Problems in the Theory of Convergence Spaces
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Basic Properties of Filter Convergence Spaces
Basic Properties of Filter Convergence Spaces Barbel¨ M. R. Stadlery, Peter F. Stadlery;z;∗ yInstitut fur¨ Theoretische Chemie, Universit¨at Wien, W¨ahringerstraße 17, A-1090 Wien, Austria zThe Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA ∗Address for corresponce Abstract. This technical report summarized facts from the basic theory of filter convergence spaces and gives detailed proofs for them. Many of the results collected here are well known for various types of spaces. We have made no attempt to find the original proofs. 1. Introduction Mathematical notions such as convergence, continuity, and separation are, at textbook level, usually associated with topological spaces. It is possible, however, to introduce them in a much more abstract way, based on axioms for convergence instead of neighborhood. This approach was explored in seminal work by Choquet [4], Hausdorff [12], Katˇetov [14], Kent [16], and others. Here we give a brief introduction to this line of reasoning. While the material is well known to specialists it does not seem to be easily accessible to non-topologists. In some cases we include proofs of elementary facts for two reasons: (i) The most basic facts are quoted without proofs in research papers, and (ii) the proofs may serve as examples to see the rather abstract formalism at work. 2. Sets and Filters Let X be a set, P(X) its power set, and H ⊆ P(X). The we define H∗ = fA ⊆ Xj(X n A) 2= Hg (1) H# = fA ⊆ Xj8Q 2 H : A \ Q =6 ;g The set systems H∗ and H# are called the conjugate and the grill of H, respectively. -
Minimal Convergence Spaces
transactions of the american mathematical society Volume 160, October 1971 MINIMAL CONVERGENCE SPACES BY D. C. KENT AND G. D. RICHARDSON Abstract. We are primarily concerned with minimal P convergence spaces, where P is one of the following convergence space properties: HausdorfT, T2, A-regular, A-Urysohn, and first countable, A an infinite cardinal number. Our conclusions usually resemble the corresponding topological results, but with some deviations ; for instance, a minimal HausdorfT convergence space is always compact, whereas a countable minimal regular convergence space need not be compact. Introduction. Minimal topological spaces have been extensively studied by various authors (see references). We now extend this study to convergence spaces. The reader is asked to refer to [9] for basic definitions and terminology concerning convergence spaces. However, a brief summary will be given here. A convergence structure qona set S is defined to be a function from the set F(S) of all filters on S into the set of all subsets of S, satisfying the following conditions : (1) x eq(x), all xe S, where x is the principal ultrafilter containing {x}; (2) if & and <Sare in F(S) and ¿F^ <S,then q(^)<=-q(^)\ (3) if x e q(&), then x e q(& n x). The pair (S, q) is called a convergence space. If x e q(&r), then we say that & q-converges to x. The filter ^q(x) obtained by intersecting all filters which ^-converge to x is called the q-neighborhoodfilter at x. lf^q(x) ^-converges to x for each x in S, then q is called a pretopology, and (S, q) a pretopological space. -
Topology and Data
BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 46, Number 2, April 2009, Pages 255–308 S 0273-0979(09)01249-X Article electronically published on January 29, 2009 TOPOLOGY AND DATA GUNNAR CARLSSON 1. Introduction An important feature of modern science and engineering is that data of various kinds is being produced at an unprecedented rate. This is so in part because of new experimental methods, and in part because of the increase in the availability of high powered computing technology. It is also clear that the nature of the data we are obtaining is significantly different. For example, it is now often the case that we are given data in the form of very long vectors, where all but a few of the coordinates turn out to be irrelevant to the questions of interest, and further that we don’t necessarily know which coordinates are the interesting ones. A related fact is that the data is often very high-dimensional, which severely restricts our ability to visualize it. The data obtained is also often much noisier than in the past and has more missing information (missing data). This is particularly so in the case of biological data, particularly high throughput data from microarray or other sources. Our ability to analyze this data, both in terms of quantity and the nature of the data, is clearly not keeping pace with the data being produced. In this paper, we will discuss how geometry and topology can be applied to make useful contributions to the analysis of various kinds of data. -
Pg**- Compact Spaces
