Zeta Functions and Chaos

Total Page:16

File Type:pdf, Size:1020Kb

Zeta Functions and Chaos A Window Into Zeta and Modular Physics MSRI Publications Volume 57, 2010 Zeta functions and chaos AUDREY TERRAS 1. Introduction This paper is an expanded version of lectures given at MSRI in June of 2008. It provides an introduction to various zeta functions emphasizing zeta functions of a finite graph and connections with random matrix theory and quantum chaos. For the number theorist, most zeta functions are multiplicative generating functions for something like primes (or prime ideals). The Riemann zeta is the chief example. There are analogous functions arising in other fields such as Selberg’s zeta function of a Riemann surface, Ihara’s zeta function of a finite connected graph. All of these are introduced in Section 2. We will consider the Riemann hypothesis for the Ihara zeta function and its connection with expander graphs. Chapter 3 starts with the Ruelle zeta function of a dynamical system, which will be shown to be a generalization of the Ihara zeta. A determinant formula is proved for the Ihara zeta function. Then we prove the graph prime number theorem. In Section 4 we define two more zeta functions associated to a finite graph: the edge and path zetas. Both are functions of several complex variables. Both are reciprocals of polynomials in several variables, thanks to determinant formulas. We show how to specialize the path zeta to the edge zeta and then the edge zeta to the original Ihara zeta. The Bass proof of Ihara’s determinant formula for the Ihara zeta function is given. The edge zeta allows one to consider graphs with weights on the edges. This is of interest for work on quantum graphs. See [Smilansky 2007] or [Horton et al. 2006b]. Lastly we consider what the poles of the Ihara zeta have to do with the eigen- values of a random matrix. That is the sort of question considered in quantum chaos theory. Physicists have long studied spectra of Schrodinger¨ operators and random matrices thanks to the implications for quantum mechanics where eigenvalues are viewed as energy levels of a system. Number theorists such as A. 145 146 AUDREY TERRAS Odlyzko have found experimentally that (assuming the Riemann hypothesis) the high zeros of the Riemann zeta function on the line Re.s/ 1=2 have spacings D that behave like the eigenvalues of a random Hermitian matrix. Thanks to our two determinant formulas we will see that the Ihara zeta function, for example, has connections with spectra of more that one sort of matrix. References [Terras 2007] and [Terras 2010] may be helpful for more details on some of these matters. The first is some introductory lectures on quantum chaos given at Park City, Utah in 2002. The second is a draft of a book on zeta functions of graphs. 2. Three zeta functions 2.1. The Riemann zeta function Riemann’s zeta function for s C with 2 Re.s/ > 1 is defined to be  à 1 X1 1 Y 1 .s/ 1 : D ns D ps n 1 p prime D In 1859 Riemann extended the definition of zeta to an analytic function in the whole complex plane except for a simple pole at s 1. He also showed that D there is a functional equation s Á .s/ s=2 .s/ .1 s/: (2-1) D 2 D The Riemann hypothesis, or RH, says that the nonreal zeros of .s/ (equiv- alently those with 0 < Re s < 1) are on the line Re s 1 . It is equivalent to D 2 giving an explicit error term in the prime number theorem stated below. The Riemann hypothesis has been checked to the 1013-th zero as of 12 October 2004, by Xavier Gourdon with the help of Patrick Demichel. See Ed Pegg Jr.’s website for an article called the Ten Trillion Zeta Zeros: http://www.maa.org/ editorial/mathgames. Proving (or disproving) the Riemann hypothesis is one of the million-dollar problems on the Clay Mathematics Institute website. There is a duality between the primes and the zeros of zeta, given analytically through the Hadamard product formula as various sorts of explicit formulas. See [Davenport 1980] and [Murty 2001]. Such results lead to the prime number theorem which says x # p prime p x ; as x : f D j g log x ! 