<<

Oceanography,Oceanography, ,Ichthyoplankton, andand BottomBottom FishesFishes ofof BeringBering StraitStrait andand ChukchiChukchi SeaSea

BrendaBrenda L.L. NorcrossNorcross1 BrendaBrenda A.A. HolladayHolladay1 MorganMorgan BusbyBusby2 KathyKathy MierMier2

1 School of and Ocean Sciences, University of Alaska Fairbanks 2 Alaska Fisheries Science Center, Seattle, WA RUSALCARUSALCA issue:issue: ClimateClimate variabilityvariability andand changechange detectiondetection

ProblemProblem forfor fishfish –– LittleLittle toto nono baselinebaseline datadata forfor comparisoncomparison OurOur RUSALCARUSALCA objectiveobjective •• ToTo documentdocument thethe juvenilejuvenile fishfish andand ichthyoplanktonichthyoplankton speciesspecies inin thethe studystudy areaarea andand provideprovide aa baselinebaseline fromfrom whichwhich toto measuremeasure futurefuture changeschanges photo by Terry Whitledge “General”“General” knowledgeknowledge ofof fishfish •• FishFish communitycommunity structurestructure isis temperature/watertemperature/water massmass dependentdependent •• BeringBering SeaSea speciesspecies movemove intointo thethe ChukchiChukchi SeaSea inin warmwarm yearsyears •• ChangesChanges inin distributiondistribution ofof fishfish inin ChukchiChukchi SeaSea areare associatedassociated withwith influxinflux ofof warmwarm AlaskaAlaska CoastalCoastal WaterWater (Gillespie et al. 1997; Smith et al. 1997a, 1997b; Amer. . Soc. Symp. 19) SpecificSpecific knowledgeknowledge ofof fishesfishes

•• LarvalLarval BeringBering flounderflounder ((HippoglossoidesHippoglossoides robustusrobustus)) transportedtransported nearnear thethe coastcoast inin ACWACW (Wyllie-Echeverria et al. 1997) •• LarvalLarval arcticarctic codcod ((BoreogadusBoreogadus saidasaida)) areare foundfound inin bothboth ACWACW andand RCWRCW inin thethe northeastnortheast ChukchiChukchi SeaSea (Wyllie-Echeverria et al. 1997) •• HighestHighest abundanceabundance ofof adultadult arcticarctic codcod occursoccurs inin BSW,BSW, followedfollowed byby ACW,ACW, withwith lowerlower numbersnumbers inin RCWRCW (Gillespie et al. 1997) StartingStarting pointpoint:: ••ItIt isis speculatedspeculated thatthat thethe manymany frontalfrontal systemssystems inin ArcticArctic waterswaters affectaffect foodfood availabilityavailability andand funnelfunnel thethe highhigh productivityproductivity fromfrom thethe ChukchiChukchi throughthrough thethe upperupper trophictrophic levelslevels (Weingartner(Weingartner 1997)1997) HypothesesHypotheses •• TheThe frontalfrontal structurestructure ofof thethe ChukchiChukchi SeaSea definesdefines fishfish communitiescommunities (species(species compositioncomposition andand abundance)abundance) byby limitinglimiting transfertransfer amongamong waterwater massesmasses •• TheThe physicalphysical oceanographicoceanographic structuresstructures onon eithereither sideside ofof thethe frontsfronts shouldshould affectaffect fishfish habitathabitat SamplingSampling ObjectiveObjective •• CollectCollect fishfish ,eggs, larvaelarvae andand juvenilesjuveniles fromfrom specificspecific waterwater massesmasses toto estimateestimate relativerelative fishfish abundanceabundance andand distributiondistribution photo by Catherine Mecklenburg photo by Terry Whitledge Samples - Ichthyoplankton •Target fish eggs and fish larvae with quantitative collections by 60 cm paired Bongo net, with 505 micron mesh, one oblique tow at each site

•Additional fish larvae provided at sea by the project (Hopcroft and Kosobokova) were used for trace elements analysis and for voucher collections •Incidental catches of larger invertebrate zooplankton by this project were provided to the zooplankton project and for trophic research (Iken and Bluhm) •Some larval were provided to non-RUSALCA projects for genetics Samples – Juvenile groundfishes •Target small bottom fishes with quantitative collections by 3.05 m plumb-staff beam trawl, with 7 mm mesh and 4 mm codend liner; one quantitative tow per site

•Additional fishes were provided to this project for trace elements analysis by the adult fish project (Mecklenburg et al.)