International Journal of Mathematics Research. ISSN 0976-5840 Volume 9, Number 1 (2017), pp. 27-43 © International Research Publication House http://www.irphouse.com pg**- compact spaces Mrs. G. Priscilla Pacifica Assistant Professor, St.Mary’s College, Thoothukudi – 628001, Tamil Nadu, India. Dr. A. Punitha Tharani Associate Professor, St.Mary’s College, Thoothukudi –628001, Tamil Nadu, India. Abstract The concepts of pg**-compact, pg**-countably compact, sequentially pg**- compact, pg**-locally compact and pg**- paracompact are introduced, and several properties are investigated. Also the concept of pg**-compact modulo I and pg**-countably compact modulo I spaces are introduced and the relation between these concepts are discussed. Keywords: pg**-compact, pg**-countably compact, sequentially pg**- compact, pg**-locally compact, pg**- paracompact, pg**-compact modulo I, pg**-countably compact modulo I. 1. Introduction Levine [3] introduced the class of g-closed sets in 1970. Veerakumar [7] introduced g*- closed sets. P M Helen[5] introduced g**-closed sets. A.S.Mashhour, M.E Abd El. Monsef [4] introduced a new class of pre-open sets in 1982. Ideal topological spaces have been first introduced by K.Kuratowski [2] in 1930. In this paper we introduce 28 Mrs. G. Priscilla Pacifica and Dr. A. Punitha Tharani pg**-compact, pg**-countably compact, sequentially pg**-compact, pg**-locally compact, pg**-paracompact, pg**-compact modulo I and pg**-countably compact modulo I spaces and investigate their properties. 2. Preliminaries Throughout this paper(푋, 휏) and (푌, 휎) represent non-empty topological spaces of which no separation axioms are assumed unless otherwise stated. Definition 2.1 A subset 퐴 of a topological space(푋, 휏) is called a pre-open set [4] if 퐴 ⊆ 푖푛푡(푐푙(퐴) and a pre-closed set if 푐푙(푖푛푡(퐴)) ⊆ 퐴. -
MTH 304: General Topology Semester 2, 2017-2018
MTH 304: General Topology Semester 2, 2017-2018 Dr. Prahlad Vaidyanathan Contents I. Continuous Functions3 1. First Definitions................................3 2. Open Sets...................................4 3. Continuity by Open Sets...........................6 II. Topological Spaces8 1. Definition and Examples...........................8 2. Metric Spaces................................. 11 3. Basis for a topology.............................. 16 4. The Product Topology on X × Y ...................... 18 Q 5. The Product Topology on Xα ....................... 20 6. Closed Sets.................................. 22 7. Continuous Functions............................. 27 8. The Quotient Topology............................ 30 III.Properties of Topological Spaces 36 1. The Hausdorff property............................ 36 2. Connectedness................................. 37 3. Path Connectedness............................. 41 4. Local Connectedness............................. 44 5. Compactness................................. 46 6. Compact Subsets of Rn ............................ 50 7. Continuous Functions on Compact Sets................... 52 8. Compactness in Metric Spaces........................ 56 9. Local Compactness.............................. 59 IV.Separation Axioms 62 1. Regular Spaces................................ 62 2. Normal Spaces................................ 64 3. Tietze's extension Theorem......................... 67 4. Urysohn Metrization Theorem........................ 71 5. Imbedding of Manifolds.......................... -
A TEXTBOOK of TOPOLOGY Lltld
SEIFERT AND THRELFALL: A TEXTBOOK OF TOPOLOGY lltld SEI FER T: 7'0PO 1.OG 1' 0 I.' 3- Dl M E N SI 0 N A I. FIRERED SPACES This is a volume in PURE AND APPLIED MATHEMATICS A Series of Monographs and Textbooks Editors: SAMUELEILENBERG AND HYMANBASS A list of recent titles in this series appears at the end of this volunie. SEIFERT AND THRELFALL: A TEXTBOOK OF TOPOLOGY H. SEIFERT and W. THRELFALL Translated by Michael A. Goldman und S E I FE R T: TOPOLOGY OF 3-DIMENSIONAL FIBERED SPACES H. SEIFERT Translated by Wolfgang Heil Edited by Joan S. Birman and Julian Eisner @ 1980 ACADEMIC PRESS A Subsidiary of Harcourr Brace Jovanovich, Publishers NEW YORK LONDON TORONTO SYDNEY SAN FRANCISCO COPYRIGHT@ 1980, BY ACADEMICPRESS, INC. ALL RIGHTS RESERVED. NO PART OF THIS PUBLICATION MAY BE REPRODUCED OR TRANSMITTED IN ANY FORM OR BY ANY MEANS, ELECTRONIC OR MECHANICAL, INCLUDING PHOTOCOPY, RECORDING, OR ANY INFORMATION STORAGE AND RETRIEVAL SYSTEM, WITHOUT PERMISSION IN WRITING FROM THE PUBLISHER. ACADEMIC PRESS, INC. 11 1 Fifth Avenue, New York. New York 10003 United Kingdom Edition published by ACADEMIC PRESS, INC. (LONDON) LTD. 24/28 Oval Road, London NWI 7DX Mit Genehmigung des Verlager B. G. Teubner, Stuttgart, veranstaltete, akin autorisierte englische Ubersetzung, der deutschen Originalausgdbe. Library of Congress Cataloging in Publication Data Seifert, Herbert, 1897- Seifert and Threlfall: A textbook of topology. Seifert: Topology of 3-dimensional fibered spaces. (Pure and applied mathematics, a series of mono- graphs and textbooks ; ) Translation of Lehrbuch der Topologic. Bibliography: p. Includes index. 1. -
General Topology