1 The spacings of high zeros of zeta have been studied by A. Odlyzko; see the page www.dtc.umn.edu/~odlyzko/doc/zeta.htm. He has found that experimen- tally they look like the spacings of the eigenvalues of random Hermitian matrices (GUE). We will say more about this in the last section. See also [Conrey 2003]. ZETA FUNCTIONS AND CHAOS 147 EXERCISE 1. Use Mathematica to make a plot of the Riemann zeta function. Hint. The function Zeta[s] in Mathematica can be used to compute the Riemann zeta function. There are many other kinds of zeta function. One is the Dedekind zeta of an algebraic number field F such as Q.p2/ a bp2 a; b Q , where primes D f C j 2 g are replaced by prime ideals p in the ring of integers OF (which is ZŒp2 D a bp2 a; b Z , if F Q.p2/). Define the norm of an ideal of OF to be f C j 2 g D N a OF =a . Then the Dedekind zeta function is defined for Re s > 1 by D j j Y s 1 .s; F/ 1 N p ; D p where the product is over all prime ideals of OF . The Riemann zeta function is .s; Q/. Hecke gave the analytic continuation of the Dedekind zeta to all complex s except for a simple pole at s 1. And he found the functional equation D relating .s; F/ and .1 s; F/. The value at 0 involves the interesting number hF =the class number of OF which measures how far OF is from having unique factorization into prime numbers rather than prime ideals (h 1/. Also Q.p2/ D appearing in .0; F/ is the regulator which is a determinant of logarithms of 1 units (i.e., elements u OF such that u OF /. For F Q.p2/, the regulator 2 2 D is log1 p2. The formula is C hR .0; F/ ; (2-2) D w where w is the number of roots of unity in F (w 2 for F Q.p2/. One has D D .0; Q/ 1 . See [Stark 1992] for an introduction to this subject meant for D 2 physicists. 2.2. The Selberg zeta function. This zeta function is associated to a compact (or finite volume) Riemannian manifold. Assuming M has constant curvature 1, it can be realized as a quotient of the Poincare´ upper half-plane H x iy x; y R; y > 0 : D f C j 2 g The Poincare´ arc length element is dx2 dy2 ds2 C ; D y2 which can be shown invariant under fractional linear transformation az b z C ; where a; b; c; d R; ad bc > 0: ‘ cz d 2 C 148 AUDREY TERRAS It is not hard to see that geodesics — curves minimizing the Poincare´ arc length — are half-lines and semicircles in H orthogonal to the real axis. Calling these geodesics straight lines creates a model for non-Euclidean geometry since Euclid’s fifth postulate fails. There are infinitely many geodesics through a fixed point not meeting a given geodesic. The fundamental group of M acts as a discrete group of distance-pre- serving transformations. The favorite group of number theorists is the modular group SL.2; Z/ of 2 2 matrices of determinant one and integer entries or D the quotient = I . However the Riemann surface M SL.2; Z/ H D f˙ g D n is not compact, although it does have finite volume. Selberg defined primes in the compact Riemannian manifold M H D n to be primitive closed geodesics C in M . Here primitive means you only go around the curve once. Define the Selberg zeta function, for Re.s/ sufficiently large, as Y Y Z.s/ 1 e .s j/.C /: D C ŒC j 1 The product is over all primitive closed geodesics C in M H of Poincare´ D n length .C /. By the Selberg trace formula (which we do not discuss here), there is a duality between the lengths of the primes and the spectrum of the Laplace operator on M . Here  @2 @2 à y2 : D @x2 C @y2 Moreover one can show that the Riemann hypothesis (suitably modified to fit the situation) can be proved for Selberg zeta functions of compact Riemann surfaces. EXERCISE 2. Show that Z.s 1/=Z.s/ has a product formula which is more C like that for the Riemann zeta function. The closed geodesics in M H correspond to geodesics in H itself. One D n can show that the endpoints of such geodesics in R (the real line = the boundary a b of H ) are fixed by hyperbolic elements of ; i.e., the matrices c d with trace a d > 2. Primitive closed geodesics correspond to hyperbolic elements that C generate their own centralizer in . Some references for this subject are [Selberg 1989] and [Terras 1985]. ZETA FUNCTIONS AND CHAOS 149 Figure 1. An example of a bad graph for zeta functions. 2.3. The Ihara zeta function. We will see that the Ihara zeta function of a graph has similar properties to the preceding zetas. A good reference for graph theory is [Biggs 1974]. First we must figure out what primes in graphs are.
