Fluid Balance

Total Page:16

File Type:pdf, Size:1020Kb

Fluid Balance CLINICAL systems of life Homeostasis part 4: fluid balance fiG 1. HoRmoNal CoNtRol of tHe kiDNey By NeGative feeDBaCk looPs Authors Brendan Docherty, msc, PGCe, RN, l Chemical and bioelectrical distributions within and is patient access manager, Executive Director’s between cells and tissues; Unit, Prince of Wales Hospital, Sydney, Australia; l Heat, hormone and nutrient distribution around Colette foudy, RN, GradDip, is clinical care the tissues; coordinator, intensive care unit, St George Private l Carriage of waste products to the appropriate Hospital, Sydney, Australia. organ for excretion – generally through the liver and renal system. In this article, the last in a four-part series, we explore fluid maintenance with particular reference to Homeostatic control disorders of the pituitary gland. Fluid management When fluid volume decreases, the concentration techniques and related nursing care are also covered. of sodium in the blood will increase (increased Body fluids are mainly water and electrolytes, and osmolarity, the amount of solute per unit volume), the three main organs that regulate fluid balance which in turn stimulates the hypothalamus (Tortora are the brain, the adrenal glands and the kidneys and Grabowski, 2002). The hypothalamus is an (Tortora and Grabowski, 2002). One-third of the total osmoreceptor – a sensory end organ that reacts to is circulatory fluid, sometimes known as extracellular changes in osmotic pressure and has an effect on fluid (ECF); the remainder is intracellular fluid (ICF) the pituitary gland. contained within cells (Docherty and McIntyre, 2002; In response, the posterior pituitary gland releases Edwards 2001). The anatomy and physiology of antidiuretic hormone (ADH, sometimes called homeostasis are covered in part one of this series. vasopressin) into the bloodstream, resulting in the Most tissues contain a lot of water (bones and kidneys retaining water. This in turn results in more adipose tissue are the two main exceptions). It has concentrated urine and an increase in water returned many functions, including (Tortora and Grabowski, to the ECF, thus correcting the volume depletion 2002; Adam and Osborne, 1997): (Tortora and Grabowski, 2002; Edwards, 2001) (Fig 1). l Oxygen transport and carbon dioxide regulation in When sodium concentration in the blood decreases the blood; the adrenal cortex is stimulated into secreting the 22 NT 25 April 2006 Vol 102 No 17 www.nursingtimes.net keywoRDs n Fluid balance n Haemodynamic assessment n Hormone control hormone aldosterone, which instructs the distal 0.6–1.0mg/dl (Metheny, 1996). These figures may ReFeReNces nephrons of the kidney to retain more sodium. differ slightly according to local policies. The average Normal levels of sodium in the ECF will attract and fluid input per day is 2,500ml (water as food 1,000ml, Adam, S., Osborne, S. (1997) maintain the optimum amount of water (Tortora and water as liquid 1,200ml, water from catabolism Critical Care Nursing: Science Grabowski, 2002; Edwards, 2001). 300ml) and output is 2,500ml. Daily input and output and Practice. Oxford: Oxford ADH release is also influenced in the following is summarised in Table 1. University Press. circumstances. Sensors detect stretching of the atria In some cases patients will need fluid and Docherty, B. (2002) of the heart indicating excessive returning volume of electrolyte replacement therapy, which nurses are Cardiorespiratory physical ECF (increased venous return). They stop ADH responsible for delivering and monitoring. In general assessment for the acutely ill: secretion, which leads to increased excretion of water crystalloid fluids (for example saline 0.9% solution or part 2. British Journal of Nursing; through renal filtration. The aorta and carotid arteries Hartmann’s solution) are recommended as they 11: 12, 800–807. also have receptors that are sensitive to a reduction remain in the ECF longer and are isotonic – that is, in blood pressure (related to the pressure in the left they match blood tonicity (Docherty and McIntyre, Docherty B., McIntyre L. (2002) ventricle). These receptors trigger ADH release, thus 2002; RCUK, 2000). Colloid solutions are not generally Nursing considerations for fluid conserving water at the kidneys (Tortora and indicated for most patients for ECF replacement management in hypovolaemia. Grabowski, 