairs of A; B in F .
    [Show full text]