•Fish tissues and invertebrates were provided by this project for trophic and community analysis (Iken and Bluhm) •Voucher specimens of juvenile and adult fishes were provided by this project to the adult fish project, and to various museums and institutes (e.g., ZIN, California Academy of Sciences, NOAA) •Tissues for fatty acid analysis were provided for a non-RUSALCA project (Alan Springer, UAF) Additional Samples – for Trace Elements Chemical Analysis

At most stations Surface water Bottom water

At VanVeen sites Sediment BeamBeam trawltrawl –– •• VeryVery successfulsuccessful atat collectincollectingg aa varietyvariety ofof smallsmall bottombottom fishesfishes (<200(<200 mm)mm) andand epibenthicepibenthic invertebratesinvertebrates •• ThisThis geargear cancan bebe fishedfished effectivelyeffectively overover mud,mud, sandsand andand gravelgravel substratessubstrates

•• N=14 sites, each with one “quantitative” tow for area fished – These 14 tows are standardized to # individuals/1000m2; but as tow distance was calculated at only 5 sites, and was estimated based on ttowow duration and average towing speed for the otheotherr 9 sites, the abundance values are imprecise and must be interpreted with caution.

•• N=5 tows over 3 sites with “non-quantitative” tows – Tows filled beyond codend (n=2 tows) – Net damage affecting retention of catch (n=3 tows) Beam trawl - heavy catch Codend filled with mud and tore net; lost much of the catch – not quantitative Net repair Net full beyond small-mesh codend - not quantitative Good catch! Southern Resident Chukchi = Winter Water water transported from •ACW isolated to east by strong front •BSW west of front mid-shelf •AW / SSC? Southwest

Northern Chukchi Sea water from north •RCW = Winter Water north & central ¾from NW - Siberian Sea (Pickart) ¾from upper layers of Ocean or shelf water left from previous winter (Weingartner) further south in Bering Seaand *Properties established Bering intoChukchi Sea Four watermasses - (Weingartner RUSALCA 2005) (Weingartner Sea Water in the Chukchi AW andBSW mix north ofthe straitto form Bering 4) Siberian Coastal Current(SCC) 3) Anadyr Water(AW)* 2) BeringShelf Water(BSW)* 1) AlaskanCoastal Current(ACC Surface water masses )* [East Siberian Sea] [East Siberian

MODIS IMAGE 2.2E-02 Distance4.4E (Objective-02 Function)6.6E-02 0 8.8E-02

75 Information50 Remaining (%)25 Cluster oftheaveragesalinity an Surface water masses: s6 100 0 s18 Warm-Fresh ACW s7 s107 s19 s20 s21 s22 s23 s24

s48 dent Chu s83 s89 s88 s81 s82 s86 s73 s75 s73B

s49 kchi s63 Very Cold-Salty RCW s64 s66 s65 s62 W s50 s68 a s51

s61 ter / s71 s74 s72 s106 s60

s67 s69 s70 s62B 175°E 180° 175°W 170°W 165°W 160°W

Km Surface050 100 20 200 m: 300 EEE EE EE EEE Salinity and Temperature EEE 70°N EEEEEEEEEE

EEEEEEEEE EE EE EEEEEEEEEEE E RCW

68°N

ACW BSW E E E E E E E

E E E 66°N RUSSIA E E ALASKA E E E E AW/ SCC?