2002; Metheny, 1996). (RCUK, 2005; Nolan, 2001; Smith, 2000) because they Professional Nurse; 17: 9, 545–549. In addition to regulating total volume, the move easily into the ICF making them less effective Edwards, S. (2001) Regulation of osmolarity of bodily fluids is closely monitored and and creating other clinical issues (for example water, sodium and potassium: regulated because variations may cause damage to pulmonary oedema and hypotension). implications for practice. Nursing cellular structure (swelling or shrinking), disrupting Albumin levels are also important in fluid balance, Standard; 15: 22, 36–42. normal cellular function (Edwards, 2001; Metheny, and should be monitored closely. The protein assists 1996). Regulation of ECF osmolarity is achieved by in maintaining colloid osmotic pressure in the Kokko, J.P., Tannen, R.L. (1996) balancing the intake and output of sodium with that circulation (approximately 70–80% of osmotic Fluids and Electrolytes. of water. pressure is created by albumin). A reduction in Philadelphia, PA: WB Saunders Co. albumin due to loss, for example in sepsis where Fluid balance there is a higher rate of albumin loss into the tissues, Metheny, N.M. (1996) Fluid and Electrolyte Balance: Nursing To attain the correct balance of ECF and ICF a may result in hypotension and hypovolaemia (Kokko Considerations. Philadelphia, PA: patient must also take in the correct amount of and Tannen, 1996). Albumin replacement colloid Lippincott Publishers. fluid (Docherty and McIntyre, 2002). In addition, therapy is indicated for hypoalbuminaemia volume- ‘electrolyte balance’ is essential, in other words depleted patients. The greatest effect is in patients Nolan, J. (2001) Fluid resuscitation the correct concentration of various ions in the body, with temporary albumin loss, for example trauma, for the trauma patient. namely sodium, potassium and magnesium. If there surgery or burns (Kokko and Tannen, 1996). Resuscitation; 48: 1, 57–69. is too much or too little of any of these electrolytes this can cause problems. For example, cardiac Nursing care Resuscitation Council UK (2000) arrhythmias are triggered by low potassium and low Other issues that nurses should consider when Advanced Life Support Course magnesium levels (Docherty, 2002; Smith, 2000). nursing patients with fluid balance problems include: Manual. London: RCUK. The serum sodium level defined as ‘normal’ the accurate measurement and monitoring of IV fluids www.resus.org.uk. is 135–145mg/dl; the normal potassium level is over a particular 24-hour period, including correct Resuscitation Council UK (2005) 3.5–4.5mg/dl; and the normal magnesium level is documentation and prescription of fluids and fluid A Systematic Approach to types; being aware of electrolyte levels and the the Acutely Unwell Patient. taBle 1. aveRaGe ReCommeNDeD correct administration of replacement elements as London: RCUK. Daily iNPut aND outPut of fluiD prescribed; the accurate measurement of oral fluid input and urine output, working in Smith, G. (2000) Acute Life- water gain = water loss partnership with the patient where possible. threatening Events Recognition Daily morning weights are useful to establish a and Treatment Manual. Intake: 2,500ml Output: 2,500ml trend in overall fluid balance and useful in chronic Portsmouth: Open Learning, fluid management conditions such as renal failure University of Portsmouth. GI tract (100ml/day) Metabolic (RCUK, 2005; Docherty and McIntyre, 2002; Adam (200ml/day) Tortora, G.J., Grabowski, S.R. Lungs and Osborne, 1997). (2002) Principles of Anatomy (300ml/day) In seriously ill patients urinary catheterisation is Ingested and Physiology. Chichester: recommended to assist with accurate fluid balance moist foods Skin John Wiley & Sons. (800ml/day) (600ml/day) measurement, as is regular vital sign monitoring including pulse, blood pressure (remember that the blood pressure may be normal initially as the This article has been double-blind peer-reviewed. Ingested liquids Kidneys peripheral vessels compensate), respiratory rate, (1,500ml/day) (1,500ml/day) pulse oximetry oxygen saturation and central venous For related articles on this subject pressure if available (RCUK, 2005; Docherty and and links to relevant websites see McIntyre, 2002; Smith, 2000). n www.nursingtimes.net NT 25 April 2006 Vol 102 No 17 www.nursingtimes.net 23.
Recommended publications
  • How Does the Brain Sense Osmolality?
