Geology.Gsapubs.Org on September 16, 2013

Total Page:16

File Type:pdf, Size:1020Kb

Geology.Gsapubs.Org on September 16, 2013 Downloaded from geology.gsapubs.org on September 16, 2013 Geology Development of tectonic cyclothems in rift, pull-apart, and foreland basins: Sedimentary response to episodic tectonism Terence C. Blair and William L. Bilodeau Geology 1988;16;517-520 doi: 10.1130/0091-7613(1988)016<0517:DOTCIR>2.3.CO;2 Email alerting services click www.gsapubs.org/cgi/alerts to receive free e-mail alerts when new articles cite this article Subscribe click www.gsapubs.org/subscriptions/ to subscribe to Geology Permission request click http://www.geosociety.org/pubs/copyrt.htm#gsa to contact GSA Copyright not claimed on content prepared wholly by U.S. government employees within scope of their employment. Individual scientists are hereby granted permission, without fees or further requests to GSA, to use a single figure, a single table, and/or a brief paragraph of text in subsequent works and to make unlimited copies of items in GSA's journals for noncommercial use in classrooms to further education and science. This file may not be posted to any Web site, but authors may post the abstracts only of their articles on their own or their organization's Web site providing the posting includes a reference to the article's full citation. GSA provides this and other forums for the presentation of diverse opinions and positions by scientists worldwide, regardless of their race, citizenship, gender, religion, or political viewpoint. Opinions presented in this publication do not reflect official positions of the Society. Notes Geological Society of America Downloaded from geology.gsapubs.org on September 16, 2013 Development of tectonic cyclothems in rift, pull-apart, and foreland basins: Sedimentary response to episodic tectonism Terence C. Blair Department of Geological Sciences, University of Colorado, Boulder, Colorado 80309 William L Bilodeau 971 Cook Street, Denver, Colorado 80206 ABSTRACT deposition is initiated. We propose, on the basis The thickest part of asymmetric rift, pull-apart, and foreland basin fills commonly consists of several lines of reasoning, that the opposite of large-scale (hundreds to thousands of metres thick), tectonically generated cyclothems of interpretation is the most likely. fine-grained marine, lacustrine, or longitudinal fluvial deposits and coarse-grained transverse braid-plain or alluvial-fan deposits. The appearance of coarse clastics in these basin fills is COARSE-GRAINED DEPOSITS AS typically noted as the time of tectonically rejuvenated source-area uplift, based on the concep- INDICATORS OF RENEWED tual tie between relief and coarse grain size, and on the application of the Davis theory of TECTONIC ACTIVITY landform development. We propose the opposite interpretation: that the commencement of The conceptual tie between coarse-grained fine-grained sedimentation above coarse-grained deposits in a tectonic cyclothem is the best sedimentation and tectonic activity is derived indicator of renewed tectonic activity. This reinterpretation is more consistent with (1) modern from the observed relation between gravel depo- examples, (2) the consideration of source-area and sedimentary-basin geomorphology, (3) the sition and relief recognized by Playfair (1802, disparity between the reaction rates of the various environments to subsidence, (4) the dispar- p. 381-382): ity between the rates of tectonic uplift and erosion, and (5) the controls on clastic-wedge progradation. In our model, extensive coarse-grained clastic-wedge progradation is an indica- It is a fact very generally observed that when tor of tectonically quiescent phases. the valleys among primitive mountains open into large plains, the gravel of those plains con- sists of stones, evidently derived from the INTRODUCTION m.y.; Table 1) is 6 to 650 times longer than mountains. The nearer any spot is to the Rift, pull-apart, and foreland basin-fill se- orbital-related climatic cycles, which have peri- mountains, the larger are the gravel stones. quences are typically asymmetric in cross- odicities of 23 to 400 ka (Parrish and Barron, The reason for this gradation is evident, the section geometry normal to their active margin 1986). A eustatic origin is ruled out because farther the stones have travelled, and the more rubbing they have endured, the smaller they (Fig. 1). This asymmetry results from the locali- many cyclothems consist entirely of continental grow . .. and the greater the quantity of that zation of tectonic activity, maximum subsidence, deposits (Table 1). Although climatic change, fine detritus.... and sedimentation along one basin margin. eustasy, and autocyclic mechanisms may locally Asymmetry in foreland basins is due to tectonic cause ambiguity (Beerbower, 1964), the tem- The correlation of a period of renewed downflexure under the superimposed load of poral and spatial scales of these cyclothems and coarse-grained sedimentation in a basin with an stacked thrust sheets (Beaumont, 1981), whereas their restriction to the tectonically active basin episode of tectonic uplift dates back at least to asymmetry in rifts and