PGP Desktop Security for Windows 95, Windows 98, and Windows NT
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Encryption Procedure
Encrypting Software for Transmission to NIST 1. Scope NIST requires that all software submitted by the participants be signed and encrypted. Signing is done with the participant’s private key, and encrypting is done with the NIST project public key, which is published at http://www.nist.gov/itl/iad/ig/encrypt.cfm. NIST will validate all submitted materials using the participant’s public key, and the authenticity of that key will be verified using the key fingerprint. This fingerprint must be submitted to NIST as part of the signed participant agreement. By encrypting the submissions, we ensure privacy; by signing the submission, we ensure authenticity (the software actually belongs to the submitter). NIST will not take ownership of any submissions that are not signed and encrypted. All cryptographic operations (signing and encrypting) shall be performed with software that implements the OpenPGP standard, as described in Internet RFC 4880. The freely available Gnu Privacy Guard (GPG) software, available at www.gnupg.org, is one such implementation. 2. Submission of software to NIST NIST requires that all software submitted by the participants be signed and encrypted. Two keys pairs are needed: • Signing is done with the software provider's private key, and • Encryption is done with the NIST project public key, which is available at http://www.nist.gov/itl/iad/ig/encrypt.cfm 2.1. Project Specific Parameters The values for the project specific parameters (ProjectName, ProjectPublicKey, and ProjectEmail) mentioned in this document are found at http://www.nist.gov/itl/iad/ig/encrypt.cfm 1 2.2. Creating participant cryptographic key pair The steps below show how to create a public/private key pair and fingerprint using the GPG software. -
About This Particular Macintosh 9.09
Cover 9.09 / September 2003 ATPM Volume 9, Number 9 About This Particular Macintosh: About the personal computing experience™ ATPM 9.09 / September 2003 1 Cover Cover Art Emeritus “Return of Clarus” Copyright © 2003 by Darren Woodcock1 RD Novo We need new cover art each month. Write to us!2 Robert Madill Belinda Wagner Editorial Staff Edward Goss Publisher/Editor-in-Chief Michael Tsai Tom Iov ino Managing Editor Christopher Turner Daniel Chvatik Associate Editor/Reviews Paul Fatula Grant Osborne Copy Editors Raena Armitage Contributors Dan Boland Johann Campbell Eric Blair Ellyn Ritterskamp Ron Gibbs Brooke Smith Matthew Glidden Vacant Ted G or ans on Web E ditor Lee Bennett Matt Johnson Publicity Manager Vacant Andrew Kator Webmaster Michael Tsai Chris Lawson Beta Testers The Staff Robert Paul Leitao Gregory Maddux Contributing Editors Ellyn Ritterskamp Evan Trent How To Matthew Glidden Michael Tsai Ted Goranson Mary E. Tyler Ken Gruberman Angus Wong Andrew Kator Macintosh users like you Chris Lawson David Ozab Subscriptions Sylvester Roque Sign up for free subscriptions using the Charles Ross Web form3 or by e-mail4. Mary E. Tyler Vacant Where to Find ATPM Interviews Vacant Online and downloadable issues are Opinion Matt Coates available at http://www.atpm.com. Ellyn Ritterskamp Mike Shields Chinese translations are available Vacant at http://www.maczin.com. Reviews Eric Blair Kirk McElhearn ATPM is a product of ATPM, Inc. Gregory Tetrault © 1995–2003, All Rights Reserved Vacant ISSN: 1093-2909 Technic a l Evan Trent Welcome Robert Paul Leitao Production Tools Artwork & Design Acrobat Apache Graphics Director Vacant AppleScript Layout and Design Michael Tsai BBEdit Cartoonist Matt Johnson CVL Graphic Design Consultant Jamal Ghandour CVS Blue Apple Icon Designs Mark Robinson DropDMG Other Art RD Novo FileMaker Pro FrameMaker+SGML 1. -
Zfone: a New Approach for Securing Voip Communication
