Regulation of Water and Electrolyte Metabolism During Dehydration and Rehydration in Camels Ali Abdullah Al-Qarawi Iowa State University
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
How Does the Brain Sense Osmolality?
SCIENCE IN RENAL MEDICINE www.jasn.org How Does the Brain Sense Osmolality? Joseph G. Verbalis Professor of Medicine and Physiology, Georgetown University School of Medicine, Washington, DC ABSTRACT For nearly 60 years, we have known that the brain plays a pivotal role in regulating sponses to hyperosmolality in experi- the osmolality of body fluids. Over this time period, scientists have determined the mental animals3 and in human subjects structure and function of arginine vasopressin and its receptors, the role of the with brain damage that infarcts the re- posterior pituitary as a storage site, and the determinants of vasopressin release. gion around the OVLT, who typically are The cellular mechanisms by which the kidney responds to vasopressin are also well unable to maintain normal plasma os- understood. One area that remains unclear is the neural mechanisms underlying molalities even under basal conditions.4 osmoreception. New findings have implicated the TRPV family of cation channels as In contrast to the effects of such lesions osmo-mechanoreceptors that may mediate the neuronal responses to changes in to eliminate both osmotically stimulated systemic tonicity. This topic is reviewed here. thirst and AVP secretion, diabetes insip- idus caused by destruction of the magno- J Am Soc Nephrol 18: 3056–3059, 2007. doi: 10.1681/ASN.2007070825 cellular AVP neurons in the supraoptic (SON) and paraventricular (PVN) nu- clei eliminates dehydration-induced Body fluid homeostasis is directed at WHERE ARE OSMORECEPTORS AVP secretion but not thirst, clearly in- maintaining the stability of the osmo- LOCATED? dicating that osmotically stimulated lality of body fluids (osmotic ho- thirst must be generated proximally to meostasis) and the intravascular blood The pioneering investigations of Verney the AVP-secreting cells themselves (Fig- volume (volume homeostasis). -
20Mg Spironolactone I.P…..50Mg
For the use only of a Registered Medical Practitioner or Hospital or a Laboratory. This package insert is continually updated: Please read carefully before using a new pack Frusemide and Spironolactone Tablets Lasilactone® 50 COMPOSITION Each film coated tablet contains Frusemide I.P. …….. 20mg Spironolactone I.P…..50mg THERAPEUTIC INDICATIONS Lasilactone® contains a short-acting diuretic and a long-acting aldosterone antagonist. It is indicated in the treatment of resistant oedema where this is associated with secondary hyperaldosteronism; conditions include chronic congestive cardiac failure and hepatic cirrhosis. Treatment with Lasilactone® should be reserved for cases refractory to a diuretic alone at conventional doses. This fixed ratio combination should only be used if titration with the component drugs separately indicates that this product is appropriate. The use of Lasilactone® in the management of essential hypertension should be restricted to patients with demonstrated hyperaldosteronism. It is recommended that in these patients also, this combination should only be used if titration with the component drugs separately indicates that this product is appropriate. POSOLOGY AND METHOD OF ADMINISTRATION For oral administration. The dose must be the lowest that is sufficient to achieve the desired effect. Adults: 1-4 tablets daily. Children: The product is not suitable for use in children. Elderly: Frusemide and Spironolactone may both be excreted more slowly in the elderly. Tablets are best taken at breakfast and/or lunch with a generous amount of liquid (approx. 1 glass). An evening dose is not recommended, especially during initial treatment, because of the increased nocturnal output of urine to be expected in such cases. -
The Effect of High Salt Intake on Osmoreceptor Gain in Salt