pull-apart basins is the margin are consistent with a pulsatory tectonic Barrell (1917), and is based on the idea of the result of the development of half-graben struc- origin. rejuvenation of relief, a concept derived from tures. Half-grabens in rifts form due to block We present here a unifying conceptual model the application of the "geographical cycle of rotations along listric and planar-normal faults for the development of large-scale tectonic cy- landforms" theory of Davis (1899, p. 481-499): in zones of lithospheric attenuation (Wernicke clothems in these diverse basin types. The onset and Burchfiel, 1982), and form in pull-apart ba- of tectonic episodes in the basins is typically All the varied forms of the lands are dependent sins due to the downward component of motion noted as the time when a phase of coarse-clastic upon . structure, process, and time. In the induced during strike-slip movements by exten- sional or compressional deformation along curv- ing or en echelon fault segments (Mann et al., 1983). 77T5 The thickest part of all three basin-fill types commonly consists of large-scale (hundreds to FsJr:: thousands of metres thick), stacked cyclothems Figure 1. Schematic cross composed of relatively fine-grained marine, la- sections perpendicular to custrine, or longitudinal fluvial deposits and active margins of pull- apart (A), rift (B), and fore- coarser grained (conglomeratic) transverse land (C) basins. Large-dot braid-plain or alluvial-fan deposits (Fig. 1; Table pattern depicts braid-plain 1). The origin of these cyclothems almost invari- and alluvial-fan deposits; ably is attributed to pulsating active tectonic epi- small-dot pattern depicts sodes separated by relatively quiescent periods. fine-grained fluvial, lacus- trine, and marine deposits. Cyclic climatic change is precluded because the Upper scale is for A and B; known duration of these cyclothems (2.4 to 15 lower scale is for C. GEOLOGY, v. 16, p. 517-520, June 1988 517 Downloaded from geology.gsapubs.org on September 16, 2013 beginning, when the forces of deformation and it and its corollaries have been rigorously and and that during alternate periods of similar dura- uplift determine the structure and attitude of successfully tested at the spatial and temporal tion, transverse braid plains or alluvial fans oc- the region, the form of its surface is in sym- scale of the tectonic cyclothems. curred there. A consequence of the traditional pathy with its internal arrangement, and its height depends on the amount of uplift it has association of fan or braid-piain sedimentation suffered.... [E]ven the most resistant [rocks] FINE-GRAINED DEPOSITS AS to the period of active tectonic subsidence along yield under attack to the atmosphere, and their INDICATORS OF RENEWED the margin is the need for their displacement by waste creeps and washes downhill as long as TECTONIC ACTIVITY marine, lacustrine, or low-gradient fluvial sedi- any hills remain; hence all forms, however mentation during periods of tectonic quiescence. high and however resistant, must be laid low, We propose that the onset of deposition of the and thus destructive process gains rank equal finer grained part of a tectonic cyclothem is a This interpretation requires basin alluviation, or to that of structure in determining the shape of more consistent and more logical indicator of a long-term rise in lake or sea level of hundreds a land-mass.... Like land-forms, the agencies the onset of renewed tectonic activity in rifts, of metres to deposit hundreds of metres of fine- that work upon them change their behaviour grained sediment above the fans or braid plains, and their appearance with the passage of time. pull-apart basins, and forelands, on the basis of A young land-form has young streams of tor- (1) the consideration of the major changes in which constitute the highest depositional topog- rential activity, while an old form would have basin and source-area geomorphology dictated raphy in the sedimentary basin. This scenario is old streams of deliberate or feeble current.... by the cyclothems; (2) modem examples; (3) the geomorphologically inconsistent, because lakes, [Load] rapidly increases in quantity and disparity between the rate of response to tectonic oceans, and low-gradient fluvial environments coarseness during youth.... [A]fter full matur- are maintained for long periods of time in the ity, load continually decreases in quantity and subsidence of the environments that produce the in coarseness of texture; and, during old age, fine-grained units vs. those that produce the topographically lowest parts of the sedimentary the small load that is carried must be of very coarse-grained units; (4) the disparity between basin. The inversion of the depositional topog- fine texture.... A land-mass, uplifted to a raphy indicated by the stratigraphic change in a the rates of tectonic uplift and erosion; and greater altitude than it had before, is at once tectonic cyclothem from fan or braid-plain dep- more intensely attacked by the denuding proc- (5) the unlikely event that a rapidly and widely osition to lacustrine, marine, or low-gradient esses in the new cycle thus initiated...