Zfone: A New Approach for Securing VoIP Communication Samuel Sotillo [email protected] ICTN 4040 Spring 2006 Abstract This paper reviews some security challenges currently faced by VoIP systems as well as their potential solutions. Particularly, it focuses on Zfone, a vendor-neutral security solution developed by PGP’s creator, Phil Zimmermann. Zfone is based on the Z Real-time Transport Protocol (ZRTP), which is an extension of the Real-time Transport Protocol (RTP). ZRTP offers a very simple and robust approach to providing protection against the most common type of VoIP threats. Basically, the protocol offers a mechanism to guarantee high entropy in a Diffie- Hellman key exchange by using a session key that is computed through the hashing several secrets, including a short authentication string that is read aloud by callers. The common shared secret is calculated and used only for one session at a time. However, the protocol allows for a part of the shared secret to be cached for future sessions. The mechanism provides for protection for man-in-the-middle, call hijack, spoofing, and other common types of attacks. Also, this paper explores the fact that VoIP security is a very complicated issue and that the technology is far from being inherently insecure as many people usually claim. Introduction Voice over IP (VoIP) is transforming the telecommunication industry. It offers multiple opportunities such as lower call fees, convergence of voice and data networks, simplification of deployment, and greater integration with multiple applications that offer enhanced multimedia functionality [1]. However, notwithstanding all these technological and economic opportunities, VoIP also brings up new challenges. -
Pgpfone Pretty Good Privacy Phone Owner’S Manual Version 1.0 Beta 7 -- 8 July 1996
Phil’s Pretty Good Software Presents... PGPfone Pretty Good Privacy Phone Owner’s Manual Version 1.0 beta 7 -- 8 July 1996 Philip R. Zimmermann PGPfone Owner’s Manual PGPfone Owner’s Manual is written by Philip R. Zimmermann, and is (c) Copyright 1995-1996 Pretty Good Privacy Inc. All rights reserved. Pretty Good Privacy™, PGP®, Pretty Good Privacy Phone™, and PGPfone™ are all trademarks of Pretty Good Privacy Inc. Export of this software may be restricted by the U.S. government. PGPfone software is (c) Copyright 1995-1996 Pretty Good Privacy Inc. All rights reserved. Phil’s Pretty Good engineering team: PGPfone for the Apple Macintosh and Windows written mainly by Will Price. Phil Zimmermann: Overall application design, cryptographic and key management protocols, call setup negotiation, and, of course, the manual. Will Price: Overall application design. He persuaded the rest of the team to abandon the original DOS command-line approach and designed a multithreaded event-driven GUI architecture. Also greatly improved call setup protocols. Chris Hall: Did early work on call setup protocols and cryptographic and key management protocols, and did the first port to Windows. Colin Plumb: Cryptographic and key management protocols, call setup negotiation, and the fast multiprecision integer math package. Jeff Sorensen: Speech compression. Will Kinney: Optimization of GSM speech compression code. Kelly MacInnis: Early debugging of the Win95 version. Patrick Juola: Computational linguistic research for biometric word list. -2- PGPfone Owner’s -
Adding Public Key Security to SSH
Adding Public Key Security to SSH A Thesis Submitted to the Faculty in partial fulfillment of the requirements for the degree of Master of Science in Computer Science by Yasir Ali DARTMOUTH COLLEGE Hanover, New Hampshire Feb, 20th, 2003 Examining Committee: ____________________________ Sean Smith (chair) ____________________________ Edward Feustel ____________________________ Christopher Hawblitzel !!!!!!!!!____________________________ !!!!!!!!!Carol Folt !!!!!!!!! Dean of Graduate Studies 1 2 Abstract SSH, the Secure Shell, is a popular software-based approach to network security. It is a protocol that allows user to log into another computer over a network, to execute commands in a remote machine, and to move files from one machine to another. It provides authentication and encrypted communications over unsecured channels. However, SSH protocol has an inherent security flaw. It is vulnerable to the “man-in-the- middle Attack”, when a user establishes his first SSH connection from a particular client to a remote machine. My thesis entails designing, evaluating and prototyping a public key infrastructure which can be used with the SSH2 protocol, in an academic setting, thus eliminating this vulnerability due to the man in the middle attack. The approach presented is different from the one that is based on the deployment of a Certificate Authority. My scheme does not necessarily require third party verification using a Certificate Authority; it is decentralized in nature and is relatively easy to set up. Keywords used: SSH, PKI, digital certificates, Certificate Authority, certification path, LDAP servers, Certificate Revocation List, X509v3 Certificate, OpenSSL, mutual authentication, and tunneled authentication. 3 Acknowledgments I want to thank Professor Sean Smith for his guidance, assistance and unremitting support over the last two years. -
