Dark Matter-Baryon Scaling Relations from Einasto Halo Fits To
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Dark Energy and Extending the Geodesic Equations of Motion: Connecting the Galactic and Cosmological Length Scales
General Relativity and Gravitation (2011) DOI 10.1007/s10714-010-1043-z RESEARCHARTICLE A. D. Speliotopoulos Dark energy and extending the geodesic equations of motion: connecting the galactic and cosmological length scales Received: 23 May 2010 / Accepted: 16 June 2010 c The Author(s) 2010 Abstract Recently, an extension of the geodesic equations of motion using the Dark Energy length scale was proposed. Here, we apply this extension to analyz- ing the motion of test particles at the galactic scale and longer. A cosmological check of the extension is made using the observed rotational velocity curves and core sizes of 1,393 spiral galaxies. We derive the density profile of a model galaxy using this extension, and with it, we calculate σ8 to be 0.73±0.12; this is within +0.049 experimental error of the WMAP value of 0.761−0.048. We then calculate R200 to be 206±53 kpc, which is in reasonable agreement with observations. Keywords Dark energy, Galactic density profile, Density fluctuations, Extensions of the geodesic equations of motion, Galactic rotation curves 1 Introduction In a previous paper [1], we constructed an extension of the geodesic equations of motion (GEOM). This construction is possible because with the discovery of +0.82 −30 3 Dark Energy, ΛDE = (7.21−0.84) × 10 g/cm [2; 3; 4], there is now a length 1/2 scale, λDE = c/(ΛDEG) , associated with the universe. As this length scale is also not associated with the mass of any known particle, this extension does not violate various statements of the equivalence principle. -
Making a Sky Atlas
Appendix A Making a Sky Atlas Although a number of very advanced sky atlases are now available in print, none is likely to be ideal for any given task. Published atlases will probably have too few or too many guide stars, too few or too many deep-sky objects plotted in them, wrong- size charts, etc. I found that with MegaStar I could design and make, specifically for my survey, a “just right” personalized atlas. My atlas consists of 108 charts, each about twenty square degrees in size, with guide stars down to magnitude 8.9. I used only the northernmost 78 charts, since I observed the sky only down to –35°. On the charts I plotted only the objects I wanted to observe. In addition I made enlargements of small, overcrowded areas (“quad charts”) as well as separate large-scale charts for the Virgo Galaxy Cluster, the latter with guide stars down to magnitude 11.4. I put the charts in plastic sheet protectors in a three-ring binder, taking them out and plac- ing them on my telescope mount’s clipboard as needed. To find an object I would use the 35 mm finder (except in the Virgo Cluster, where I used the 60 mm as the finder) to point the ensemble of telescopes at the indicated spot among the guide stars. If the object was not seen in the 35 mm, as it usually was not, I would then look in the larger telescopes. If the object was not immediately visible even in the primary telescope – a not uncommon occur- rence due to inexact initial pointing – I would then scan around for it. -
Ngc Catalogue Ngc Catalogue
