Classification of Computers
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Decimal Layouts for IEEE 754 Strawman3
IEEE 754-2008 ECMA TC39/TG1 – 25 September 2008 Mike Cowlishaw IBM Fellow Overview • Summary of the new standard • Binary and decimal specifics • Support in hardware, standards, etc. • Questions? 2 Copyright © IBM Corporation 2008. All rights reserved. IEEE 754 revision • Started in December 2000 – 7.7 years – 5.8 years in committee (92 participants + e-mail) – 1.9 years in ballot (101 voters, 8 ballots, 1200+ comments) • Removes many ambiguities from 754-1985 • Incorporates IEEE 854 (radix-independent) • Recommends or requires more operations (functions) and more language support 3 Formats • Separates sets of floating-point numbers (and the arithmetic on them) from their encodings (‘interchange formats’) • Includes the 754-1985 basic formats: – binary32, 24 bits (‘single’) – binary64, 53 bits (‘double’) • Adds three new basic formats: – binary128, 113 bits (‘quad’) – decimal64, 16-digit (‘double’) – decimal128, 34-digit (‘quad’) 4 Why decimal? A web page… • Parking at Manchester airport… • £4.20 per day … … for 10 days … … calculated on-page using ECMAScript Answer shown: 5 Why decimal? A web page… • Parking at Manchester airport… • £4.20 per day … … for 10 days … … calculated on-page using ECMAScript Answer shown: £41.99 (Programmer must have truncated to two places.) 6 Where it costs real money… • Add 5% sales tax to a $ 0.70 telephone call, rounded to the nearest cent • 1.05 x 0.70 using binary double is exactly 0.734999999999999986677323704 49812151491641998291015625 (should have been 0.735) • rounds to $ 0.73, instead of $ 0.74 -
OS/390 Introduction to ISPF
z/OS Basic Skills Information Center: ISPF Course Module Module 1: Main Features of ISPF © Copyright IBM Corp., 2005. All rights reserved. z/OS Basic Skills Information Center: ISPF Course Module Introduction This module, Main Features of ISPF, introduces you to the z/OS Interactive System Productivity Facility, or ISPF, with special emphasis on the Program Development Facility, or PDF. Time to complete: 10 – 15 minutes © Copyright IBM Corp., 2005. All rights reserved. Page 2 of 15 z/OS Basic Skills Information Center: ISPF Course Module Main Features of ISPF - Objectives Upon completion of this module, you should be able to: • Describe the purpose of ISPF and its relationship to TSO • List the four major components of ISPF • Explain the function of each of the four components © Copyright IBM Corp., 2005. All rights reserved. Page 3 of 15 z/OS Basic Skills Information Center: ISPF Course Module Main Features of ISPF – Purpose of ISPF The Interactive System Productivity Facility, or ISPF, is a development tool set for the z/OS operating system. It has been used since 1975 to increase the productivity of the development of mainframe applications, because it provides an extensive set of programmer oriented facilities. © Copyright IBM Corp., 2005. All rights reserved. Page 4 of 15 z/OS Basic Skills Information Center: ISPF Course Module Main Features of ISPF – The Time Sharing Option/Extended (TSO/E) The Time Sharing Option/Extended, or TSO/E, is a base element of IBM's mainframe z/OS operating system. TSO/E allows you to communicate interactively with the MVS operating system by typing commands (one line at a time) on a computer terminal. -
Facility/370: Introduction
File No. S370-20 Order No. GC20-1800=9 IDl\n \/:u+ •• ".1 I\n"n"': ..... ft IDIVI V IIlUQI .Via"'lllIlv Facility/370: Systems Introduction Release 6 PLC 4 This publication introduces VM/370, and is intended for anyone who is interested in VM/370. However, the reader should have a basic understanding of I BM data processing. VM/370 (Virtual Machine Facility/370) is a system control program (SCP) that tailors the resources and capabilities of a single System/370 computer to provide concurrent users their one unique (virtual) machine. VM/370 consists of a Control Program (CP), which manages the real computer, a Conversational Monitor System (CMS), which is a general-purpose conversational time-sharing system that executes in a virtual machine, a Remote Spooling Communications Subsystem (RSCS), which spools files to and from geographically remote locations, and a Interactive Problem Control System (I PCS), which provides problem analysis and management faci I ities. The first section of the publication is an introduction; it describes what VM/370 can do. The second, third, fourth, and fifth sections describe the Control Program, Conversational Monitor System, Remote Spooling Communications Subsystem, and Interactive Problem Control System respectively. The appendixes include information about VM/370 publication-to-audience relationship and VM/370-related publications for CMS users. , This publication is a prerequisite for the VM/370 system library. --...- --- ---.-- ------- ------ --..- --------- -~-y- Page of GC20-1800-9 As Updated Aug 1, 1979 by TNL GN25-0U89 ~b Edition (Karch 1919) This edition (GC20-1800-~ together with Technical Newsletter GN25-0489. dated August 1, 1919, applies to Release 6 PLC 4 (Program Level Change) of IBM Virtual Machine Facility/310 and to all subsequent releases until otherwise indicated in new editions or Technical Newsletters. -