Recommended publications
  • Barren Ridge FEIS-Volume IV Paleo Tech Rpt Final March
    March 2011 BARREN RIDGE RENEWABLE TRANSMISSION PROJECT Paleontological Resources Assessment Report PROJECT NUMBER: 115244 PROJECT CONTACT: MIKE STRAND EMAIL: [email protected] PHONE: 714-507-2710 POWER ENGINEERS, INC. PALEONTOLOGICAL RESOURCES ASSESSMENT REPORT Paleontological Resources Assessment Report PREPARED FOR: LOS ANGELES DEPARTMENT OF WATER AND POWER 111 NORTH HOPE STREET LOS ANGELES, CA 90012 PREPARED BY: POWER ENGINEERS, INC. 731 EAST BALL ROAD, SUITE 100 ANAHEIM, CA 92805 DEPARTMENT OF PALEOSERVICES SAN DIEGO NATURAL HISTORY MUSEUM PO BOX 121390 SAN DIEGO, CA 92112 ANA 032-030 (PER-02) LADWP (MARCH 2011) SB 115244 POWER ENGINEERS, INC. PALEONTOLOGICAL RESOURCES ASSESSMENT REPORT TABLE OF CONTENTS 1.0 INTRODUCTION ........................................................................................................................... 1 1.1 STUDY PERSONNEL ....................................................................................................................... 2 1.2 PROJECT DESCRIPTION .................................................................................................................. 2 1.2.1 Construction of New 230 kV Double-Circuit Transmission Line ........................................ 4 1.2.2 Addition of New 230 kV Circuit ......................................................................................... 14 1.2.3 Reconductoring of Existing Transmission Line .................................................................. 14 1.2.4 Construction of New Switching Station .............................................................................
    [Show full text]
  • Geological Considerations in Dams Failure Teodora Barbuntoiu A
    Geotechnical Hazards | Geological Considerations in Dams Failure Teodora Barbuntoiu A Thesis in the Field of GeoEngineering For the Degree of Bachelor of Applied Earth Science Supervisors: Dr.Ir. W. Broere Dr.Ir. D.J.M. Ngan-Tillard Delft University of Technology July 2019 Teodora Barbuntoiu | Geological considerations in dams failure | AESB3400 Bachelor Thesis Abstract Dams and reservoirs pose safety concerns to society worldwide. In case of a disaster, the water impounded in the reservoir escapes and destroys everything in its path. Reasons for failure range from geology, hydrology and seismicity, to design problems, lack of maintenance and poor field investigation. Prior cases show that various dams gave away mainly due to geological causes, so there is a particular interest to see how the local terrain features could influence the longevity of the structure. Three historical case studies are discussed in order to emphasize the impact of geology regarding dam failure. The Saint Francis Dam is a prime example of poor site investigation, where the lack of knowledge on the foundation rock led to the rupture of the gravity dam. The Malpasset Dam gave away predominantly due to underestimated effects of the uplift, nevertheless, the geologists were unaware of an active fault system and the mechanical properties of the rock mass. The Baldwin Hills Reservoir comes with a more thorough site investigation, yet still, due to earth movements, the water from the reservoir infiltrated through the embankment. Therefore, geological features at the site need to be included in the design options of the dam in order to ensure a safe, feasible and economical project.
