Arxiv:1906.05079V1 [Astro-Ph.IM] 12 Jun 2019
Draft version June 13, 2019 Typeset using LATEX twocolumn style in AASTeX61 A THOUSAND EARTHS: A VERY LARGE APERTURE, ULTRALIGHT SPACE TELESCOPE ARRAY FOR ATMOSPHERIC BIOSIGNATURE SURVEYS Daniel´ Apai,1 Tom D. Milster, Dae Wook Kim,2 Alex Bixel,3 Glenn Schneider,3 Ronguang Liang,4 and Jonathan Arenberg5 1Steward Observatory and the Lunar and Planetary Laboratory, The University of Arizona, Tucson, AZ 85721 2James C. Wyant College of Optical Sciences, The University of Arizona, Tucson, AZ 85721 3Steward Observatory, The University of Arizona, Tucson, AZ 85721 4College of Optical Sciences, The University of Arizona, Tucson, AZ 85721 5Northrop Grumman Aerospace Systems, Redondo Beach, CA 90278 (Received July 1, 2016; Revised September 27, 2016; Accepted June 13, 2019) Submitted to AJ ABSTRACT An outstanding, multi-disciplinary goal of modern science is the study of the diversity of potentially Earth-like planets and the search for life in them. This goal requires a bold new generation of space telescopes, but even the most ambitious designs yet hope to characterize several dozen potentially habitable planets. Such a sample may be too small to truly understand the complexity of exo-earths. We describe here a notional concept for a novel space observatory designed to characterize 1,000 transiting exo-earth candidates. The Nautilus concept is based on an array of inflatable spacecraft carrying very large diameter (8.5m), very low-weight, multi-order diffractive optical elements (MODE lenses) as light-collecting elements. The mirrors typical to current space telescopes are replaced by MODE lenses with a 10 times lighter areal density that are 100 times less sensitive to misalignments, enabling light-weight structure.
[Show full text]