Recommended publications
  • Ζ−1 Using Theorem 1.2
    UC San Diego UC San Diego Electronic Theses and Dissertations Title Ihara zeta functions of irregular graphs Permalink https://escholarship.org/uc/item/3ws358jm Author Horton, Matthew D. Publication Date 2006 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, SAN DIEGO Ihara zeta functions of irregular graphs A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Mathematics by Matthew D. Horton Committee in charge: Professor Audrey Terras, Chair Professor Mihir Bellare Professor Ron Evans Professor Herbert Levine Professor Harold Stark 2006 Copyright Matthew D. Horton, 2006 All rights reserved. The dissertation of Matthew D. Horton is ap- proved, and it is acceptable in quality and form for publication on micro¯lm: Chair University of California, San Diego 2006 iii To my wife and family Never hold discussions with the monkey when the organ grinder is in the room. |Sir Winston Churchill iv TABLE OF CONTENTS Signature Page . iii Dedication . iv Table of Contents . v List of Figures . vii List of Tables . viii Acknowledgements . ix Vita ...................................... x Abstract of the Dissertation . xi 1 Introduction . 1 1.1 Preliminaries . 1 1.2 Ihara zeta function of a graph . 4 1.3 Simplifying assumptions . 8 2 Poles of the Ihara zeta function . 10 2.1 Bounds on the poles . 10 2.2 Relations among the poles . 13 3 Recovering information . 17 3.1 The hope . 17 3.2 Recovering Girth . 18 3.3 Chromatic polynomials and Ihara zeta functions . 20 4 Relations among Ihara zeta functions .
    [Show full text]
  • Ihara Zeta Functions
    Audrey Terras 2/16/2004 fun with zeta and L- functions of graphs Audrey Terras U.C.S.D. February, 2004 IPAM Workshop on Automorphic Forms, Group Theory and Graph Expansion Introduction The Riemann zeta function for Re(s)>1 ∞ 1 −1 ζ ()sp== 1 −−s . ∑ s ∏ () n=1 n pprime= Riemann extended to all complex s with pole at s=1. Functional equation relates value at s and 1-s Riemann hypothesis duality between primes and complex zeros of zeta See Davenport, Multiplicative Number Theory. 1 Audrey Terras 2/16/2004 Graph of |Zeta| Graph of z=| z(x+iy) | showing the pole at x+iy=1 and the first 6 zeros which are on the line x=1/2, of course. The picture was made by D. Asimov and S. Wagon to accompany their article on the evidence for the Riemann hypothesis as of 1986. A. Odlyzko’s Comparison of Spacings of Zeros of Zeta and Eigenvalues of Random Hermitian Matrix. See B. Cipra, What’s Happening in Math. Sciences, 1998-1999. 2 Audrey Terras 2/16/2004 Dedekind zeta of an We’ll algebraic number field F, say where primes become prime more ideals p and infinite product of about number terms field (1-Np-s)-1, zetas Many Kinds of Zeta Np = norm of p = #(O/p), soon O=ring of integers in F but not Selberg zeta Selberg zeta associated to a compact Riemannian manifold M=G\H, H = upper half plane with arc length ds2=(dx2+dy2)y-2 , G=discrete group of real fractional linear transformations primes = primitive closed geodesics C in M of length −+()()sjν C ν(C), Selberg Zs()=− 1 e (primitive means only go Zeta = ∏ ∏( ) around once) []Cj≥ 0 Reference: A.T., Harmonic Analysis on Symmetric Duality between spectrum ∆ on M & lengths closed geodesics in M Spaces and Applications, I.