    [Show full text]
  • 31762102033147.Pdf (8.743Mb)
    Sedimentology, provenance, and tectonic setting of the Miocene Horse Camp Formation (Member 2), east-central Nevada by Brian Keith Horton A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Earth Sciences Montana State University © Copyright by Brian Keith Horton (1994) Abstract: A study of the sedimentology, compositional trends, and modem tectonic setting of a 1600 m-thick sedimentary succession provides information on the late Cenozoic paleogeography and tectonics of an extensional basin and adjacent orogen in the Basin and Range province of east-central Nevada. Interpretations of depositional environments and reconstructions of paleogeography utilize detailed sedimentologic analyses of fourteen distinct facies and four facies associations from nine measured stratigraphic sections. Conglomerate compositional data and considerations of modern tectonic setting and local geologic structures provide constraints on the tectonic development of the extensional basin and orogen. Within the Miocene Horse Camp Formation (Member 2), four facies associations are defined by specific combinations of fourteen potential facies and attributed to processes characteristic of particular depositional environments. Subaerial and subaqueous fan-delta environments were characterized by deposition of sediment gravity flows and an absence of fluvial processes. A nearshore lacustrine facies association recorded wave-influenced sedimentation near a lake shoreline. Quiet-water deposition and limited sediment gravity flows characterized an offshore lacustrine environment. Lateral facies variations and stratal thinning and fining trends suggest a sediment source terrane to the south/southeast in the northern Grant Range. Simulated unroofing of this source terrane generated a hypothetical clast composition suite that is similar to actual conglomerate compositional data from Member 2.
    [Show full text]
  • GEOLOGY of the TICK CANYON AREA May 23, 1952
    GEOLOGY OF THE TICK CANYON AREA J. Richard Woodcock California Institute of ·rechnology May 23, 1952 Table of Cantents. Abstract •••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 1 Introdttction . • . • . • . • • . • • . • . • . • • • . • . • • • . • . • • • • • • • • . • • • • • . • • • • • • • L. Aknowledgm.ents • • •• • • • ••••••••••• • •• e ••••••••••••••• • •••••••• • ••••••• • • 5 General Geography••••••••••••••••••••••••••••••••••••••••••••••••••••• 6 Statigraphy and Lithology ••••••••••••••••••••••••••••••••••••••••••••• 8 Basement Complex •••••••••••••·••••••••••••••••••••••••••••••••••· 9 Vasq.uez FO:rmation • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 9 General (Vasquez Formation) ...................................... 19 Tick Canyon Formation .............•.....•..••.•..•............•.. 19 Mint Canyon Formation ............................................ 20 Whonoz Formation ••••••••••••••••••••••••••••••••••••••••••••••••• 20 General (Tick Canyon and Mint Canyon Formations) ................. 21 Structure ............................................................. 22 Geomorphology••••••••••••••••••••••••••••••••••·•••••••••••••••••••••• 2L Drainage • . • • • • • • • • • • . • • • . • • • • • • . • • • . • • • • • • . • • . • • . • • . • • • • • • • • • • • 2 h Relief ........................................................... 24 Geologic History •••••••••••••••••••••••••••••••••••••••••••••••••••••• 26 Illustrations: Figure: 1. Index l~p •••••••••••••••·•••••••••••••••••••••••••••••••••••••
    [Show full text]
  • WARD's Natural Science Establishment, Inc
    MANUAL FOR WARD'S COLLECTION OF CLASSIC NORTH AMERICAN ROCKS 45 E 7217 Ward's is indebted to Dr. E. William Heinrich, Professor of Mineralogy, The University of Michigan, for the classification ofthe rocks in the new col­ ledion, for the descriptions of Thin Sedions and for editorial assistance in the preparation of the manual that accompanies the colledion. Since the geology of the region in which the rock is found and other relevant data in the literature may be of considerable interest, brief references to pertinent literature is provided for each rock. A bibliography of petrologic literature is also provided. WARD'S Natural Science Establishment, Inc. Copyright1970;Aev.1990 Printed in U.SA WARD'S COLLECTION OF CLASSIC NORTH AMERICAN ROCKS BIBLIOGRAPHY Allen, J.B. and ~harsley: NEPHELINE-SYENITE AND PHONOLITE Alling, H.L.: INTERPRETATIVE PETROGRAPHY OF THE IGNEOUS ROCKS Barth, T.F.W.: THEORETICAL PETROLOGY Daly, R.A.: IGNEOUS ROCKS AND THE DEPTHS OF THE EARTH Dana, E.S.: DANA'S TEXTBOOK OF MINERALOGY, 4th Ed. Revised by W.E. Ford Fairbairn, H.W.: STRUCTURAL PETROLOGY OF DEFORMED ROCKS Grout, F.F.: PETROLOGY AND PETROGRAPHY Harker, A.: PETROLOGY FOR STUDENTS Hatch, F.H. and Rastall, R.H.: PETROLOGY OF THE SEDIMENTARY ROCKS Heinrich, W.E.: MICROSCOPIC PETROGRAPHY THE GEOLOGY OF CARBONATITES Hess, H.H. and Poldervaart, A.: BASALTS, Vols. 1 and 2 Holmes, Arthur: PETROGRAPHIC METHODS AND CALCULATIONS Iddings, J.P.: ROCK MINERALS IGNEOUS ROCKS, Vols. I, II Johannsen, Albert: MANUAL OF PETROGRAPHIC METHODS A DESCRIPTIVE PETROGRAPHY OF THE IGNEOUS ROCKS Vol. I Introduction, Textures, Classifications and Glossary Vol.