NGC CATALOGUE NGC CATALOGUE 1 NGC CATALOGUE Object # Common Name Type Constellation Magnitude RA Dec NGC 1 - Galaxy Pegasus 12.9 00:07:16 27:42:32 NGC 2 - Galaxy Pegasus 14.2 00:07:17 27:40:43 NGC 3 - Galaxy Pisces 13.3 00:07:17 08:18:05 NGC 4 - Galaxy Pisces 15.8 00:07:24 08:22:26 NGC 5 - Galaxy Andromeda 13.3 00:07:49 35:21:46 NGC 6 NGC 20 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 7 - Galaxy Sculptor 13.9 00:08:21 -29:54:59 NGC 8 - Double Star Pegasus - 00:08:45 23:50:19 NGC 9 - Galaxy Pegasus 13.5 00:08:54 23:49:04 NGC 10 - Galaxy Sculptor 12.5 00:08:34 -33:51:28 NGC 11 - Galaxy Andromeda 13.7 00:08:42 37:26:53 NGC 12 - Galaxy Pisces 13.1 00:08:45 04:36:44 NGC 13 - Galaxy Andromeda 13.2 00:08:48 33:25:59 NGC 14 - Galaxy Pegasus 12.1 00:08:46 15:48:57 NGC 15 - Galaxy Pegasus 13.8 00:09:02 21:37:30 NGC 16 - Galaxy Pegasus 12.0 00:09:04 27:43:48 NGC 17 NGC 34 Galaxy Cetus 14.4 00:11:07 -12:06:28 NGC 18 - Double Star Pegasus - 00:09:23 27:43:56 NGC 19 - Galaxy Andromeda 13.3 00:10:41 32:58:58 NGC 20 See NGC 6 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 21 NGC 29 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 22 - Galaxy Pegasus 13.6 00:09:48 27:49:58 NGC 23 - Galaxy Pegasus 12.0 00:09:53 25:55:26 NGC 24 - Galaxy Sculptor 11.6 00:09:56 -24:57:52 NGC 25 - Galaxy Phoenix 13.0 00:09:59 -57:01:13 NGC 26 - Galaxy Pegasus 12.9 00:10:26 25:49:56 NGC 27 - Galaxy Andromeda 13.5 00:10:33 28:59:49 NGC 28 - Galaxy Phoenix 13.8 00:10:25 -56:59:20 NGC 29 See NGC 21 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 30 - Double Star Pegasus - 00:10:51 21:58:39 -
Dark Energy and Extending the Geodesic Equations of Motion: Connecting the Galactic and Cosmological Length Scales
Gen Relativ Gravit (2010) 42:2913–2938 DOI 10.1007/s10714-010-1043-z RESEARCH ARTICLE Dark energy and extending the geodesic equations of motion: connecting the galactic and cosmological length scales A. D. Speliotopoulos Received: 23 May 2010 / Accepted: 16 June 2010 / Published online: 4 July 2010 © The Author(s) 2010. This article is published with open access at Springerlink.com Abstract Recently, an extension of the geodesic equations of motion using the Dark Energy length scale was proposed. Here, we apply this extension to analyzing the motion of test particles at the galactic scale and longer. A cosmological check of the extension is made using the observed rotational velocity curves and core sizes of 1,393 spiral galaxies. We derive the density profile of a model galaxy using this extension, and with it, we calculate σ8 to be 0.73±0.12; this is within experimental . +0.049 error of the WMAP value of 0 761−0.048. We then calculate R200 to be 206±53 kpc, which is in reasonable agreement with observations. Keywords Dark energy · Galactic density profile · Density fluctuations · Extensions of the geodesic equations of motion · Galactic rotation curves 1 Introduction In a previous paper [1], we constructed an extension of the geodesic equations of motion (GEOM). This construction is possible because with the discovery of Dark = ( . +0.82) × −30 3 λ = Energy, DE 7 21−0.84 10 g/cm [2–4], there is now a length scale, DE 1/2 c/(DEG) , associated with the universe. As this length scale is also not associated with the mass of any known particle, this extension does not violate various statements of the equivalence principle. -
Photometric Properties of Kiso Ultraviolet-Excess Galaxies in the Lynx-Ursa Major Region0
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server Photometric Properties of Kiso Ultraviolet-Excess Galaxies in the Lynx-Ursa Major Region0 Tsutomu T. Takeuchi1, 2, Akihiko Tomita3, Kouichiro Nakanishi1, Takako T. Ishii1, 4, Ikuru Iwata5, and Mamoru Sait¯o1 1 Department of Astronomy, Faculty of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, JAPAN 2 Research Fellow of the Japan Society for the Promotion of Science 3 Department of Earth and Astronomical Sciences, Faculty of Education, Wakayama University, Wakayama 640-8510, JAPAN 4 Kwasan and Hida Observatories, Kyoto University, Yamashina-ku, Kyoto 607-8471, JAPAN 5 Toyama Astronomical Observatory, Toyama Science Museum, 49-4 San-no-kuma, Toyama City, Toyama 930-0155, JAPAN Electronic mail: [email protected] Received ; accepted 0Based on observations made at Kiso Observatory, which is operated