EE E E 64°N E

165°W

RCW BSW ACW

AW/ SCC? Ichthyoplankton clustered by station and by species (Catch per 10m2).25 45 23 01

Alaska Coast s6 s17 s18 s8 s107 s20 Mid & North s58 s10 s11

Stations s15 s23 s13 s25 s27 s62 s85 s106 North & West s73 AHEX GADID LIPSPP BSAIDA SPUNCT HSTENO LGIBBUS LASPERA OSMERID TCHALCO LUMPFAB LFABRICII LUMPSPP LUMPMAC AMONOPT GYMNOSPP GYMNOTRIC HROBUSTUS Species Station Clusters for Ichthyoplankton Species Abundance Station clusters: Station clusters: Surface 20 m: Ichthyoplankton temperature and Species salinity Abundance

RCW BSW ACW

AW/ SCC? Resident Chukchi Southern Chukchi Sea = Winter Water water transported from Bering Sea •ACW isolated to east by strong front •BSW west of front mid-shelf •AW / SSC? Southwest

Northern Chukchi Sea water from north •RCW = Winter Water north & central ¾from NW - Siberian Sea (Pickart) ¾from upper layers of Arctic Ocean or shelf water left from previous winter (Weingartner) 1.5E-02 Distance 2.9E-(Objective02 Function)4.4E-02 0 5.8E-02 75 Information50 Remaining (%)25 s6 100 0 s18 s19 Warm-Fresh ACW Cool-

s67 i s44 dent Chu s45 s75 s89 s106 s46 s83 s74 s76 s82

s87 kchi s62 s63 Very Cold-Salty RCW s84 s88 s73 W s73B s47 t s50 a om 20m

s48 ter / s49 s61 s62B s85 s86 s85B s60 s77 s81 s80 175°E 180° 175°W 170°W 165°W 160°W

Km Bottom0 5020 100 m: 200 300 EEE EE EE EEE Salinity and Temperature EEE 70°N EEEEEEEEEE

EEEEEEEEE EE EE EEEEEEEEEEE E RCW

68°N AW/ SCC? E E E E E E E

E E E 66°N RUSSIA E E ALASKA E E E E BSW ACW

EE E E 64°N E

165°W 175°E 180° 175°W 170°W 165°W 160°W

Km 85 050 100 200 300 EEEEE EE EEE !73 N=17 Beam Trawl Sites EEEE ! 70°N EEEE!EEEEE 6258 E EE!EEE!EEE E106E EE 107 EEEEEEEEEEE ! !E

68°N

20 23 E 18 E E E ! E E !E ! 25 17 E 27 E ! 15 !E RUSSIA E 66°N 13 E ALASKA ! E ! E 11 E ! !E

8 EE E 6 ! E 64°N !E 175°E 180° 175°W 170°W 165°W 160°W

Km 050 100 200 300

EEE EE EE EEE ! N=17 Beam Trawl Sites EEE ! 70°N EEEE!EEEEEE EE E!EEE!EEE EE EE EEEEEEEEEEE ! !E

RCW 68°N

BSW E E E E ! E E !E ! E E ! AW/ !E 66°N RUSSIA E E ALASKA ! SCC?E ! E E ! !E ACW

EE E ! E 64°N !E Bottom fishes clustered by station and by species Rank of counts within station 25 20 15 10 5 s6 0 s17 Coastal s27 s8 s11 s62 s85 s13 s15 Middle

Stations s23 s20 s25 s106 s18 s58

s107

I S

I I U

S S

S

S S

I

S

S

I

C

I S

I

R I

U s73

A

U U

U

U

C

S

I

P

L U

K

E

T

I I

T I I

T

D

N

A

P S I

OVI B

BUS

A R

S C North

A

D R

R F

A

R

U

A

T I

L

B A

U E C

ATULA E

S

I

C

C O

INGELI

C A

B

M

O I R

IBIL T

_ M GIB ALEARI

N

S

C F

_

N

E

R _

O

E G

B

_ _

U S

U L_

U

_ T

H A

PR V

R

L_POLARIS

L A T_P I_SP

T

_

_

_

P

E _

_ L_P

_

L_MUCOSUS

_

M

P

G G N_

H

L S T_CHALCOGRAM Species

175°E 180° 175°W 170°W 165°W 160°W Station clusters: Km Station clusters: 050 100 200 300 Bottom Fishes EEE EE EE Bottom 20 m: ! EEE Species Abundance EEEEEEE temperature and EEEE!EE EE salinity E!EEE!EEE EE EE EEEEEEEEEEE ! !E