HILLGANG Executive IT Specialist, IBM the University of Warwick
. An introduction to the z10 – Harv Emery, Professor in the Department of Computer Science at HILLGANG Executive IT Specialist, IBM the University of Warwick. Update on OpenSolaris on System z ABSTRACTS System Cloning – The DC VM & Linux Users’ Group Principles and Practice Changing the way computers compute There is plenty of information available for cloning Linux guests and even z/OS guests but what about Most numeric data in commercial and human-centric cloning entire VM systems? For instance - you have a applications are decimal, and floating-point decimal need for two VM environments (one for virtual increasingly important as these applications become servers and another for z/OS D/R including XRC ever more complex. Benchmarking has indicated that DASD mirroring) in two different data centers, for a some applications spend a considerable amount of total of 4 VM systems. How can you save time and time in decimal processing, and IBM has now effort? Build one and clone it! Come and hear how a implemented decimal floating-point in z9 microcode, customer adopted the philosophy that he has been z10 hardware, Power6 hardware, and in many employing for z/OS for a long time and now has software products. developed for his VM systems. The talk will include how to maintain one VM system and 'roll' the updates In this talk, Mike will cover: out to other VM systems with including large systems • Why decimal arithmetic is increasingly important into their curriculum. • Why IBM has added hardware support • The decimal floating-point formats and IBM System z10 arithmetic, derived from Rexx, which is in the Enterprise Class Announcing the 12th Meeting of the new Hillgang IEEE 754 draft, z/VM, z/OS, DB2, C and other products Overview • How to exploit the new hardware and software in In this session the speaker, will present an . -
The Design of the REXX Language
The design of the REXX language by M. F. Cowlishaw One way of classifying computer languagesis by two (consciously or otherwise) to be easy to compile or classes: languages needing skilled programmers, and easy to interpret, it is designed (with the help of personal languages usedby an expanding population of general users. REstructured extended executor feedback from hundreds of users) to be easy to use. (REXX) isa flexible personal language designed with particular attention to feedback from its users. It has Three major factors affect the usability of a language. proved to be effective and easyto use, yet it is suffi- First, the basic concepts of a language affect its ciently general and powerfulto fulfil theneeds of many demanding professional applications.REXX is system syntax, grammar, and consistency. Second, the his- and hardware independent,so that it has been possi- tory and development of a language determine its ble to integrate it experimentally into several operating function, usability, and completeness. Third, but systems. Here REXX isused for such purposes as com- quite independently, the implementation of a lan- mand and macro programming, prototyping, educa- guage affects its acceptability, portability, and distri- tion, and personal programming. This paper introduces REXX and describes the basic design principles that bution. This paper introduces REXX and then dis- were followed in developingit. cusses basic concepts and developmental history as applied to the design of the REXX language. There are several experimental implementations of the REXX language within IBM for both large and small machines. One of these, by the author, has omputer languages may be classified in many become a part of the Virtual Machine/System Prod- ways. -
Proceedings of the Rexx Symposium for Developers and Users
SLAC-R-95-464 CONF-9505198-- PROCEEDINGS OF THE REXX SYMPOSIUM FOR DEVELOPERS AND USERS May 1-3,1995 Stanford, California Convened by STANFORD LINEAR ACCELERATOR CENTER STANFORD UNIVERSITY, STANFORD, CALIFORNIA 94309 Program Committee Cathie Dager of SLAC, Convener Forrest Garnett of IBM Pam Taylor of The Workstation Group James Weissman Prepared for the Department of Energy under Contract number DE-AC03-76SF00515 Printed in the United States of America. Available from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, Virginia 22161. DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED ;--. i*-„r> ->&• DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. DISCLAIMER Portions -
DB2 V8 Exploitation of IBM Ziip