General Topology Tom Leinster 2014{15 Contents A Topological spaces2 A1 Review of metric spaces.......................2 A2 The definition of topological space.................8 A3 Metrics versus topologies....................... 13 A4 Continuous maps........................... 17 A5 When are two spaces homeomorphic?................ 22 A6 Topological properties........................ 26 A7 Bases................................. 28 A8 Closure and interior......................... 31 A9 Subspaces (new spaces from old, 1)................. 35 A10 Products (new spaces from old, 2)................. 39 A11 Quotients (new spaces from old, 3)................. 43 A12 Review of ChapterA......................... 48 B Compactness 51 B1 The definition of compactness.................... 51 B2 Closed bounded intervals are compact............... 55 B3 Compactness and subspaces..................... 56 B4 Compactness and products..................... 58 B5 The compact subsets of Rn ..................... 59 B6 Compactness and quotients (and images)............. 61 B7 Compact metric spaces........................ 64 C Connectedness 68 C1 The definition of connectedness................... 68 C2 Connected subsets of the real line.................. 72 C3 Path-connectedness.......................... 76 C4 Connected-components and path-components........... 80 1 Chapter A Topological spaces A1 Review of metric spaces For the lecture of Thursday, 18 September 2014 Almost everything in this section should have been covered in Honours Analysis, with the possible exception of some of the examples. For that reason, this lecture is longer than usual. Definition A1.1 Let X be a set. A metric on X is a function d: X × X ! [0; 1) with the following three properties: • d(x; y) = 0 () x = y, for x; y 2 X; • d(x; y) + d(y; z) ≥ d(x; z) for all x; y; z 2 X (triangle inequality); • d(x; y) = d(y; x) for all x; y 2 X (symmetry). -
Convergence Spaces
mathematics Article p-Topologicalness—A Relative Topologicalness in >-Convergence Spaces Lingqiang Li Department of Mathematics, Liaocheng University, Liaocheng 252059, China; [email protected]; Tel.: +86-0635-8239926 Received: 24 January 2019; Accepted: 25 February 2019; Published: 1 March 2019 Abstract: In this paper, p-topologicalness (a relative topologicalness) in >-convergence spaces are studied through two equivalent approaches. One approach generalizes the Fischer’s diagonal condition, the other approach extends the Gähler’s neighborhood condition. Then the relationships between p-topologicalness in >-convergence spaces and p-topologicalness in stratified L-generalized convergence spaces are established. Furthermore, the lower and upper p-topological modifications in >-convergence spaces are also defined and discussed. In particular, it is proved that the lower (resp., upper) p-topological modification behaves reasonably well relative to final (resp., initial) structures. Keywords: fuzzy topology; fuzzy convergence; lattice-valued convergence; >-convergence space; relative topologicalness; p-topologcalness; diagonal condition; neighborhood condition 1. Introduction The theory of convergence spaces [1] is natural extension of the theory of topological spaces. The topologicalness is important in the theory of convergence spaces since it mainly researches the condition of a convergence space to be a topological space. Generally, two equivalent approaches are used to characterize the topologicalness in convergence spaces. One approach is stated by the well-known Fischer’s diagonal condition [2], the other approach is stated by Gähler’s neighborhood condition [3]. In [4], by considering a pair of convergence spaces (X, p) and (X, q), Wilde and Kent investigated a kind of relative topologicalness, called p-topologicalness. When p = q, p-topologicalness is equivalent to topologicalness in convergence spaces. -
DEFINITIONS and THEOREMS in GENERAL TOPOLOGY 1. Basic
DEFINITIONS AND THEOREMS IN GENERAL TOPOLOGY 1. Basic definitions. A topology on a set X is defined by a family O of subsets of X, the open sets of the topology, satisfying the axioms: (i) ; and X are in O; (ii) the intersection of finitely many sets in O is in O; (iii) arbitrary unions of sets in O are in O. Alternatively, a topology may be defined by the neighborhoods U(p) of an arbitrary point p 2 X, where p 2 U(p) and, in addition: (i) If U1;U2 are neighborhoods of p, there exists U3 neighborhood of p, such that U3 ⊂ U1 \ U2; (ii) If U is a neighborhood of p and q 2 U, there exists a neighborhood V of q so that V ⊂ U. A topology is Hausdorff if any distinct points p 6= q admit disjoint neigh- borhoods. This is almost always assumed. A set C ⊂ X is closed if its complement is open. The closure A¯ of a set A ⊂ X is the intersection of all closed sets containing X. A subset A ⊂ X is dense in X if A¯ = X. A point x 2 X is a cluster point of a subset A ⊂ X if any neighborhood of x contains a point of A distinct from x. If A0 denotes the set of cluster points, then A¯ = A [ A0: A map f : X ! Y of topological spaces is continuous at p 2 X if for any open neighborhood V ⊂ Y of f(p), there exists an open neighborhood U ⊂ X of p so that f(U) ⊂ V . -