RCW

BSW E E E E ! E E !E ! E E ! AW/ !E RUSSIA E E ALASKA ! SCC?E ! E E ! !E ACW

EE E ! E !E 13 species of fishes in ichthyoplankton and on the bottom Ichthyoplankton Beam Trawl Family Scientific Name Common Name Eggs Larvae Juv. Juv/Adult

Cods Boreogadus saida Arctic X X X

Eleginus gracilis Saffron cod X X

Theragra chalcogramma Walleye X X

Sculpins Gymnocanthus tricuspis Arctic staghorn sculpin X X X

Poachers Ulcinia olriki Arctic alligatorfish X X

Snailfishes Liparis spp. Unidentified snailfishes X X

Liparis fabrici i Gelatinous seasnail X X

Liparis gibbus Variegated snailfish X X

Liparis tunicatus Kelp snailfish X X

Pricklebacks Lumpenus fabricii Slender eelblenny X X Stichaeus punctatus Arctic shanny X X

Flatfishes Hippoglossoides robustus Bering flounder X X X Limanda aspera Yellowfin sole X X 6 taxa of fish larvae not captured by beam trawl

Common Family Scientific Name Common Name

Smelts Osmeridae Unidentified smelts

Poachers monopterygius Alligatorfish

Pricklebacks Leptoclinus maculatus Daubed shanny

Sand lances Ammodytes hexapterus Pacific sandlance

Flatfishes Hippoglossus stenolepis Pacific halibut

Pleuronectes glacialis Arctic flounder 19 taxa caught by bottom trawl but not by Bongo plankton net Sculpins (n=7

Artediellus scaber Myoxocephalus scorpius

Enophrys diceraus Nautichthys pribilovius

Icelus spatula Triglops pingelii

Myoxocephalus polyacanthocephalus

Eelpouts (n=7)

Gymnelus bilabrus Lycodes palearis

Gymnelus hemifasciatus Lycodes polaris

Gymnelus viridis Lycodes raridens

Lycodes mucosus

Poachers (n=2)

Pallasina barbata Podothecus veternus Pricklebacks (n=1) Anisarchus medius Greenlings (n=1) Hexagrammos steller i Gunnels (n=1) Pholis fasciata Abundant ichthyoplankton species – 3 species constitute 43% of the ichthyoplankton catch. Each other taxon composes <5% of the total ichthyoplankton catch Limanda aspera 8.8% Yellowfin sole Hippoglossoides robustus 10.8% Bering flounder Boreogadus saida 23.0% Arctic cod Juvenile/Adult groundfishes caught by beam trawl – 9 species constitute 91% of the catch by number

Boreogadus saida Arctic cod 2.9%

Stichaeus punctatus Arctic shanny 4.8%

Eleginus gracilis Saffron cod 5.3%

Hippoglossoides robustus Bering flounder 5.6%

Lumpenus fabricii Slender eelblenny 6.7%

Anisarchus medius Stout eelblenny 7.8%

Artediellus scaber Hamecon 9.6%

Myoxocephalus scorpius Shorthorn sculpin 14.5%

Gymnocanthus tricuspis Arctic staghorn sculpin 33.8% 175°E 180° 175°W 170°W 165°W 160°W

Km Gymnocanthus tricuspis 050 100 200 300 E Gymnocanthus tricuspis 70°N E Larvae/10m2

Arctic staghorn sculpin E 3.3 E 4.3 E E (Most abundant – Mecklenburg et al.) E 0 catch