The Effect of High Salt Intake on Osmoreceptor Gain in Salt-Sensitive Hypertension David Levi Integrated Program in Neuroscience McGill University Montreal, QC August 2018 A thesis submitted to McGill University in partial fulfillment of the requirement of the degree of Master of Science. © David Levi 2018 Table of Contents Abstract ....................................................................................................................................... i Resumé ....................................................................................................................................... ii Acknowledgements .................................................................................................................. iii Preface and Contribution of Authours .................................................................................. iv Symbols and Abbreviations ..................................................................................................... v 1. Introduction ............................................................................................................................... 1 1.1 General Introduction to Hypertension .............................................................................. 1 1.1.1 Epidemiology of Hypertension ...................................................................................... 1 1.1.2 Risk Factors of Hypertension ......................................................................................... 2 1.2 Homeostasis of Blood Pressure -
Preventing Dehydration
State of New Jersey Department of Human Services Division of Developmental Disabilities DDDDDD PREVENTIONPREVENTION BULLETINBULLETIN Dehydration Dehydration is a loss of too much fluid from the body. The body needs water in order to maintain normal functioning. If your body loses too much fluid - more than you are getting from your food and liquids - your body loses electrolytes. Electrolytes include important nutrients like sodium and potassium which your body needs to work normally. A person can be at risk for dehydration in any season, not just the summer months. It is also important to know that elderly individuals are at heightened risk for dehydration because their bodies have a lower water content than younger people. Why people with Common Causes and a developmental Risk Factors for disability may be Dehydration: at a higher risk for dehydration. v Diarrhea v Vomiting v People with physical limitations may v Excessive sweating not be able to get something to drink on their own and will need the assistance of v Fever others. v Burns v People who cannot speak or whose v Diabetes when blood sugar is too high speech is hard to understand may have a v hard time telling their support staff that Increased urination (undiagnosed diabetes) they are thirsty. v Not drinking enough water, especially on warm and hot days v Some people may have difficulty swal- lowing their food or drinks and may v Not drinking enough during or after exercise refuse to eat or drink. This can make v Some medications (diuretics, blood pressure them more susceptible to becoming meds, certain psychotropic and anticonvul- dehydrated. -
The Effect of Dehydration, Hyperthermia, and Fatigue on Landing Error Scoring System Scores
ABSTRACT THE EFFECT OF DEHYDRATION, HYPERTHERMIA, AND FATIGUE ON LANDING ERROR SCORING SYSTEM SCORES Purpose: To examine the effects of exercise-induced dehydration, hyperthermia, and fatigue on Landing Error Scoring System (LESS) scores during a jump-landing task, and the effectiveness of a personalized hydration plan. Methods: Five recreationally active heat-acclimatized males 25.4 y (SD=5.7) completed two trials: with fluid replacement, (EXP) and without fluid (CON), in a counterbalanced, randomized, cross-over fashion. Exercise was terminated when gastrointestinal temperature (Tgi) = 39.5°C and fatigue ≥ 7/10, or 90 min of exercise. Percent dehydration was determined by body mass change from pre- exercise (PRE) and post-exercise (POST). Tgi, heart rate (HR), and perceived fatigue were measured PRE, during exercise, and POST. Three jump-landing tasks were filmed in the frontal and sagittal planes. An experienced grader evaluated jump-landing tasks using the LESS. Statistical Analysis: Repeated measures ANOVA assessed primary dependent and independent variables while a priori dependent t-tests evaluated pairwise comparisons. Results: No interaction, group, or time main effects were observed for LESS scores (p=0.437). POST dehydration (%) was greater in CON (M=2.59, SD=0.52) vs. EXP (M=0.92, SD=0.41; p<0.001), whereas hyperthermia (°C) (CON, M=39.29, SD=0.31, EXP, M=39.03, SD=0.61; p=0.425), and fatigue (CON, M=9, SD=1, EXP, M=9, SD=2; p=0.424) were similar. Conclusion: LESS scores were not affected by exercise-induced dehydration, hyperthermia, and fatigue, nor by a personal hydration plan. -