PGP Command Line User Guide
PGP Command Line User Guide Last updated: July 2020 Copyright statement Broadcom, the pulse logo, Connecting everything, and Symantec are among the trademarks of Broadcom. Copyright © 2020 Broadcom. All Rights Reserved. The term “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. For more information, please visit www.broadcom.com. Broadcom reserves the right to make changes without further notice to any products or data herein to improve reliability, function, or design. Information furnished by Broadcom is believed to be accurate and reliable. However, Broadcom does not assume any liability arising out of the application or use of this information, nor the application or use of any product or circuit described herein, neither does it convey any license under its patent rights nor the rights of others. Contents About PGP Command Line 1 Important Concepts 1 Technical Support 2 Installing 5 Install Location 5 Installing on AIX 6 Installing on AIX 6 Changing the Home Directory on AIX 7 Uninstalling on AIX 7 Installing on HP-UX 8 Installing on HP-UX 8 Changing the Home Directory on HP-UX 9 Installing to a Non-Default Directory on HP-UX 9 Uninstalling on HP-UX 9 Installing on macOS 10 Installing on macOS 10 Changing the Home Directory on macOS 10 Uninstalling on macOS 11 Installing on Red Hat Enterprise Linux, SLES, or Fedora Core 11 Installing on Red Hat Enterprise Linux or Fedora Core 11 Changing the Home Directory on Linux or Fedora Core 12 Uninstalling on Linux or Fedora Core 12 Installing on Oracle Solaris 13 Installing on Oracle -
How Secure Is Textsecure?
How Secure is TextSecure? Tilman Frosch∗y, Christian Mainkay, Christoph Badery, Florian Bergsmay,Jorg¨ Schwenky, Thorsten Holzy ∗G DATA Advanced Analytics GmbH firstname.lastname @gdata.de f g yHorst Gortz¨ Institute for IT-Security Ruhr University Bochum firstname.lastname @rub.de f g Abstract—Instant Messaging has gained popularity by users without providing any kind of authentication. Today, many for both private and business communication as low-cost clients implement only client-to-server encryption via TLS, short message replacement on mobile devices. However, until although security mechanisms like Off the Record (OTR) recently, most mobile messaging apps did not protect confi- communication [3] or SCIMP [4] providing end-to-end con- dentiality or integrity of the messages. fidentiality and integrity are available. Press releases about mass surveillance performed by intelli- With the advent of smartphones, low-cost short-message gence services such as NSA and GCHQ motivated many people alternatives that use the data channel to communicate, to use alternative messaging solutions to preserve the security gained popularity. However, in the context of mobile ap- and privacy of their communication on the Internet. Initially plications, the assumption of classical instant messaging, fueled by Facebook’s acquisition of the hugely popular mobile for instance, that both parties are online at the time the messaging app WHATSAPP, alternatives claiming to provide conversation takes place, is no longer necessarily valid. secure communication experienced a significant increase of new Instead, the mobile context requires solutions that allow for users. asynchronous communication, where a party may be offline A messaging app that claims to provide secure instant for a prolonged time. -
Detecting and Preventing Active Attacks Against Autocrypt Release 0.10.0