Systems & Technology Group Connecting the Dots: LPARs, HiperDispatch, zIIPs and zAAPs Share in Boston,v August 2010 Glenn Anderson IBM Technical Training [email protected] © 2010 IBM Corporation What I hope to cover...... What are dispatchable units of work on z/OS Understanding Enclave SRBs How WLM manages dispatchable units of work The role of HiperDispatch What makes work eligible for zIIP and zAAP specialty engines Dispatching work to zIIP and zAAP engines z/OS Dispatchable Units There are different types of Dispatchable Units (DU's) in z/OS Preemptible Task (TCB) Non Preemptible Service Request (SRB) Preemptible Enclave Service Request (enclave SRB) Independent Dependent Workdependent z/OS Dispatching Work Enclave Services: A Dispatching Unit Standard dispatching dispatchable units (DUs) are the TCB and the SRB TCB runs at dispatching priority of address space and is pre-emptible SRB runs at supervisory priority and is non-pre-emptible Advanced dispatching units Enclave Anchor for an address space-independent transaction managed by WLM Can comprise multiple DUs (TCBs and Enclave SRBs) executing across multiple address spaces Enclave SRB Created and executed like an ordinary SRB but runs with Enclave dispatching priority and is pre-emptible Enclave Services enable a workload manager to create and control enclaves Enclave Characteristics Created by an address space (the "owner") SYS1 AS1 AS2 AS3 One address space can own many enclaves One enclave can include multiple Enclave dispatchable units (SRBs/tasks) executing concurrently in -
Operating System
OPERATING SYSTEM INDEX LESSON 1: INTRODUCTION TO OPERATING SYSTEM LESSON 2: FILE SYSTEM – I LESSON 3: FILE SYSTEM – II LESSON 4: CPU SCHEDULING LESSON 5: MEMORY MANAGEMENT – I LESSON 6: MEMORY MANAGEMENT – II LESSON 7: DISK SCHEDULING LESSON 8: PROCESS MANAGEMENT LESSON 9: DEADLOCKS LESSON 10: CASE STUDY OF UNIX LESSON 11: CASE STUDY OF MS-DOS LESSON 12: CASE STUDY OF MS-WINDOWS NT Lesson No. 1 Intro. to Operating System 1 Lesson Number: 1 Writer: Dr. Rakesh Kumar Introduction to Operating System Vetter: Prof. Dharminder Kr. 1.0 OBJECTIVE The objective of this lesson is to make the students familiar with the basics of operating system. After studying this lesson they will be familiar with: 1. What is an operating system? 2. Important functions performed by an operating system. 3. Different types of operating systems. 1. 1 INTRODUCTION Operating system (OS) is a program or set of programs, which acts as an interface between a user of the computer & the computer hardware. The main purpose of an OS is to provide an environment in which we can execute programs. The main goals of the OS are (i) To make the computer system convenient to use, (ii) To make the use of computer hardware in efficient way. Operating System is system software, which may be viewed as collection of software consisting of procedures for operating the computer & providing an environment for execution of programs. It’s an interface between user & computer. So an OS makes everything in the computer to work together smoothly & efficiently. Figure 1: The relationship between application & system software Lesson No. -
System Automation for Z/OS : Planning and Installation About This Publication
System Automation for z/OS Version 4.Release 1 Planning and Installation IBM SC34-2716-01 Note Before using this information and the product it supports, read the information in Appendix H, “Notices,” on page 201. Edition Notes This edition applies to IBM System Automation for z/OS® (Program Number 5698-SA4) Version 4 Release 1, an IBM licensed program, and to all subsequent releases and modifications until otherwise indicated in new editions. This edition replaces SC34-2716-00. © Copyright International Business Machines Corporation 1996, 2017. US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp. Contents Figures................................................................................................................. xi Tables................................................................................................................ xiii Accessibility........................................................................................................ xv Using assistive technologies...................................................................................................................... xv Keyboard navigation of the user interface................................................................................................. xv About this publication........................................................................................ xvii Who Should Use This Publication.............................................................................................................xvii -
The Protection of Information in Computer Systems