L7-Renal Regulation of Body Fluid [PDF]
Iden8fy and describe the role of the Sensors and Objectives Effectors in the Abbreviations renal regulaon of body fluid volume ADH An8diurec hormone & osmolality ECF Extracellular fluid ECV Effec8ve Circulang Iden8fy the site and Volume describe the Describe the role of ANF Atrial natriure8c factor influence of the kidney in aldosterone on regulaon of body ANP ATRIAL NATRIURETIC PEPTIDE reabsorp8on of Na+ fluid volume & in the late distal osmolality tubules. PCT Proximal convoluted tubules AVP arginine vasopressin Understand the role of ADH in the reabsorp8on of water and urea Mind map Blood volume remains exactly constant despite extreme changes in daily fluid intake and the reason for that is : 1- slight change in blood volume ! Renal regulaNon of marked change in Extra Cellular cardiac output Volume Is a reflex 2- a slight change mechanism in RegulaNon of ECF Thus, regulaon of in cardiac output which variables volume = Na+ also dependent !large change in reflecng total RegulaNon of body upon blood pressure body sodium and Na+= RegulaNon BP baroreceptors. 3-slight change in ECV are monitor by blood pressure ! appropriate sensor large change in (receptors) URINE OUTPUT . Con. Blood Volume regulation : Sensors Effectors Affecng 1- Rennin angiotensin, aldosterone. 1- Caro8d sinus Urinary Na excre8on. 2- ADH ( the result will cause a change in NA+ and water excre8on either 3- Renal sympathe8c nerve by increasing it or 2- Volume receptors decreasing it ) . (large vein, atria, intrarenalartery) 4- ANP Con. Blood Volume regulation : Cardiac atria Low pressure receptors Pulmonary vasculature Central vascular sensors Carod sinus Sensors in the CNS High pressure receptors AorNc arch Juxtaglomerular apparatus (renal afferent arteriole) Sensors in the liver ECF volume Receptors Con. -
Water Requirements, Impinging Factors, and Recommended Intakes
Rolling Revision of the WHO Guidelines for Drinking-Water Quality Draft for review and comments (Not for citation) Water Requirements, Impinging Factors, and Recommended Intakes By A. Grandjean World Health Organization August 2004 2 Introduction Water is an essential nutrient for all known forms of life and the mechanisms by which fluid and electrolyte homeostasis is maintained in humans are well understood. Until recently, our exploration of water requirements has been guided by the need to avoid adverse events such as dehydration. Our increasing appreciation for the impinging factors that must be considered when attempting to establish recommendations of water intake presents us with new and challenging questions. This paper, for the most part, will concentrate on water requirements, adverse consequences of inadequate intakes, and factors that affect fluid requirements. Other pertinent issues will also be mentioned. For example, what are the common sources of dietary water and how do they vary by culture, geography, personal preference, and availability, and is there an optimal fluid intake beyond that needed for water balance? Adverse consequences of inadequate water intake, requirements for water, and factors that affect requirements Adverse Consequences Dehydration is the adverse consequence of inadequate water intake. The symptoms of acute dehydration vary with the degree of water deficit (1). For example, fluid loss at 1% of body weight impairs thermoregulation and, thirst occurs at this level of dehydration. Thirst increases at 2%, with dry mouth appearing at approximately 3%. Vague discomfort and loss of appetite appear at 2%. The threshold for impaired exercise thermoregulation is 1% dehydration, and at 4% decrements of 20-30% is seen in work capacity. -
Study Guide Renal Module