68°N

E E E

E E

66°N RUSSIA E E ALASKA

E

E

E E photo by Catherine Mecklenburg 64°N E

175°E 180° 175°W 170°W 165°W 160°W 175°E 180° 175°W 170°W 165°W 160°W

Km Km 050 100 200 300 050 100 200 300 E Gymnocanthus tricuspis 29-50 mm E Gymnocanthus tricuspis 52-168 mm E 70°N Beam trawl fish/1000m3 70°N E Beam trawl fish/1000m3 4 - 9.2 E 4 - 11 E E E 10 - 38 17 - 22 E E E 177 - 301 E 72 - 159

E 0 catch beam trawl E 0 catch beam trawl

68°N 68°N

E E E E E E

E E E E E 66°N RUSSIA ALASKA 66°N RUSSIA E ALASKA E E

64°N E 64°N E Hippoglossoides175°E 180° 175°W robustus170°W 165°W Bering160°W flounder175°E (Third180° most175°W abundant)170°W 165°W 160°W Km Km 010020030050 010020030050 E E Hippoglossoides robustus Hippoglossoides robustus E E 70°N Eggs/10m2 70°N Larvae/10m2 2 - 4 E E 2 - 20 E E 5 - 6 43 - 54 E E E E E 0 catch plankton 7.4

E 0 catch plankton

68°N 68°N

E E E E E E

E E E E

E E 66°N RUSSIA E ALASKA 66°N RUSSIA E ALASKA

E E

E E

E E E E 64°N E 64°N E

175°E 180° 175°W 170°W 165°W 160°W 175°E 180° 175°W 170°W 165°W 160°W

Km Km 010020030050 010020030050 E Hippoglossoides robustus 49-70 mm E Hippoglossoides robustus 80-168 mm 70°N E Beam trawl fish/1000m3 70°N E Beam trawl fish/1000m3 2 - 2.4 5 - 21 E E E E 3.4 23 - 25 E E E 16.2 E 50 - 56

E 0 catch beam trawl E 0 catch beam trawl

68°N 68°N

E E nburg E E E E e

E E E E 66°N RUSSIA E ALASKA66°N RUSSIA E ALASKA Meckl E E W. . o by C

64°N E 64°N E phot 175°E 180° 175°W 170°W 165°W 160°W

Km Boreogadus saida 050 100 200 300 E Boreogadus saida 70°N E Larvae/10m2 Arctic cod 1-5 E E 9-36 E E (Fourth most 21 mm 63-168 E 0 catch abundant) 68°N

E E E 174 mm E E

E 66°N RUSSIA E ALASKA

E

E

E E

E photos by Catherine Mecklenburg 64°N

175°E 180° 175°W 170°W 165°W 160°W 175°E 180° 175°W 170°W 165°W 160°W Km Km 050 100 200 300 050 100 200 300 E Boreogadus saida 47-140 mm E Boreogadus saida 151-191 mm E 70°N Beam trawl fish/1000m3 70°N E Beam trawl fish/1000m3 3 - 5 E 3 - 6 E E E 7 - 16 9.4 E E E 36 - 94 E 16.3

E 0 catch beam trawl E 0 catch beam trawl

68°N 68°N

E E E E E E

E E E E 66°N RUSSIA E ALASKA 66°N RUSSIA E ALASKA E E

64°N E 64°N E 175°E 180° 175°W 170°W 165°W 160°W

Km 010020030050 E Liparis gibbus 70°N E Larvae/10m2 1 - 3.6 E E 4.3 - 8 Liparis gibbus E E 11 - 13

E 0 catch plankton

Variegated snailfish 68°N

32 mm E E E

E E

66°N RUSSIA E E ALASKA

E

E

175°E 180° 175°W 170°W 165°W 160°W E E Km 64°N E 010020030050 E Liparis gibbus E 70°N Beam trawl fish/1000m3 175°W 165°W E E 1.9