by Institute of Astronomy, Faculty of Science, University of Tokyo, Japan. –2– ABSTRACT We have performed a systematic study of several regions in the sky where the number of galaxies exhibiting star formation (SF) activity is greater than average. We used Kiso ultraviolet-excess galaxies (KUGs) as our SF-enhanced sample. By statistically comparing the KUG and non-KUG distributions, we discovered four KUG-rich regions with a size of ∼ 10◦ ×10◦. One of these regions corresponds spatially to a filament of length ∼ 60 h−1 Mpc in the Lynx-Ursa Major region (α ∼ 9h − 10h ,δ∼42◦ − 48◦). We call this “the Lynx-Ursa Major (LUM) filament”. We obtained V (RI)C surface photometry of 11 of the KUGs in the LUM filament and used these to investigate the integrated colors, distribution of SF regions, morphologies, and local environments. -
New Evidence for Dark Matter
New evidence for dark matter A. Boyarsky1,2, O. Ruchayskiy1, D. Iakubovskyi2, A.V. Macci`o3, D. Malyshev4 1Ecole Polytechnique F´ed´erale de Lausanne, FSB/ITP/LPPC, BSP CH-1015, Lausanne, Switzerland 2Bogolyubov Institute for Theoretical Physics, Metrologichna str., 14-b, Kiev 03680, Ukraine 3Max-Planck-Institut f¨ur Astronomie, K¨onigstuhl 17, 69117 Heidelberg, Germany 4Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2, Ireland Observations of star motion, emissions from hot ionized gas, gravitational lensing and other tracers demonstrate that the dynamics of galaxies and galaxy clusters cannot be explained by the Newtonian potential produced by visible matter only [1–4]. The simplest resolution assumes that a significant fraction of matter in the Universe, dominating the dynamics of objects from dwarf galaxies to galaxy clusters, does not interact with electromagnetic radiation (hence the name dark matter). This elegant hypothesis poses, however, a major challenge to the highly successful Standard Model of particle physics, as it was realized that dark matter cannot be made of known elementary particles [4]. The quest for direct evidence of the presence of dark matter and for its properties thus becomes of crucial importance for building a fundamental theory of nature. Here we present a new universal relation, satisfied by matter distributions at all observed scales, and show its amaz- ingly good and detailed agreement with the predictions of the most up-to-date pure dark matter simulations of structure formation in the Universe [5–7]. This behaviour seems to be insensitive to the complicated feedback of ordinary matter on dark matter. -
The JCMT Nearby Galaxies Legacy Survey VIII. CO Data and the LCO(3
The LCO(3−2)–LF IR correlation in the SINGS sample 1 The JCMT Nearby Galaxies Legacy Survey VIII. CO data and the LCO(3−2)–LF IR correlation in the SINGS sample C. D. Wilson1, B. E. Warren1,2, F. P. Israel3, S. Serjeant4, D. Attewell1, G. J. Bendo5, H. M. Butner6, P. Chanial7, D. L. Clements8, J. Golding1, V. Heesen9 J. Irwin10, J. Leech11, H. E. Matthews12, S. M¨uhle13, A. M. J. Mortier14, G. Petitpas15, J. R. S´anchez-Gallego16,17, E. Sinukoff1, K. Shorten1, B. K. Tan11, R. P. J. Tilanus18,19, A. Usero20, M. Vaccari21,43, T. Wiegert22, M. Zhu23, D. M. Alexander24, P. Alexander25,26, M. Azimlu27,15, P. Barmby27, C. Borys28, R. Brar10, C. Bridge28, E. Brinks9, S. Brooks1, K. Coppin29, S. Cˆot´e30, P. Cˆot´e30, S. Courteau10, J. Davies31, S. Eales31, M. Fich32, M. Hudson32, D. H. Hughes33, R. J. Ivison34,35, J. H. Knapen16,17, M. Page8, T. J. Parkin1, A. Pope36, D. Rigopoulou11,37, E. Rosolowsky38, E. R. Seaquist39, K. Spekkens40, N. Tanvir9, J. M. van der Hulst41, P. van der Werf3, C. Vlahakis42, T. M. Webb29, B. Weferling18, G. J. White4,37 1Department of Physics & Astronomy, McMaster University, Hamilton, Ontario L8S 4M1, Canada 2 International Centre for Radio Astronomy Research, M468, University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia 3Sterrewacht Leiden, Leiden University, PO Box 9513, 2300 RA Leiden, The Netherlands 4Department of Physics & Astronomy, The Open University, Milton Keynes MK7 6AA, United Kingdom 5 UK ALMA Regional Centre Node, Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom 6Department of Physics and Astronomy, James Madison University, MSC 4502 - 901 Carrier Drive, Harrisonburg, VA 22807, U.S.A. -