STUDY GUIDE RENAL MODULE 2nd Professional MBBS (Session 2020-21) Prepared by: Dr Sadaf Durrani 1 CONTENTS List of Abbreviations 2 Module Planning Committee 3 Distribution of Academic Activities among different Disciplines 4 Introduction to Renal Module and Themes 5 General Learning Outcomes 6 Individual Themes 7-26 o Introduction o Learning objectives o List of Practicals o List of SGDs o List of DSL / Others o List of dissection and FDTs o Timetable (with designated teachers and venues) Books and other reading resources 27 Block Assessments 28 o MCQs o OSPE 2 LIST OF ABBREVIATIONS Anat-L Anatomy Lecture MCQs Multiple Choice Questions Anat-SGD Small Group Discussion in Anatomy Neph-L Nephrology lecture Bio-L Biochemistry Lecture Path-L Pathology Lecture Bio-P Biochemistry Practical Phar-L Pharmacology Lecture Bio-SGD Small Group Discussion in Biochemistry Phy-L Physiology Lecture CMed Community Medicine Phy-P Physiology Practical DSL Directed Self Learning Phy-SGD Small Group Discussion in Physiology FDT Film/Demonstration/Tutorial SDL Self-Directed learning FMed Forensic Medicine SAQs Short Essay Questions Histo-P Histology Practical SGD Small Group Discussion IPS Islamiyat/Pak Studies Surg-L General surgery lecture OSPE Objectively Structured Practical Examination SLRC Self Learning Resource Center Professionalism and communication skills, Research, Identity formation, Management and leadership, PRIME Ethics 3 MODULE PLANNING COMMITTEE Patron Prof. Dr. Mahmood Aurangzeb Dean, KMC Chairman Prof. Dr. Farooq Ahmed Director Medical Education, KMC Course Coordinator Prof. Dr. Ubaid ur Rahman Department of Biochemistry, KMC Module Director Associate Prof. Dr. Sadaf Durrani Department of Biochemistry, KMC Member Prof. Dr. Mudassir Ahmad Khan Chairman, Department of Biochemistry, KMC Member Prof. -
Hyperchloremia – Why and How
Document downloaded from http://www.elsevier.es, day 23/05/2017. This copy is for personal use. Any transmission of this document by any media or format is strictly prohibited. n e f r o l o g i a 2 0 1 6;3 6(4):347–353 Revista de la Sociedad Española de Nefrología www.revistanefrologia.com Brief review Hyperchloremia – Why and how Glenn T. Nagami Nephrology Section, Department of Medicine, VA Greater Los Angeles Healthcare System and David Geffen School of Medicine at UCLA, United States a r t i c l e i n f o a b s t r a c t Article history: Hyperchloremia is a common electrolyte disorder that is associated with a diverse group of Received 5 April 2016 clinical conditions. The kidney plays an important role in the regulation of chloride concen- Accepted 11 April 2016 tration through a variety of transporters that are present along the nephron. Nevertheless, Available online 3 June 2016 hyperchloremia can occur when water losses exceed sodium and chloride losses, when the capacity to handle excessive chloride is overwhelmed, or when the serum bicarbonate is low Keywords: with a concomitant rise in chloride as occurs with a normal anion gap metabolic acidosis Hyperchloremia or respiratory alkalosis. The varied nature of the underlying causes of the hyperchloremia Electrolyte disorder will, to a large extent, determine how to treat this electrolyte disturbance. Serum bicarbonate Published by Elsevier Espana,˜ S.L.U. on behalf of Sociedad Espanola˜ de Nefrologıa.´ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/ licenses/by-nc-nd/4.0/). -
Hyperthermia & Heat Stroke: Heat-Related Conditions
Hyperthermia & Heat Stroke: Heat-Related Conditions Joseph Rampulla, MS, APRN,BC eat-related conditions occur when excess heat taxes or overwhelms the body’s thermoregulatory mechanisms. Heat illness is preventable and occurs more Hcommonly than most clinicians realize. Heat illness most seriously affects the poor, urban-dwellers, young children, those with chronic physical and mental illnesses, substance abusers, the elderly, and people who engage in excessive physical The exposure to activity under harsh conditions. While considerable overlap occurs, the important the heat and the concrete during the syndromes are: heat stroke, heat exhaustion, and heat cramps. Heat stroke is a life- hot summer months places many rough threatening emergency and occurs when the loss of thermoregulatory control results sleepers at great risk in hyperpyrexia (very high fever) and severe damage to many internal organs. for heat stroke and hyperthermia. Photo by Epidemiology Sharon Morrison RN Heat illness is generally underreported, and the deaths than all other natural disasters combined in true incidence is unknown. Death rates from other the USA. The elderly, the very poor, and socially causes (e.g. cardiovascular, respiratory) increase isolated individuals are disproportionately affected during heat waves but are generally not reflected in by heat waves. For example, death records during the morbidity and mortality statistics related to heat heat waves invariably include many elders who died illness. Nonetheless, heat waves account for more alone in hot apartments. Age 65 years, chronic The Health Care of Homeless Persons - Part II - Hyperthermia and Heat Stroke 199 illness, and residence in a poor neighborhood are greater than 65. -