    SCIENCE IN RENAL MEDICINE www.jasn.org How Does the Brain Sense Osmolality? Joseph G. Verbalis Professor of Medicine and Physiology, Georgetown University School of Medicine, Washington, DC ABSTRACT For nearly 60 years, we have known that the brain plays a pivotal role in regulating sponses to hyperosmolality in experi- the osmolality of body fluids. Over this time period, scientists have determined the mental animals3 and in human subjects structure and function of arginine vasopressin and its receptors, the role of the with brain damage that infarcts the re- posterior pituitary as a storage site, and the determinants of vasopressin release. gion around the OVLT, who typically are The cellular mechanisms by which the kidney responds to vasopressin are also well unable to maintain normal plasma os- understood. One area that remains unclear is the neural mechanisms underlying molalities even under basal conditions.4 osmoreception. New findings have implicated the TRPV family of cation channels as In contrast to the effects of such lesions osmo-mechanoreceptors that may mediate the neuronal responses to changes in to eliminate both osmotically stimulated systemic tonicity. This topic is reviewed here. thirst and AVP secretion, diabetes insip- idus caused by destruction of the magno- J Am Soc Nephrol 18: 3056–3059, 2007. doi: 10.1681/ASN.2007070825 cellular AVP neurons in the supraoptic (SON) and paraventricular (PVN) nu- clei eliminates dehydration-induced Body fluid homeostasis is directed at WHERE ARE OSMORECEPTORS AVP secretion but not thirst, clearly in- maintaining the stability of the osmo- LOCATED? dicating that osmotically stimulated lality of body fluids (osmotic ho- thirst must be generated proximally to meostasis) and the intravascular blood The pioneering investigations of Verney the AVP-secreting cells themselves (Fig- volume (volume homeostasis).
    [Show full text]
  • Hormones and Fluid Balance During Pregnancy, Labor and Post Partum
    !" #$%#&$'($ )&)#&%%&%)&( * * **+ &#(## !"# $ % # #&$ $ ' #( )*+$ , -, $* .%/**0 # % % */ * 123*"1 * *4-52366""162"26* +$ # $ $, , , % % *4 %$ % # % % $ # $ $ # # ,$ ## $ $# %$ ## % # * % , 784-/!% , $ 9* #6 , , % % ##6 % * +$ , % ,$ $ % , $ % % % * & , % * # , , $ % %% ## % , ## $ 6% * : ,$, % ' , % # ) ## $ , ,$ % #, ,$# % # *+$% ,$ , $ , $ $ $ *& # , $## $ # , % # */ , # , ## ,$ % # * - % ,$%$ % # % $ $$%$ ' ;8)$*4 %$,$$ % # $$%$% *4 # % % $ # # $ $ $ % % * & $ %# % % $ *& $ $ # % * % % % 6 $ % Integrativ Fysiologi, Box 571, %&'()*+ Sweden </ $.% 4--5="6== 4-52366""162"26 ! !!! 623'$ !;; **; > ? ! !!! 623) In memory of my beloved father Ove I lift up my eyes to the hills -- where does my help come from? My help comes from the Lord, the Maker of heaven and earth. He will not let your foot slip -- He who watches over you will not slumber; indeed, He who watches over Israel will neither slumber nor sleep. The Lord watches over you -- the Lord is your shade at your right hand; the sun will not harm you by day, nor the moon by night. The Lord will keep you from all harm He will watch over your life; the Lord will
    [Show full text]
  • The Effect of High Salt Intake on Osmoreceptor Gain in Salt
    The Effect of High Salt Intake on Osmoreceptor Gain in Salt-Sensitive Hypertension David Levi Integrated Program in Neuroscience McGill University Montreal, QC August 2018 A thesis submitted to McGill University in partial fulfillment of the requirement of the degree of Master of Science. © David Levi 2018 Table of Contents Abstract ....................................................................................................................................... i Resumé ....................................................................................................................................... ii Acknowledgements .................................................................................................................. iii Preface and Contribution of Authours .................................................................................. iv Symbols and Abbreviations ..................................................................................................... v 1. Introduction ............................................................................................................................... 1 1.1 General Introduction to Hypertension .............................................................................. 1 1.1.1 Epidemiology of Hypertension ...................................................................................... 1 1.1.2 Risk Factors of Hypertension ......................................................................................... 2 1.2 Homeostasis of Blood Pressure