    [Show full text]
  • Notices of the American Mathematical Society
    • ISSN 0002-9920 March 2003 Volume 50, Number 3 Disks That Are Double Spiral Staircases page 327 The RieITlann Hypothesis page 341 San Francisco Meeting page 423 Primitive curve painting (see page 356) Education is no longer just about classrooms and labs. With the growing diversity and complexity of educational programs, you need a software system that lets you efficiently deliver effective learning tools to literally, the world. Maple® now offers you a choice to address the reality of today's mathematics education. Maple® 8 - the standard Perfect for students in mathematics, sciences, and engineering. Maple® 8 offers all the power, flexibility, and resources your technical students need to manage even the most complex mathematical concepts. MapleNET™ -- online education ,.u A complete standards-based solution for authoring, nv3a~ _r.~ .::..,-;.-:.- delivering, and managing interactive learning modules \~.:...br *'r¥'''' S\l!t"AaITI(!\pU;; ,"", <If through browsers. Derived from the legendary Maple® .Att~~ .. <:t~~::,/, engine, MapleNefM is the only comprehensive solution "f'I!hlislJer~l!'Ct"\ :5 -~~~~~:--r---, for distance education in mathematics. Give your institution and your students cornpetitive edge. For a FREE 3D-day Maple® 8 Trial CD for Windows®, or to register for a FREE MapleNefM Online Seminar call 1/800 R67.6583 or e-mail [email protected]. ADVANCING MATHEMATICS WWW.MAPLESOFT.COM I [email protected]\I I WWW.MAPLEAPPS.COM I NORTH AMERICAN SALES 1/800 267. 6583 © 2003 Woter1oo Ma')Ir~ Inc Maple IS (J y<?glsterc() crademork of Woterloo Maple he Mar)leNet so troc1ema'k of Woter1oc' fV'lop'e Inr PII other trcde,nork$ (ye property o~ their respective ('wners Generic Polynomials Constructive Aspects of the Inverse Galois Problem Christian U.
    [Show full text]
  • Zeta Functions and Chaos Audrey Terras October 12, 2009 Abstract: the Zeta Functions of Riemann, Selberg and Ruelle Are Briefly Introduced Along with Some Others
    Zeta Functions and Chaos Audrey Terras October 12, 2009 Abstract: The zeta functions of Riemann, Selberg and Ruelle are briefly introduced along with some others. The Ihara zeta function of a finite graph is our main topic. We consider two determinant formulas for the Ihara zeta, the Riemann hypothesis, and connections with random matrix theory and quantum chaos. 1 Introduction This paper is an expanded version of lectures given at M.S.R.I. in June of 2008. It provides an introduction to various zeta functions emphasizing zeta functions of a finite graph and connections with random matrix theory and quantum chaos. Section 2. Three Zeta Functions For the number theorist, most zeta functions are multiplicative generating functions for something like primes (or prime ideals). The Riemann zeta is the chief example. There are analogous functions arising in other fields such as Selberg’s zeta function of a Riemann surface, Ihara’s zeta function of a finite connected graph. We will consider the Riemann hypothesis for the Ihara zeta function and its connection with expander graphs. Section 3. Ruelle’s zeta function of a Dynamical System, A Determinant Formula, The Graph Prime Number Theorem. The first topic is the Ruelle zeta function which will be shown to be a generalization of the Ihara zeta. A determinant formula is proved for the Ihara zeta function. Then we prove the graph prime number theorem. Section 4. Edge and Path Zeta Functions and their Determinant Formulas, Connections with Quantum Chaos. We define two more zeta functions associated to a finite graph - the edge and path zetas.