Arxiv:1207.4189V1 [Astro-Ph.CO] 17 Jul 2012 N a Osdrtrefnaetlpyia Parame- Physical Fundamental Mass Three Alternatively, Ters: Consider Color
The Astrophysical Journal Supplement Series, in press, 17 July 2012 A Preprint typeset using LTEX style emulateapj v. 5/2/11 ANGULAR MOMENTUM AND GALAXY FORMATION REVISITED Aaron J. Romanowsky1, S. Michael Fall2 1University of California Observatories, Santa Cruz, CA 95064, USA 2Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA The Astrophysical Journal Supplement Series, in press, 17 July 2012 ABSTRACT Motivated by a new wave of kinematical tracers in the outer regions of early-type galaxies (ellipticals and lenticulars), we re-examine the role of angular momentum in galaxies of all types. We present new methods for quantifying the specific angular momentum j, focusing mainly on the more challenging case of early-type galaxies, in order to derive firm empirical relations between stellar j⋆ and mass M⋆ (thus extending the work by Fall 1983). We carry out detailed analyses of eight galaxies with kinematical data extending as far out as ten effective radii, and find that data at two effective radii are generally sufficient to estimate total j⋆ reliably. Our results contravene suggestions that ellipticals could harbor large reservoirs of hidden j⋆ in their outer regions owing to angular momentum transport in major mergers. We then carry out a comprehensive analysis of extended kinematic data from the literature for a sample of 100 nearby bright galaxies of all types, placing them on a diagram of ∼ j⋆ versus M⋆. The ellipticals and spirals form two parallel j⋆–M⋆ tracks, with log-slopes of 0.6, which for the spirals is closely related to the Tully-Fisher relation, but for the ellipticals derives from∼ a remarkable conspiracy between masses, sizes, and rotation velocities. -
Peak Star Formation Efficiency and No Missing Baryons in Massive Spirals
A&A 626, A56 (2019) Astronomy https://doi.org/10.1051/0004-6361/201935553 & c L. Posti et al. 2019 Astrophysics Peak star formation efficiency and no missing baryons in massive spirals Lorenzo Posti1,2, Filippo Fraternali1, and Antonino Marasco1,3 1 Kapteyn Astronomical Institute, University of Groningen, PO Box 800, 9700 AV Groningen, The Netherlands 2 Université de Strasbourg, CNRS UMR 7550, Observatoire astronomique de Strasbourg, 11 rue de l’Université, 67000 Strasbourg, France e-mail: [email protected] 3 ASTRON, Netherlands Institute for Radio Astronomy, Oude Hoogeveensedijk 4, 7991 PD Dwingeloo, The Netherlands Received 26 March 2019 / Accepted 30 April 2019 ABSTRACT It is commonly believed that galaxies use, throughout Hubble time, a very small fraction of the baryons associated with their dark matter halos to form stars. This so-called low star formation efficiency f? ≡ M?= fb Mhalo, where fb ≡ Ωb=Ωc is the cosmological baryon fraction, is expected to reach its peak at nearly L∗ (at efficiency ≈20%) and decline steeply at lower and higher masses. We 7 11 have tested this using a sample of nearby star-forming galaxies, from dwarfs (M? ' 10 M ) to high-mass spirals (M? ' 10 M ) with Hi rotation curves and 3.6 µm photometry. We fit the observed rotation curves with a Bayesian approach by varying three parameters, stellar mass-to-light ratio Υ?, halo concentration c, and mass Mhalo. We found two surprising results: (1) the star formation efficiency is a monotonically increasing function of M? with no sign of a decline at high masses, and (2) the most massive spirals 11 (M? ' 1−3 × 10 M ) have f? ≈ 0:3−1, i.e. -