The Protection of Information in Computer Systems JEROME H. SALTZER, SENIOR MEMBER, IEEE, AND MICHAEL D. SCHROEDER, MEMBER, IEEE Invited Paper Abstract - This tutorial paper explores the mechanics of Confinement protecting computer-stored information from unauthorized Allowing a borrowed program to have access to data, use or modification. It concentrates on those architectural while ensuring that the program cannot release the structures--whether hardware or software--that are information. necessary to support information protection. The paper Descriptor develops in three main sections. Section I describes A protected value which is (or leads to) the physical desired functions, design principles, and examples of address of some protected object. elementary protection and authentication mechanisms. Any Discretionary reader familiar with computers should find the first section (In contrast with nondiscretionary.) Controls on access to be reasonably accessible. Section II requires some to an object that may be changed by the creator of the familiarity with descriptor-based computer architecture. It object. examines in depth the principles of modern protection Domain architectures and the relation between capability systems The set of objects that currently may be directly and access control list systems, and ends with a brief accessed by a principal. analysis of protected subsystems and protected objects. Encipherment The reader who is dismayed by either the prerequisites or The (usually) reversible scrambling of data according the level of detail in the second section may wish to skip to to a secret transformation key, so as to make it safe for Section III, which reviews the state of the art and current transmission or storage in a physically unprotected research projects and provides suggestions for further environment. -
IBM System Z10 Business Class - the Smart Choice for Your Business
IBM United States Hardware Announcement 108-754, dated October 21, 2008 IBM System z10 Business Class - The smart choice for your business. z can do IT better Table of contents 4 Key prerequisites 36 Publications 4 Planned availability dates 38 Services 5 Description 38 Technical information 35 Product positioning 55 IBM Electronic Services 36 Statement of general direction 55 Terms and conditions 36 Product number 57 Pricing 36 Education support 57 Order now 58 Corrections At a glance The IBM® System z10 BC is a world-class enterprise server built on the inherent strengths of the IBM System z® platform. It is designed to deliver new technologies and virtualization that provide improvements in price/performance for key new workloads. The System z10 BC further extends System z leadership in key capabilities with the delivery of granular growth options, business-class consolidation, improved security and availability to reduce risk, and just-in-time capacity deployment helping to respond to changing business requirements. Whether you want to deploy new applications quickly, grow your business without growing IT costs, or consolidate your infrastructure for reduced complexity, look no further - z Can Do IT. The System z10 BC delivers: • The IBM z10 Enterprise Quad Core processor chip running at 3.5 GHz, designed to help improve CPU intensive workloads. • A single model E10 offering increased granularity and scalability with 130 available capacity settings. • Up to a 5-way general purpose processor and up to 5 additional Specialty Engine processors or up to a 10-way IFL or ICF server for increased levels of performance and scalability to help enable new business growth. -
TCD-SCSS-T.20121208.032.Pdf
AccessionIndex: TCD-SCSS-T.20121208.032 Accession Date: 8-Dec-2012 Accession By: Prof.J.G.Byrne Object name: Burroughs 1714 Vintage: c.1972 Synopsis: Commercial zero-instruction-set computer used by the Dept.Computer Science from 1973-1979. Just two prototyping boards survive. Description: The Burroughs 1714 was one of their B1700 family, introduced in 1972 to compete with IBM's System/3. The original research for the B1700 series, initially codenamed the Proper Language Processor or Program Language Processor (PLP) was done at the Burroughs Pasadena plant. The family were known as the Burroughs Small Systems, as distinct from the Burroughs Medium Systems (B2000, etc) and the Burroughs Large Systems (B5000, etc). All the Burroughs machines had high-level language architectures. The large were ALGOL machines, the medium COBOL machines, but the small were universal machines. The principal designer of the B1700 family was Wayne T. Wilner. He designed the architecture as a zero-instruction-set computer, an attempt to bridge the inefficient semantic gap between the ideal solution to a particular programming problem and the real physical hardware. The B1700 architecture executed idealized virtual machines for any language from virtual memory. It achieved this feat by microprogramming, see the microinstruction set further below. The Burroughs MCP (Master Control Program) would schedule a particular job to run, then preload the interpreter for whatever language was required into a writeable control store, allowing the machine to emulate the desired virtual machine. The hardware was optimised for this. It had bit-addressable memory, a variable-width ALU, could OR in data from a register into the instruction register (for very efficient instruction parsing), and the output of the ALU was directly addressable as X+Y or X-Y read-only registers.