    [Show full text]
  • Graphs: Random, Chaos, and Quantum
    Graphs: Random, Chaos, and Quantum Matilde Marcolli Fields Institute Program on Geometry and Neuroscience and MAT1845HS: Introduction to Fractal Geometry and Chaos University of Toronto, March 2020 Matilde Marcolli Graphs: Random, Chaos, and Quantum Some References Alex Fornito, Andrew Zalesky, Edward Bullmore, Fundamentals of Brain Network Analysis, Elsevier, 2016 Olaf Sporns, Networks of the Brain, MIT Press, 2010 Olaf Sporns, Discovering the Human Connectome, MIT Press, 2012 Fan Chung, Linyuan Lu, Complex Graphs and Networks, American Mathematical Society, 2004 L´aszl´oLov´asz, Large Networks and Graph Limits, American Mathematical Society, 2012 Matilde Marcolli Graphs: Random, Chaos, and Quantum Graphs G = (V ; E;@) • V = V (G) set of vertices (nodes) • E = E(G) set of edges (connections) • boundary map @ : E(G) ! V (G) × V (G), boundary vertices @(e) = fv; v 0g • directed graph (oriented edges): source and target maps s : E(G) ! V (G); t : E(G) ! V (G);@(e) = fs(e); t(e)g • looping edge: s(e) = t(e) starts and ends at same vertex; parallel edges: e 6= e0 with @(e) = @(e0) • simplifying assumption: graphs G with no parallel edges and no looping edges (sometimes assume one or the other) • additional data: label functions fV : V (G) ! LV and fE : E(G) ! LE to sets of vertex and edge labels LV and LE Matilde Marcolli Graphs: Random, Chaos, and Quantum Examples of Graphs Matilde Marcolli Graphs: Random, Chaos, and Quantum Network Graphs (Example from Facebook) Matilde Marcolli Graphs: Random, Chaos, and Quantum Increasing Randomness rewiring
    [Show full text]
  • Finite Models for Arithmetical Quantum Chaos
    Finite Models for Arithmetical Quantum Chaos Audrey Terras Math. Dept., U.C.S.D., San Diego, Ca 92093-0112 Abstract. Physicists have long studied spectra of Schrödinger operators and random matrices thanks to the implications for quantum mechanics. Analo- gously number theorists and geometers have investigated the statistics of spec- tra of Laplacians on Riemannian manifolds. This has been termed by Sarnak “arithmetic quantum chaos” when the manifolds are quotients of a symmet- ric space modulo an arithmetic group such as the modular group SL(2, Z). Equivalently one seeks the statistics of the zeros of Selberg zeta functions. Parallels with the statistics of the zeros of the Riemann zeta function have been evident to physicists for some time. Here we survey what may be called “finite quantum chaos” seeking connections with the continuous theory. We will also discuss discrete analogue of Selberg’s trace formula as well as Ihara zeta functions of graphs. Part 1 Lecture 1. Finite Models 1. Introduction This is a story of a tree related to the spectral theory of operators on Hilbert spaces. The tree has three branches as in Figure 1. The left branch is that of quantum physics: the statistics of energy levels of quantum mechanical systems; i.e. the eigenvalues of the Schrödinger operator φn = λnφn. The middle branch is that of geometry and number theory. In the middleL we see the spectrum of the Laplace operator = ∆ on a Riemannian manifold M such as the fundamental L domain of the modular group SL(2, Z) of 2 2 integer matrices with determinant 1.
    [Show full text]
  • Quantum Chaos on Discrete Graphs 2
    Quantum chaos on discrete graphs Uzy Smilansky Department of Physics of Complex Systems, The Weizmann Institute of Science, Rehovot 76100, Israel. and Isaac Newton Institute for Mathematical Sciences, 20 Clarkson Road, Cambridge CB3 0EH, UK. E-mail: [email protected] Abstract. Adapting a method developed for the study of quantum chaos on quantum (metric) graphs [1], spectral ζ functions and trace formulae for discrete Laplacians on graphs are derived. This is achieved by expressing the spectral secular equation in terms of the periodic orbits of the graph, and obtaining functions which belongs to the class of ζ functions proposed originally by Ihara [2], and expanded by subsequent authors [3, 4]. Finally, a model of “classical dynamics” on the discrete graph is proposed. It is analogous to the corresponding classical dynamics derived for quantum graphs [1]. arXiv:0704.3525v1 [math-ph] 26 Apr 2007 1. Introduction and preliminaries Some ten years ago quantum (metric) graphs were proposed as a convenient paradigm for the study of quantum chaos in compact [1] and scattering [5] systems. The crucial point which highlighted the close similarity between metric graphs - whose only claim to complexity is their topology - and chaotic Hamiltonian flows is the formal similarity between the trace formulae [6, 7] which express the spectral densities as sums over periodic orbits. Requiring additionally that the lengths of the bonds are rationally independent, and that the graph is well connected, render the spectrum of Quantum chaos on discrete graphs 2 the Schr¨odinger operator on graphs sufficiently disordered to display spectral statistics which are consistent with the predictions of Random Matrix Theory.