DSO List V2 Current
7000 DSO List (sorted by name) 7000 DSO List (sorted by name) - from SAC 7.7 database NAME OTHER TYPE CON MAG S.B. SIZE RA DEC U2K Class ns bs Dist SAC NOTES M 1 NGC 1952 SN Rem TAU 8.4 11 8' 05 34.5 +22 01 135 6.3k Crab Nebula; filaments;pulsar 16m;3C144 M 2 NGC 7089 Glob CL AQR 6.5 11 11.7' 21 33.5 -00 49 255 II 36k Lord Rosse-Dark area near core;* mags 13... M 3 NGC 5272 Glob CL CVN 6.3 11 18.6' 13 42.2 +28 23 110 VI 31k Lord Rosse-sev dark marks within 5' of center M 4 NGC 6121 Glob CL SCO 5.4 12 26.3' 16 23.6 -26 32 336 IX 7k Look for central bar structure M 5 NGC 5904 Glob CL SER 5.7 11 19.9' 15 18.6 +02 05 244 V 23k st mags 11...;superb cluster M 6 NGC 6405 Opn CL SCO 4.2 10 20' 17 40.3 -32 15 377 III 2 p 80 6.2 2k Butterfly cluster;51 members to 10.5 mag incl var* BM Sco M 7 NGC 6475 Opn CL SCO 3.3 12 80' 17 53.9 -34 48 377 II 2 r 80 5.6 1k 80 members to 10th mag; Ptolemy's cluster M 8 NGC 6523 CL+Neb SGR 5 13 45' 18 03.7 -24 23 339 E 6.5k Lagoon Nebula;NGC 6530 invl;dark lane crosses M 9 NGC 6333 Glob CL OPH 7.9 11 5.5' 17 19.2 -18 31 337 VIII 26k Dark neb B64 prominent to west M 10 NGC 6254 Glob CL OPH 6.6 12 12.2' 16 57.1 -04 06 247 VII 13k Lord Rosse reported dark lane in cluster M 11 NGC 6705 Opn CL SCT 5.8 9 14' 18 51.1 -06 16 295 I 2 r 500 8 6k 500 stars to 14th mag;Wild duck cluster M 12 NGC 6218 Glob CL OPH 6.1 12 14.5' 16 47.2 -01 57 246 IX 18k Somewhat loose structure M 13 NGC 6205 Glob CL HER 5.8 12 23.2' 16 41.7 +36 28 114 V 22k Hercules cluster;Messier said nebula, no stars M 14 NGC 6402 Glob CL OPH 7.6 12 6.7' 17 37.6 -03 15 248 VIII 27k Many vF stars 14.. -
Light Speed Expansion and Rotation of a Primordial Black Hole Universe Having Internal Acceleration
International Astronomy and Astrophysics Research Journal 2(2): 9-27, 2020; Article no.IAARJ.57955 Light Speed Expansion and Rotation of a Primordial Black Hole Universe having Internal Acceleration U. V. S. Seshavatharam1* and S. Lakshminarayana2 1Honorary Faculty, I-SERVE, Survey no-42, Hitech City, Hyderabad-84, Telangana, India. 2Department of Nuclear Physics, Andhra University, Visakhapatnam-03, Andhra Pradesh, India. Authors’ contributions This work was carried out in collaboration between both authors. Author UVSS designed the study, performed the statistical analysis, wrote the protocol and wrote the first draft of the manuscript. Author SL managed the analyses of the study. Both authors read and approved the final manuscript. Article Information Editor(s): (1) Dr. Swarniv Chandra, Techno India University, India. (2) Dr. Hadia Hassan Selim, National Research Institute of Astronomy and Geophysics, Cairo, Egypt. Reviewers: (1) Hidirova Mohiniso Bahromovna, Tashkent University of Information Technologies named after Muhammad Al-Khwarizmi, Uzbekistan. (2) Valery Timkov, Institute of Telecommunications and Global Information Space, The National Academy of Sciences of Ukraine, Ukraine. (3) Alesandro Ferreira dos Santos, Instituto de Física, Universidade Federal de Mato Grosso, Brasil. (4) Maliki Olaniyi Sadik, Michael Okpara Federal University Umudike, Nigeria. (5) Tritos Ngampitipan, Chandrakasem Rajabhat University, Thailand. Complete Peer review History: http://www.sdiarticle4.com/review-history/57955 Received 23 April 2020 Accepted 29 June 2020 Review Article Published 07 July 2020 ABSTRACT With reference to primordial black holes, an attempt has been made to develop a practical model of cosmology. Main features of this integrated model are: Eternal role of Planck scale, light speed expansion and rotation of a primordial cosmic black hole, slow thermal cooling, internal acceleration and anisotropy. -