E 5 E E 0 catch beam trawl

68°N

E E E

E E 66°N RUSSIA E ALASKA 139 mm E

photos by C.W. Mecklenburg

64°N E

175°W 165°W TraceTrace elementselements analysisanalysis -- otolithsotoliths Right sagittal of an adult starry rockfish (Sebastes constellatus) Trace elements analysis of can detect differences between locations as little as 10 km apart

Core: ~ hatch date

Edge: last 2 weeks before capture Bering flounder – trace elements of otolith core

5e-4

station 13 station 18 4e-4 station 23 core station 25 station 15 3e-4 station 58 station 20

2e-4 Ba/Ca

1e-4

0

0.00 0.02 0.04 0.06 0.08 Sr/Ca Bering flounder – trace elements of otolith core N=148 cores across several sites; 80% of these fish appear to originate from the same spawning stock 5e-4

station 13 station 18 4e-4 station 23 core station 25 station 15 3e-4 station 58 station 20

2e-4 Ba/Ca

1e-4

0

0.00 0.02 0.04 0.06 0.08 Sr/Ca Bering flounder – trace elements of otolith edge

1.4e-4 edge station 13 1.2e-4 station 18 station 23 1.0e-4 station 25 station 15 station 58 8.0e-5 station 20

6.0e-5 Ba/Ca

4.0e-5

2.0e-5

0.0

0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.016 0.018 Sr/Ca Bering flounder – trace elements of otolith Stn 13: similar values for core and edge; these fish are located very near where they hatched N=16 fish (80-120 mm)

2e-4

station 13 core edge 1e-4

1e-4 ca

5e-5

0

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 Bering flounder – trace elements of otolith Stn 58: different values for core and edge; these fish have migrated from where they hatched N=8 core samples, 6 edge samples (73-230 mm) 7e-5

6e-5 station 58 core edge 5e-5

4e-5

3e-5

2e-5

1e-5

0 0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.016 Bering flounder – trace elements of otolith Stn 25: n=16 fish with similar core and edge (40-260 mm) n=4 fish hatched a distance away from capture site (94-116 mm) 5e-4 station 25 4e-4

Core 3e-4 Edge

2e-4

1e-4

0

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.0 RemainingRemaining ObjectivesObjectives forfor FishFish •• StatisticallyStatistically quantifyquantify thethe physicalphysical characteristicscharacteristics thatthat definedefine ichthyoplanktonichthyoplankton andand juvenilejuvenile groundfishgroundfish communitiescommunities andand habitathabitat •• CompareCompare ichthyoplankton,ichthyoplankton, juvenilejuvenile fishfish andand adultadult fishfish distributionsdistributions andand communitiescommunities amongamong oceanographicoceanographic domainsdomains •• CompleteComplete otolithotolith analysisanalysis andand incorporateincorporate RemainingRemaining InterdisciplinaryInterdisciplinary ObjectivesObjectives

•• IntegrateIntegrate findingsfindings fromfrom thisthis studystudy withwith thosethose ofof physicalphysical oceanographersoceanographers •• CommunityCommunity analysisanalysis –– bottombottom fishesfishes andand epibenthicepibenthic invertebratesinvertebrates •• CommunityCommunity analysisanalysis –– ichthyoplanktonichthyoplankton andand zooplanktonzooplankton DetectingDetecting climateclimate variabilityvariability andand changechange •• QuantifyingQuantifying changeschanges inin thethe ArcticArctic isis difficultdifficult withoutwithout baselinebaseline datadata –– (1)(1) therethere isis nono singlesingle clearclear causecause ofof ecosystemecosystem changechange –– (2)(2) thethe effectseffects willwill notnot bebe abruptabrupt –– (3)(3) thethe areaarea overover whichwhich changechange occursoccurs isis massivemassive •• DocumentingDocumenting presentpresent conditionsconditions inin ChukchiChukchi SeaSea fromfrom physicalphysical throughthrough higherhigher trophictrophic levelslevels isis essentialessential Photo by Bodil Bluhm

Photo by Terry Whitledge