    [Show full text]
  • Signature Redacted for Privacy. Robeqs. Yeats
    AN ABSTRACT OF THE DISSERTATION OF Barbara Jean Ellis for the degree of Doctor of Philosophy in Geology presented on May 12, 1994, Title: Changing Tectonic Regimes in the Southern Salinian Block: Extension, Strike-Slip Faulting. Compression and Rotation in the Cuyama Valley, Ca1ifornia ,.Signature redacted forprivacy. Abstract approved: RobeqS.Yeats During the Cenozoic, tectonics in the Cuyama basin of the southeastern Salinian block changed from extension to strike-slip faulting to compression and rotation. During the Oligocene-early Miocene, the Cuyama basin was adjacent to the southern Mojave region and part of that extensional tectonic regime. Many present-day reverse faults have an extensional history. At -P23 Ma, strike-slip faulting began, and the Cuyama basin was part of a zone of distributed shear between the North American and Pacific plates. The Russell fault, which is the oldest documented right-lateral fault in the region, began movement at -P23 Ma which continued until 4 Ma. Tracing its 29 km of slip south of the Big Pine fault is problematic.It may connect with the Blue Rock fault below the Cuyama Badlands, and then correlate with the Clemens Well-Fenner-San Francisquito fault segments, another early strand of the San Andreas fault system to the south. An associated left-lateral fault is proposed to underlie the southeast Caliente Range. The Cox normal fault, which was active during deposition of the Saltos Shale member of the Monterey Formation, is another structure associated with the early right-lateral shear. Compressional tectonics have occurred more recently. The Caliente Range is moving south on the Whiterock and Morales thrusts; the Sierra Madre is moving north on the South Cuyama and Ozena faults.
    [Show full text]
  • Geology of Southeastern Ventura Basin Los Angeles County California
    Geology of Southeastern Ventura Basin Los Angeles County California By E. L. WINTERER and D. L. DURHAM SHORTER CONTRIBUTIONS TO GENERAL GEOLOGY GEOLOGICAL SURVEY PROFESSIONAL PAPER 334-H A study of the stratigraphy, structure, and occurrence of oil in the late Cenozoic Ventura basin UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1962 UNITED STATES DEPARTMENT OF THE INTERIOR STEW ART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington 25, D.C. CONTENTS Page Page Abstract ____________________________________________ 275 Stratigraphy Continued Introduction.______________________________________ 276 Tertiary system Continued Purpose and scope.------_______________________ 276 Pliocene series..._________------__---__----- 308 Fieldwork __ __________________________________ 276 Pico formation.____________-_----_-_-_- 308 Acknowledgments. _ _----_-_-.________________- 276 Stratigraphy and lithology___________ 309 Geography. _________________________________________ 278 Newhall-Potrero area__________ 309 Climate- ______--_-__-_-__-_--_-_____________-_ 278 Newhsll-Potrero oil field to East Vegetation.____________________________________ 278 Canyon____________________ 310 Santa Clara River______________________________ 278 Mouth of East Canyon to San Fer­ Relief. __.._.._._._________---_-_--_________ 278 nando Pass__-----_-_-------- 311 Human activities----_------__--________________ 278 San Fernando Pass to San Gabriel Physiography_ _____________________________________ 278 fault..____-__-__-_------.--_ 311 Structural and lithologic control of drainage______ 279 Santa Clara River to Del Valle River terraces and old erosion surfaces-__ _________ 279 fault.___----.--_-_---------_ 312 Present erosion cycle.___________________________ 281 Del Valle fault to Holser fault__ 312 Landslides- ___--.-------_-_--___________________ 281 Area north of Holser fault- ______ 312 Stratigraphy.______________________________________ 281 Fossils..