    [Show full text]
  • Medicines That Affect Fluid Balance in the Body
    the bulk of stools by getting them to retain liquid, which encourages the Medicines that affect fluid bowels to push them out. balance in the body Osmotic laxatives e.g. Lactulose, Macrogol - these soften stools by increasing the amount of water released into the bowels, making them easier to pass. Older people are at higher risk of dehydration due to body changes in the ageing process. The risk of dehydration can be increased further when Stimulant laxatives e.g. Senna, Bisacodyl - these stimulate the bowels elderly patients are prescribed medicines for chronic conditions due to old speeding up bowel movements and so less water is absorbed from the age. stool as it passes through the bowels. Some medicines can affect fluid balance in the body and this may result in more water being lost through the kidneys as urine. Stool softener laxatives e.g. Docusate - These can cause more water to The medicines that can increase risk of dehydration are be reabsorbed from the bowel, making the stools softer. listed below. ANTACIDS Antacids are also known to cause dehydration because of the moisture DIURETICS they require when being absorbed by your body. Drinking plenty of water Diuretics are sometimes called 'water tablets' because they can cause you can reduce the dry mouth, stomach cramps and dry skin that is sometimes to pass more urine than usual. They work on the kidneys by increasing the associated with antacids. amount of salt and water that comes out through the urine. Diuretics are often prescribed for heart failure patients and sometimes for patients with The major side effect of antacids containing magnesium is diarrhoea and high blood pressure.
    [Show full text]
  • Hormonal and Thirst Modulated Maintenance of Fluid Balance in Young Women with Different Levels of Habitual Fluid Consumption
    nutrients Article Hormonal and Thirst Modulated Maintenance of Fluid Balance in Young Women with Different Levels of Habitual Fluid Consumption Evan C. Johnson 1,2,*, Colleen X. Muñoz 1,3, Liliana Jimenez 4, Laurent Le Bellego 4, Brian R. Kupchak 1,5, William J. Kraemer 1,6, Douglas J. Casa 1, Carl M. Maresh 1,6 and Lawrence E. Armstrong 1 1 Human Performance Laboratory, Department of Kinesiology, University of Connecticut, Storrs, CT 06269, USA; [email protected] (C.X.M.); [email protected] (B.R.K.); [email protected] (W.J.K.); [email protected] (D.J.C.); [email protected] (C.M.M.); [email protected] (L.E.A.) 2 Division of Kinesiology and Health, University of Wyoming, Laramie, WY 82071, USA 3 Department of Health Sciences and Nursing, University of Hartford, West Hartford, CT 06117, USA 4 Hydration & Health Department, Danone Research, Palaiseau 91767, France; [email protected] (L.J.); [email protected] (L.L.B.) 5 Department of Military and Emergency Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA 6 Department of Human Sciences, the Ohio State University, Columbus, OH 43210, USA * Correspondence: [email protected]; Tel.: +1-307-766-5282; Fax: +1-307-766-4098 Received: 22 February 2016; Accepted: 11 May 2016; Published: 18 May 2016 Abstract: Background: Surprisingly little is known about the physiological and perceptual differences of women who consume different volumes of water each day. The purposes of this investigation were to (a) analyze blood osmolality, arginine vasopressin (AVP), and aldosterone; (b) assess the responses of physiological, thirst, and hydration indices; and (c) compare the responses of individuals with high and low total water intake (TWI; HIGH and LOW, respectively) when consuming similar volumes of water each day and when their habitual total water intake was modified.