    [Show full text]
  • Mathematical Physics, Analysis and Geometry
    ISSN 0002-9920 of the American Mathematical Society February 2001 Volume 48, Number 2 Mathematics for Teaching page 168 0 2 0 1 1 Honeycombs and 2 Sums of Hermitian 2 0 Matrices page 175 -3,-3 0 Lawrence Meeting -2,-2,-2 page 276 Las Vegas Meeting page 278 2 2 Hoboken Meeting page 280 -3 -2 -1 -4 -1,-1 2 0 2 0 -4 -2 0 -3 -2 -1 Honeycombs and Tensor Products (see page 186) The ' frl~ te igra·H~n ofrMatfT Type~ett ·rng and-CoFripufer Algebra 'I '\':. l_t •\ \ ,J_! \. Sci e The Gold Standard for Mathematical Publishing and the Easiest-to-Use Computer Algebra System Scientific WorkPlace makes writing and doing mathematics easier than you ever imagined possible. Because Scientific WorkPlace thinks like you do, you can compose and edit your documents directly on the screen, without being forced to think in a programming language. A simple click of a button allows you to typeset your document in lbTE)C . This lets you concentrate on creating a correct paper, while Scientific WorkPlace ensures that it is a beautiful one. With Scientific WorkPlace, you can also compute and plot solutions with the integrated computer algebra system. Increase Your Productivity Scientific WorkPlace enables both professional and support staff to produce stunning results quickly and easily, without having to know TEX™, lbTEX, or computer algebra syntax. And, as an added benefit, MacKichan Software provides free, prompt, and knowledgeable technical support. Visit our homepage for free evaluation copies of all our software. cKichan SOFTWARE, INC . Email: info@mackichan .com • Toll Free: 877-724-9673 • Fax: 206-780-2857 MacKichan Software, Inc.
    [Show full text]
  • Ransactions of The
    VOLUME328 NUMBER 2 EI 11999 DECEMBER1991 RANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY EDITED BY Avner D. Ash James E. Baumgartner James W. Cannon Sun-Yung A. Chang Ralph Cohen Richard Durrett David Jerison Jerry L. Kazdan Roger D. Nussbaum Carl Pomerance Judith D. Sally David J. Saltman, Managing Editor Masamichi Takesaki Audrey Terras PROVIDENCE. RHODE ISLAND USA TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY THIS JOURNAL is devoted entirely to research in pure and applied mathematics, and includes, in general, longer papers than those in the PROCEEDINGS. Papers should be at least 16 typed pages in length. PREPARATION OF THE MANUSCRIPT. All papers should be typewritten double-spaced, and two copies should be sent to the appropriate editor. The author should keep a complete copy. To encourage the submission of manuscripts in electronic form using TgX and the ^xS-TgX macro package, the Executive Committee of the Council has adopted a policy that allows for accelerating the publication date of such manuscripts by as much as 20 weeks, which is approximately equal to the time normally needed by the Society for copyediting, typesetting, and proofreading an average manuscript. FORM OF MANUSCRIPT. The first page should consist of a descriptive title, followed by an abstract which summarizes the article in language suitable for workers in the general field (algebra, analysis, etc.). "Some The descriptive title should be short, but informative; useless or vague phrases such as remarks "concerning" about" or should be avoided. Also avoid proper names unless mathematical usage associates them with the work. The abstract should be at least one complete sentence, and at most 300 words, with the upper limit primarily for longer papers.