    [Show full text]
  • Geology of Vasquez Rocks Researched and Compiled by Sarah Brewer
    Geology of Vasquez Rocks Researched and Compiled by Sarah Brewer Aerial view of the majority of Vasquez Rocks Natural Area Park, with State Route 14 Freeway visible in the lower right and Escondido Canyon Road (the road used to access the park) visible in the upper left. Note clearly visible sandstone layers which form the unique and dramatic landscape. Image ©Google Maps, 2016. The Rocks are located in what is known as the Soledad Basin, which sits cradled to the south of the smaller Sierra Pelona Mountains, and to the west and north of the more well-known, larger San Gabriel Mountains. Soledad Canyon runs to the south of the park, Mint Canyon runs to the north, and Agua Dulce Canyon runs north to south right through the Vasquez Rocks area. The distinctive formations in the Vasquez Rocks area were actually formed through a relatively simple process, and the clues to its creation are still visible all around. Over the course of the past 25 million years (the most commonly agreed-upon age by geologists), vast amounts of sediment (sand, soil, rocks, and organic materials) were brought downward into the Soledad Basin by events such as rains, flooding, landslides, wind, and earthquakes from the surrounding San Gabriel and Sierra Pelona Mountains. As these materials were deposited on the basin’s floor, they would settle flat on the ground surface, and as years passed, new deposits covered the older ones, eventually placing them under tremendous amounts of pressure. With this pressure, the deeper layers became solidified, turning into what we know as sandstone.
    [Show full text]
  • Identifying Elusive Piercing Points Along the North American
    Research Article The TSR Sedimentary Record SEPM | Society for Sedimentary Geology Identifying elusive piercing points along the North American transform margin using mixture modeling of detrital zircon data from sedimentary units and their crystalline sources J. Clark Gilbert1,∗, Zane R. Jobe1, Samuel A. Johnstone2 and Glenn R. Sharman3 1 Department of Geology and Geological Engineering, Colorado School of Mines, Golden, CO 80401 USA 2 U.S. Geological Survey, Geosciences and Environmental Change Science Center, Denver, CO 80225 USA 3 Department of Geosciences, University of Arkansas, Fayetteville, AR 72701 USA ABSTRACT The San Gabriel and Canton faults represent early stages in the development of the San Andreas fault system. How- ever, questions of timing of initiation and magnitude of slip on these structures remain unresolved, with published estimates ranging from 42–75 km and likely starting in the Miocene. This uncertainty in slip history reflects an absence of appropriate piercing points. We attempt to better constrain the slip history on these faults by quantifying the changing proportions of source terranes contributing sediment to the Ventura Basin, California, through the Cenozoic, including refining data for a key piercing point. Ventura Basin sediments show an increase in detrital zircon U-Pb dates and mineral abundances associated with crystalline sources in the northern San Gabriel Mountains through time, which we interpret to record the basin’s northwest translation by dextral strike-slip faulting. In particular, an Oligocene unit mapped as part of the extra-regional Sespe Formation instead has greater affinity to the Vasquez Formation. Specifically, the presence of a unimodal population of ∼1180 Ma zircon, high (57%) plagioclase content, and proximal alluvial fan facies indicate that the basin was adjacent to the San Gabriel anorthosite during deposition of the Vasquez Formation, requiring 35–60 km of slip on the San Gabriel-Canton fault system.