    [Show full text]
  • L7-Renal Regulation of Body Fluid [PDF]
    Iden8fy and describe the role of the Sensors and Objectives Effectors in the Abbreviations renal regulaon of body fluid volume ADH An8diurec hormone & osmolality ECF Extracellular fluid ECV Effec8ve Circulang Iden8fy the site and Volume describe the Describe the role of ANF Atrial natriure8c factor influence of the kidney in aldosterone on regulaon of body ANP ATRIAL NATRIURETIC PEPTIDE reabsorp8on of Na+ fluid volume & in the late distal osmolality tubules. PCT Proximal convoluted tubules AVP arginine vasopressin Understand the role of ADH in the reabsorp8on of water and urea Mind map Blood volume remains exactly constant despite extreme changes in daily fluid intake and the reason for that is : 1- slight change in blood volume ! Renal regulaNon of marked change in Extra Cellular cardiac output Volume Is a reflex 2- a slight change mechanism in RegulaNon of ECF Thus, regulaon of in cardiac output which variables volume = Na+ also dependent !large change in reflecng total RegulaNon of body upon blood pressure body sodium and Na+= RegulaNon BP baroreceptors. 3-slight change in ECV are monitor by blood pressure ! appropriate sensor large change in (receptors) URINE OUTPUT . Con. Blood Volume regulation : Sensors Effectors Affecng 1- Rennin angiotensin, aldosterone. 1- Caro8d sinus Urinary Na excre8on. 2- ADH ( the result will cause a change in NA+ and water excre8on either 3- Renal sympathe8c nerve by increasing it or 2- Volume receptors decreasing it ) . (large vein, atria, intrarenalartery) 4- ANP Con. Blood Volume regulation : Cardiac atria Low pressure receptors Pulmonary vasculature Central vascular sensors Carod sinus Sensors in the CNS High pressure receptors AorNc arch Juxtaglomerular apparatus (renal afferent arteriole) Sensors in the liver ECF volume Receptors Con.
    [Show full text]
  • Study Guide Renal Module
    STUDY GUIDE RENAL MODULE 2nd Professional MBBS (Session 2020-21) Prepared by: Dr Sadaf Durrani 1 CONTENTS List of Abbreviations 2 Module Planning Committee 3 Distribution of Academic Activities among different Disciplines 4 Introduction to Renal Module and Themes 5 General Learning Outcomes 6 Individual Themes 7-26 o Introduction o Learning objectives o List of Practicals o List of SGDs o List of DSL / Others o List of dissection and FDTs o Timetable (with designated teachers and venues) Books and other reading resources 27 Block Assessments 28 o MCQs o OSPE 2 LIST OF ABBREVIATIONS Anat-L Anatomy Lecture MCQs Multiple Choice Questions Anat-SGD Small Group Discussion in Anatomy Neph-L Nephrology lecture Bio-L Biochemistry Lecture Path-L Pathology Lecture Bio-P Biochemistry Practical Phar-L Pharmacology Lecture Bio-SGD Small Group Discussion in Biochemistry Phy-L Physiology Lecture CMed Community Medicine Phy-P Physiology Practical DSL Directed Self Learning Phy-SGD Small Group Discussion in Physiology FDT Film/Demonstration/Tutorial SDL Self-Directed learning FMed Forensic Medicine SAQs Short Essay Questions Histo-P Histology Practical SGD Small Group Discussion IPS Islamiyat/Pak Studies Surg-L General surgery lecture OSPE Objectively Structured Practical Examination SLRC Self Learning Resource Center Professionalism and communication skills, Research, Identity formation, Management and leadership, PRIME Ethics 3 MODULE PLANNING COMMITTEE Patron Prof. Dr. Mahmood Aurangzeb Dean, KMC Chairman Prof. Dr. Farooq Ahmed Director Medical Education, KMC Course Coordinator Prof. Dr. Ubaid ur Rahman Department of Biochemistry, KMC Module Director Associate Prof. Dr. Sadaf Durrani Department of Biochemistry, KMC Member Prof. Dr. Mudassir Ahmad Khan Chairman, Department of Biochemistry, KMC Member Prof.
    [Show full text]
  • Role of the Renin-Angiotensin-Aldosterone
    International Journal of Molecular Sciences Review Role of the Renin-Angiotensin-Aldosterone System beyond Blood Pressure Regulation: Molecular and Cellular Mechanisms Involved in End-Organ Damage during Arterial Hypertension Natalia Muñoz-Durango 1,†, Cristóbal A. Fuentes 2,†, Andrés E. Castillo 2, Luis Martín González-Gómez 2, Andrea Vecchiola 2, Carlos E. Fardella 2,* and Alexis M. Kalergis 1,2,* 1 Millenium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8330025 Santiago, Chile; [email protected] 2 Millenium Institute on Immunology and Immunotherapy, Departamento de Endocrinología, Escuela de Medicina, Pontificia Universidad Católica de Chile, 8330074 Santiago, Chile; [email protected] (C.A.F.); [email protected] (A.E.C.); [email protected] (L.M.G.-G.); [email protected] (A.V.) * Correspondence: [email protected] (C.E.F.); [email protected] (A.M.K.); Tel.: +56-223-543-813 (C.E.F.); +56-223-542-842 (A.M.K.) † These authors contributed equally in this manuscript. Academic Editor: Anastasia Susie Mihailidou Received: 24 March 2016; Accepted: 10 May 2016; Published: 23 June 2016 Abstract: Arterial hypertension is a common condition worldwide and an important predictor of several complicated diseases. Arterial hypertension can be triggered by many factors, including physiological, genetic, and lifestyle causes. Specifically, molecules of the renin-angiotensin-aldosterone system not only play important roles in the control of blood pressure, but they are also associated with the genesis of arterial hypertension, thus constituting a need for pharmacological interventions. Chronic high pressure generates mechanical damage along the vascular system, heart, and kidneys, which are the principal organs affected in this condition.