Combinatorial Topology
Chapter 6 Basics of Combinatorial Topology 6.1 Simplicial and Polyhedral Complexes In order to study and manipulate complex shapes it is convenient to discretize these shapes and to view them as the union of simple building blocks glued together in a “clean fashion”. The building blocks should be simple geometric objects, for example, points, lines segments, triangles, tehrahedra and more generally simplices, or even convex polytopes. We will begin by using simplices as building blocks. The material presented in this chapter consists of the most basic notions of combinatorial topology, going back roughly to the 1900-1930 period and it is covered in nearly every algebraic topology book (certainly the “classics”). A classic text (slightly old fashion especially for the notation and terminology) is Alexandrov [1], Volume 1 and another more “modern” source is Munkres [30]. An excellent treatment from the point of view of computational geometry can be found is Boissonnat and Yvinec [8], especially Chapters 7 and 10. Another fascinating book covering a lot of the basics but devoted mostly to three-dimensional topology and geometry is Thurston [41]. Recall that a simplex is just the convex hull of a finite number of affinely independent points. We also need to define faces, the boundary, and the interior of a simplex. Definition 6.1 Let be any normed affine space, say = Em with its usual Euclidean norm. Given any n+1E affinely independentpoints a ,...,aE in , the n-simplex (or simplex) 0 n E σ defined by a0,...,an is the convex hull of the points a0,...,an,thatis,thesetofallconvex combinations λ a + + λ a ,whereλ + + λ =1andλ 0foralli,0 i n. -
Discrete Subspaces of Topological Spaces 1)
MATHEMATICS DISCRETE SUBSPACES OF TOPOLOGICAL SPACES 1) BY A. HAJNAL AND I. JUHASZ (Communicated by Prof. J. POPKEN at the meeting of October 29, 1966) §. l. Introduction Recently several papers appeared in the literature proving theorems of the following type. A topological space with "very many points" contains a discrete subspace with "many points". J. DE GROOT and B. A. EFIMOV proved in [2] and [4] that a Hausdorff space of power > exp exp exp m contains a discrete subspace of power >m. J. ISBELL proved in [3] a similar result for completely regular spaces. J. de Groot proved as well that for regular spaces R the assumption IRI > exp exp m is sufficient to imply the existence of a discrete subspace of potency > m. One of our main issues will be to improve this result and show that the same holds for Hausdorff spaces (see Theorems 2 and 3). Our Theorem 1 states that a Hausdorff space of density > exp m contains a discrete subspace of power >m. We give two different proofs for the main result already mentioned. The proof outlined for Theorem 3 is a slight improvement of de Groot's proof. The proof given for Theorem 2 is of purely combinatorial character. We make use of the ideas and some theorems of the so called set-theoretical partition calculus developed by P. ERDOS and R. RADO (see [5], [ 11 ]). Almost all the other results we prove are based on combinatorial theorems. For the convenience of the reader we always state these theorems in full detail. Our Theorem 4 states that if m is a strong limit cardinal which is the sum of No smaller cardinals, then every Hausdorff space of power m contains a discrete subspace of power m. -
REVERSIBLE FILTERS 1. Introduction a Topological Space X Is Reversible
REVERSIBLE FILTERS ALAN DOW AND RODRIGO HERNANDEZ-GUTI´ ERREZ´ Abstract. A space is reversible if every continuous bijection of the space onto itself is a homeomorphism. In this paper we study the question of which countable spaces with a unique non-isolated point are reversible. By Stone duality, these spaces correspond to closed subsets in the Cech-Stoneˇ compact- ification of the natural numbers β!. From this, the following natural problem arises: given a space X that is embeddable in β!, is it possible to embed X in such a way that the associated filter of neighborhoods defines a reversible (or non-reversible) space? We give the solution to this problem in some cases. It is especially interesting whether the image of the required embedding is a weak P -set. 1. Introduction A topological space X is reversible if every time that f : X ! X is a continuous bijection, then f is a homeomorphism. This class of spaces was defined in [10], where some examples of reversible spaces were given. These include compact spaces, Euclidean spaces Rn (by the Brouwer invariance of domain theorem) and the space ! [ fpg, where p is an ultrafilter, as a subset of β!. This last example is of interest to us. Given a filter F ⊂ P(!), consider the space ξ(F) = ! [ fFg, where every point of ! is isolated and every neighborhood of F is of the form fFg [ A with A 2 F. Spaces of the form ξ(F) have been studied before, for example by Garc´ıa-Ferreira and Uzc´ategi([6] and [7]).