    [Show full text]
  • 2021 September-October Newsletter
    Newsletter VOLUME 51, NO. 5 • SEPTEMBER–OCTOBER 2021 PRESIDENT’S REPORT This is a fun report to write, where I can share news of AWM’s recent award recognitions. Sometimes hearing about the accomplishments of others can make The purpose of the Association for Women in Mathematics is us feel like we are not good enough. I hope that we can instead feel inspired by the work these people have produced and energized to continue the good work we • to encourage women and girls to ourselves are doing. study and to have active careers in the mathematical sciences, and We’ve honored exemplary Student Chapters. Virginia Tech received the • to promote equal opportunity and award for Scientific Achievement for offering three different research-focused the equal treatment of women and programs during a pandemic year. UC San Diego received the award for Professional girls in the mathematical sciences. Development for offering multiple events related to recruitment and success in the mathematical sciences. Kutztown University received the award for Com- munity Engagement for a series of events making math accessible to a broad community. Finally, Rutgers University received the Fundraising award for their creative fundraising ideas. Congratulations to all your members! AWM is grateful for your work to support our mission. The AWM Research Awards honor excellence in specific research areas. Yaiza Canzani was selected for the AWM-Sadosky Research Prize in Analysis for her work in spectral geometry. Jennifer Balakrishnan was selected for the AWM- Microsoft Research Prize in Algebra and Number Theory for her work in computa- tional number theory.
    [Show full text]
  • President's Report
    Newsletter Volume 48, No. 3 • mAY–JuNe 2018 PRESIDENT’S REPORT Dear AWM Friends, In the past few months, as the AWM has been transitioning to a new management company under our new Executive Director, I have had the oppor- The purpose of the Association tunity to appreciate all that we do as an organization. We have over 150 volunteers for Women in Mathematics is working on 47 committees to support our many programs and activities. It has • to encourage women and girls to led me to reflect on the value of belonging. study and to have active careers Ages ago, when I was about to get my PhD, I received a call that I had in the mathematical sciences, and • to promote equal opportunity and been awarded a university-wide teaching award, which would be recognized at the the equal treatment of women and commencement ceremony. The caller wanted to make sure that I would be there girls in the mathematical sciences. with the appropriate attire (a valid concern). I was elated, of course, and I was very grateful to the people who had nominated me and fought for me to win that award. But it wasn’t until years later that I fully realized how much that effort costs, and how easy it is to assume that the system will recognize those who deserve recognition. In fact, being recognized did make me feel that I belonged to the community: I had something to offer, and that was noticed. The AWM currently administers 21 groups of awards: grants, prizes, special lectures, and other recognitions.
    [Show full text]
  • Institute for Pure and Applied Mathematics at the University of California Los Angeles
    Institute for Pure and Applied Mathematics at the University of California Los Angeles Annual Progress Report NSF Award/Institution #0439872-013151000 Submitted November 30, 2007 TABLE OF CONTENTS EXECUTIVE SUMMARY .................................................................................2 A. PARTICIPANT LIST ...............................................................................4 B. FINANCIAL SUPPORT LIST....................................................................4 C. INCOME AND EXPENDITURE REPORT ....................................................4 D. POSTDOCTORAL PLACEMENT LIST ........................................................5 E. INSTITUTE DIRECTORS’ MEETING REPORT ...........................................5 F. PARTICIPANT SUMMARY.....................................................................10 G. POSTDOCTORAL PROGRAM SUMMARY ................................................11 H. GRADUATE STUDENT PROGRAM SUMMARY .........................................14 I. UNDERGRADUATE STUDENT PROGRAM SUMMARY ..............................20 K. PROGRAM CONSULTANT LIST .............................................................60 L. PUBLICATIONS LIST ...........................................................................72 M. INDUSTRIAL AND GOVERNMENTAL INVOLVEMENT .............................72 N. EXTERNAL SUPPORT ...........................................................................76 O. COMMITTEE MEMBERSHIP ..................................................................77 P. CONTINUING IMPACT
    [Show full text]