    [Show full text]
  • Hypothalamic Disconnection Caudal to Paraventricular Nucleus Affects Cardiovascular and Drinking Responses to Central Angiotensin II and Carbachol
    BRAIN RESEARCH 1388 (2011) 100– 108 available at www.sciencedirect.com www.elsevier.com/locate/brainres Research Report Hypothalamic disconnection caudal to paraventricular nucleus affects cardiovascular and drinking responses to central angiotensin II and carbachol Lilia Simone Urzedo–Rodrigues, Tatiane Depieri, Anderson Julio Cherobino, Oswaldo U. Lopes, José V. Menani, Débora S.A. Colombari⁎ Department of Physiology and Pathology, School of Dentistry, UNESP—São Paulo State University Araraquara, SP, Brazil ARTICLE INFO ABSTRACT Article history: The paraventricular nucleus of the hypothalamus (PVN) is an important area of the brain Accepted 8 March 2011 involved in the control of cardiovascular system and fluid-electrolyte balance. In the present Available online 13 March 2011 study we evaluated the effects of hypothalamic disconnection (HD) caudal to PVN in the pressor and dipsogenic responses induced by intracerebroventricular (icv) injections of Keywords: angiotensin II (ANG II) or carbachol (cholinergic agonist). Male Holtzman rats (280–320 g) Blood pressure with a stainless steel cannula implanted into the lateral ventricle and submitted to sham or Thirst HD surgery were used. HD (2 or 15 days) reduced the pressor responses to ANG II (50 ng/1 μl) Paraventricular nucleus icv (8±3 and 11±3 mm Hg, respectively, vs. sham: 23±3 and 21±2 mm Hg) or carbachol of hypothalamus (4 nmol/1 μl) icv (8±2 and 21±3 mm Hg, respectively, vs. sham: 33±3 and 33±3 mm Hg), Vasopressin without changing baseline arterial pressure. Acutely (2–4 days), HD also reduced water Knife-cut intake to icv ANG II (3.3±2.2 vs.
    [Show full text]
  • Renal Physiology a Clinical Approach
    Renal Physiology A Clinical Approach LWBK1036-FM_pi-xiv.indd 1 12/01/12 1:16 PM LWBK1036-FM_pi-xiv.indd 2 12/01/12 1:16 PM Renal Physiology A Clinical Approach John Danziger, MD Instructor in Medicine Division of Nephrology Beth Israel Deaconess Medical Center Harvard Medical School Boston, MA Mark Zeidel, MD Herrman L. Blumgart Professor of Medicine Harvard Medical School Physician-in-Chief and Chair, Department of Medicine Beth Israel Deaconess Medical Center Boston, MA Michael J. Parker, MD Assistant Professor of Medicine Division of Pulmonary, Critical Care, and Sleep Medicine Beth Israel Deaconess Medical Center Senior Interactive Media Architect Center for Educational Technology Harvard Medical School Boston, MA Series Editor Richard M. Schwartzstein, MD Ellen and Melvin Gordon Professor of Medicine and Medical Education Director, Harvard Medical School Academy Vice President for Education and Director, Carl J. Shapiro Institute for Education Beth Israel Deaconess Medical Center Boston, MA LWBK1036-FM_pi-xiv.indd 3 12/01/12 1:16 PM Acquisitions Editor: Crystal Taylor Product Managers: Angela Collins and Jennifer Verbiar Marketing Manager: Joy Fisher-Williams Designer: Doug Smock Compositor: Aptara, Inc. Copyright © 2012 Lippincott Williams & Wilkins, a Wolters Kluwer business. 351 West Camden Street Two Commerce Square Baltimore, MD 21201 2001 Market Street Philadelphia, PA 19103 Printed in China All rights reserved. This book is protected by copyright. No part of this book may be reproduced or trans- mitted in any form or by any means, including as photocopies or scanned-in or other electronic copies, or utilized by any information storage and retrieval system without written permission from the copyright owner, except for brief quotations embodied in critical articles and reviews.