    [Show full text]
  • Preliminary Geologic Map of the Mint Canyon 7.51 Quadrangle Southern
    U. S. DEPARTMENT OF THE INTERIOR U. S. GEOLOGICAL SURVEY Preliminary geologic map of the Mint Canyon 7.5 1 quadrangle Southern California Compiled by R. F. Yerkes1 Open File Report 96-89 This report is preliminary and has not been reviewed for conformity with U. S. Geological Survey editorial standards or the North American Stratigraphic Code. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U. S. Government. 975, 345 Middlefield Road Menlo Park, CA 94025 INTRODUCTION This map is a preliminary product of the Southern California Digital 1:100,000 Geologic Map Series (Southern California Areal Mapping Project- SCAMP; Morton and Kennedy, 1989) . The 1:24,000 manuscript for this map was compiled from original sources at 1:9600, and scanned and processed digitally using the U. S. Geological Survey Alacarte menu-driven interface (Wentworth and Fitzgibbon, 1991) for ARC/INFO, a commercial geographic information system (GIS) avaialable from Environmental Systems Researwch Institute, Redlands, California. This 1:24,000 quadrangle is one of sixteen that form the east half of the Los Angeles 1:100,000 quadrangle; the 1:24,000 quadrangles form the basic data supporting the regional-scale geologic quadrangle, and thus include available data on exploratory oil wells and fossil collections. Stratigraphic nomenclature is largely that of the source materials; it is subject to further modification as compilation progresses. Minor adjustments have been made in geologic boundaries to conform to the metric base, which was enlarged from 1:100,000. Base-map layers, drainage, roads, and topo contours, were prepared from publicly-available digital line graph (DLG) data for the 1:100,000 metric topographic quadrangle by R.
    [Show full text]
  • Tectonic Setting of Faulted Tertiary Strata Associated with the Catalina Core Complex in Southern Arizona / William R
    L Tectonic setting ojJaulted Tertiary strata associated with the Catalina core complex in southern Arizona William R. Dickinson Department of Geosciences University of Arizona Tucson, Arizona 85721 l © 1991 The Geological Society of America, Inc. All rights reserved. All materials subject to this copyright and included in this volume may be photocopied for the noncommercial purpose of scientific or educational advancement. Published by The Geological Society of America, Inc. 3300 Penrose Place, P.O. Box 9140, Boulder, Colorado 80301 Printed in U.S.A. GSA Books Science Editor Richard A. Hoppin Library of Congress Cataloging-in-Publication Data Dickinson, William R. Tectonic setting of faulted tertiary strata associated with the Catalina core complex in southern Arizona / William R. Dickinson. p. cm.-(Special paper; 264) Includes bibliographical references. ISBN 0-8137-2264-0 1. Geology, Stratigraphic-Tertiary. 2. Geology, Structural­ -Arizona. 3. Geology-Arizona. I. Title. II. Series: Special papers (Geological Society of America) ; 264. QE736.D55 1991 551.7'8'09791-dc20 91-17084 CIP Cover photo: View northeast across floor of San Pedro trough past incised drainage of San Pedro River in middle ground toward range front of Galiuro Mountains on skyline. 10 9 8 Contents Acknowledgments vn Abstract 1 Introduction 3 Regional Setting 5 Catalina Core Complex 5 Nearby Structures 7 San Pedro Trough 8 Geologic History 8 Plan of This Paper 10 Pre-Laramide Rock Assemblages 10 Precambrian Basement 10 Proterozoic Stratigraphy 12 Paleozoic Stratigraphy
    [Show full text]
  • Gravity Study of the San Gabriel Mountains, By
    Gravity Study of the San Gabriel Mountains, By Laurence A. WoOd Suimitted in Patial Fulfillment of the Requirement for the Degree of Bachelor of Science LINDGREN at the MASSACHUIETTS INSTITUTE OF TECIOLOGY June, 1968 Signature of Author . ... Certified by .. The si Supe-rvisor Accepted by ......... Chairman, Departmental Comittee on Thc3es Room 14-0551 77 Massachusetts Avenue Cambridge, MA 02139 Ph: 617.253.5668 Fax: 617.253.1690 MITLibraries Email: [email protected] Document Services http://libraries.mit.edu/docs DISCLAIMER OF QUALITY Due to the condition of the original material, there are unavoidable flaws in this reproduction. We have made every effort possible to provide you with the best copy available. If you are dissatisfied with this product and find it unusable, please contact Document Services as soon as possible. Thank you. Due to the poor quality of the original document, there is some spotting or background shading in this document. -2- Abstract A gravity study of the San Gabriel Mountains was made. A map of Bouguer anomalies in the area was completed and a profile across the mountains was taken. Calculations of the crustal thickness beneath the Los Angeles basin, the San Gabriel Mountains, and the Eajave tesert were made using the sin x/x method and a method described by Bott. These calculations indicate that there is a crustal thinning under the San Gabriel Mountains to 27 km. Values of 35 and 38 km were obtained for the Los Angeles basin and the IMojave Desert respectively. These results correspond quite closely to seismic determinations of the crustal thickness in this area.
    [Show full text]