ISPAD Clinical Practice Consensus Guidelines 2018: Diabetic Ketoacidosis and the Hyperglycem
Received: 11 April 2018 Accepted: 31 May 2018 DOI: 10.1111/pedi.12701 ISPAD CLINICAL PRACTICE CONSENSUS GUIDELINES ISPAD Clinical Practice Consensus Guidelines 2018: Diabetic ketoacidosis and the hyperglycemic hyperosmolar state Joseph I. Wolfsdorf1 | Nicole Glaser2 | Michael Agus1,3 | Maria Fritsch4 | Ragnar Hanas5 | Arleta Rewers6 | Mark A. Sperling7 | Ethel Codner8 1Division of Endocrinology, Boston Children's Hospital, Boston, Massachusetts 2Department of Pediatrics, Section of Endocrinology, University of California, Davis School of Medicine, Sacramento, California 3Division of Critical Care Medicine, Boston Children's Hospital, Boston, Massachusetts 4Department of Pediatric and Adolescent Medicine, Medical University of Vienna, Vienna, Austria 5Department of Pediatrics, NU Hospital Group, Uddevalla and Sahlgrenska Academy, Gothenburg University, Uddevalla, Sweden 6Department of Pediatrics, School of Medicine, University of Colorado, Aurora, Colorado 7Division of Endocrinology, Diabetes and Metabolism, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York 8Institute of Maternal and Child Research, School of Medicine, University of Chile, Santiago, Chile Correspondence Joseph I. Wolfsdorf, Division of Endocrinology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA. Email: [email protected] 1 | SUMMARY OF WHAT IS Risk factors for DKA in newly diagnosed patients include younger NEW/DIFFERENT age, delayed diagnosis, lower socioeconomic status, and residence in a country with a low prevalence of type 1 diabetes mellitus (T1DM). Recommendations concerning fluid management have been modified Risk factors for DKA in patients with known diabetes include to reflect recent findings from a randomized controlled clinical trial omission of insulin for various reasons, limited access to medical ser- showing no difference in cerebral injury in patients rehydrated at dif- vices, and unrecognized interruption of insulin delivery in patients ferent rates with either 0.45% or 0.9% saline. -
Hypothalamic Disconnection Caudal to Paraventricular Nucleus Affects Cardiovascular and Drinking Responses to Central Angiotensin II and Carbachol
BRAIN RESEARCH 1388 (2011) 100– 108 available at www.sciencedirect.com www.elsevier.com/locate/brainres Research Report Hypothalamic disconnection caudal to paraventricular nucleus affects cardiovascular and drinking responses to central angiotensin II and carbachol Lilia Simone Urzedo–Rodrigues, Tatiane Depieri, Anderson Julio Cherobino, Oswaldo U. Lopes, José V. Menani, Débora S.A. Colombari⁎ Department of Physiology and Pathology, School of Dentistry, UNESP—São Paulo State University Araraquara, SP, Brazil ARTICLE INFO ABSTRACT Article history: The paraventricular nucleus of the hypothalamus (PVN) is an important area of the brain Accepted 8 March 2011 involved in the control of cardiovascular system and fluid-electrolyte balance. In the present Available online 13 March 2011 study we evaluated the effects of hypothalamic disconnection (HD) caudal to PVN in the pressor and dipsogenic responses induced by intracerebroventricular (icv) injections of Keywords: angiotensin II (ANG II) or carbachol (cholinergic agonist). Male Holtzman rats (280–320 g) Blood pressure with a stainless steel cannula implanted into the lateral ventricle and submitted to sham or Thirst HD surgery were used. HD (2 or 15 days) reduced the pressor responses to ANG II (50 ng/1 μl) Paraventricular nucleus icv (8±3 and 11±3 mm Hg, respectively, vs. sham: 23±3 and 21±2 mm Hg) or carbachol of hypothalamus (4 nmol/1 μl) icv (8±2 and 21±3 mm Hg, respectively, vs. sham: 33±3 and 33±3 mm Hg), Vasopressin without changing baseline arterial pressure. Acutely (2–4 days), HD also reduced water Knife-cut intake to icv ANG II (3.3±2.2 vs.