    [Show full text]
  • Drug Dosing in Patients with Multiple Organ Dysfunction
    Drug Prescribing in Kidney Disease: Initiative for Improved Dosing Drug Dosing in Patients with Multiple Organ Dysfunction Section Leaders: Gary Matzke and Ravindra Mehta Kidney Disease: Improving Global Outcomes www.kdigo.org Areas for Consideration • Patients • Phases of disease • Process of care • Organ interactions • Factors influencing drug disposition and drug dosing • Questions to be addressed Kidney Disease: Improving Global Outcomes www.kdigo.org Areas for Consideration 1. Patients • Multiple Organ Dysfunction Syndrome – Acute – Altered organ function in acutely ill patients e.g. Traumatic brain injury in a 20 yr old previously healthy adult. • Multiple System Organ Failure – Acute on Chronic disease – Altered organ function with pre-existing co-morbidites e.g. pneumonia in 45 yr old patient with multiple sclerosis • Multiple Organ Dysfunction Syndrome – Chronic – Altered organ function secondary to multimorbidity e.g. 55 yr old obese patient with diabetes, hypertension, Hep C cirrhosis and aortic stenosis Clinical practice guidelines rarely account for patients with multiple chronic conditions (JAMA 2010;303:1303-4) Kidney Disease: Improving Global Outcomes www.kdigo.org Epidemiology • As many as 19% of ICU patients develop MODS • MODS is responsible for 50%–80% of ICU deaths. • Patients who develop MODS have a 20-fold increase in mortality rate and a doubled length of stay (LOS) compared with unaffected patients. • Moreover, MODS is the most common diagnosis in ICU patients with a long LOS (>21 days) . Mizock BA Dis Mon 2009;55:476-526 Barie PSSurgical Infections ;10:2009 Proulx F, et al Pediatr Crit Care Med 2009;10:12-22 Kidney Disease: Improving Global Outcomes www.kdigo.org Inflammation is a common feature of MODS MizockKidney Disease:BA Dis MonImproving 2009;55:476-526 Global Outcomes www.kdigo.org Areas for Consideration 2.
    [Show full text]
  • Effect of Aging on Plasma Renin and Aldosterone in Normal Man PETER WEIDMANN, SYLVIANNE DE MYTTENAERE-BURSZTEIN, MORTON H
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Kidney International, Vol. 8, (1975), p. 325—333 Effect of aging on plasma renin and aldosterone in normal man PETER WEIDMANN, SYLVIANNE DE MYTTENAERE-BURSZTEIN, MORTON H. MAXWELL and JosE DE LIMA Nephrology and Hypertension Service, Department of Medicine, Cedars-Sinai Medical Center and UCLA School of Medicine, Los Angeles, California Effect ofaging on plasma renin and aldosterone in normal man. sential hypertension has been diagnosed more com- Theinfluence of aging on the renin-angiotensin-aldosterone system monly in older than young adults [1—4], and the syn- was evaluated by comparing young (20 to 30 yr) with elderly (62 to 70 yr) healthy subjects. Despite comparable body sodium-fluid drome of hyporeninemic hypoaldosteronism has been balance in the two age groups, serum renin concentration, plasma described almost exclusively in patients older than 50 renin activity and aldosterone concentrations were lower in the elderly. The age-related decreases in circulating renin and aldo- yr of age [5]. sterone concentrations were slight while subjects were supine and The possibility that aging may influence renin and receiving normal sodium intake; when upright and during sodium aldosterone metabolism has been considered pre- depletion, they were more pronounced. Inverse renin-blood pres- sure interrelations were noted during two of four study conditions viously, but the available data on the relationship be- involving normal sodium intake or mild sodium depletion (r = tween age and the function of the renin-angiotensin-al- —0.44and —0.47, respectively), but not during progressive sodium dosterone system in normotensive healthy adults are depletion.
    [Show full text]