Detecting and preventing active attacks against Autocrypt Release 0.10.0 NEXTLEAP researchers Jan 09, 2020 Contents 1 Introduction2 1.1 Attack model and terminology............................2 1.2 Problems of current key-verification techniques...................3 1.3 Integrating key verification with general workflows.................3 1.4 Supplementary key consistency through ClaimChains................4 1.5 Detecting inconsistencies through Gossip and DKIM................5 2 Securing communications against network adversaries6 2.1 Setup Contact protocol................................7 2.2 Verified Group protocol................................ 12 2.3 History-verification protocol............................. 17 2.4 Verifying keys through onion-queries......................... 20 3 Key consistency with ClaimChains 23 3.1 High level overview of the ClaimChain design.................... 23 3.2 Use and architecture................................. 24 3.3 Evaluating ClaimChains to guide verification.................... 26 4 Using Autocrypt key gossip to guide key verification 28 4.1 Attack Scenarios................................... 28 4.2 Probability of detecting an attack through out of band verification......... 29 5 Using DKIM signature checks to guide key verification 32 5.1 DKIM Signatures on Autocrypt Headers....................... 32 5.2 Device loss and MITM attacks............................ 33 5.3 Open Questions.................................... 34 1 1 Introduction This document considers how to secure Autocrypt1-capable mail apps against active network at- tackers. Autocrypt aims to achieve convenient end-to-end encryption of e-mail. The Level 1 Autocrypt specification offers users opt-in e-mail encryption, but only considers passive adver- saries. Active network adversaries, who could, for example, tamper with the Autocrypt header during e-mail message transport, are not considered in the Level 1 specification. Yet, such active attackers might undermine the security of Autocrypt. -
Easy Encryption for Email, Photo, and Other Cloud Services John Seunghyun Koh
Easy Encryption for Email, Photo, and Other Cloud Services John Seunghyun Koh Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy under the Executive Committee of the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2021 © 2021 John Seunghyun Koh All Rights Reserved Abstract Easy Encryption for Email, Photo, and Other Cloud Services John Seunghyun Koh Modern users carry mobile devices with them at nearly all times, and this likely has contribut- ed to the rapid growth of private user data—such as emails, photos, and more—stored online in the cloud. Unfortunately, the security of many cloud services for user data is lacking, and the vast amount of user data stored in the cloud is an attractive target for adversaries. Even a single compro- mise of a user’s account yields all its data to attackers. A breach of an unencrypted email account gives the attacker full access to years, even decades, of emails. Ideally, users would encrypt their data to prevent this. However, encrypting data at rest has long been considered too difficult for users, even technical ones, mainly due to the confusing nature of managing cryptographic keys. My thesis is that strong security can be made easy to use through client-side encryption using self-generated per-device cryptographic keys, such that user data in cloud services is well pro- tected, encryption is transparent and largely unnoticeable to users even on multiple devices, and encryption can be used with existing services without any server-side modifications. This dis- sertation introduces a new paradigm for usable cryptographic key management, Per-Device Keys (PDK), and explores how self-generated keys unique to every device can enable new client-side encryption schemes that are compatible with existing online services yet are transparent to users. -
Filename Extensions
Filename Extensions Generated 22 February 1999 from Filex database with 3240 items. ! # $ & ) 0 1 2 3 4 6 7 8 9 @ S Z _ a b c d e f g h i j k l m n o p q r s t u v w x y z ~ • ! .!!! Usually README file # .### Compressed volume file (DoubleSpace) .### Temp file (QTIC) .#24 Printer data file for 24 pin matrix printer (LocoScript) .#gf Font file (MetaFont) .#ib Printer data file (LocoScript) .#sc Printer data file (LocoScript) .#st Standard mode printer definitions (LocoScript) $ .$$$ Temporary file .$$f Database (OS/2) .$$p Notes (OS/2) .$$s Spreadsheet (OS/2) .$00 Pipe file (DOS) .$1 ZX Spectrum file in HOBETA format .$d$ Data (OS/2 Planner) .$db Temporary file (dBASE IV) .$ed Editor temporary file (MS C) .$ln TLink response file (Borland C++) .$o1 Pipe file (DOS) .$vm Virtual manager temporary file (Windows 3.x) & .&&& Temporary file ) .)2( LHA archiver temporary file (LHA) 0 .0 Compressed harddisk data (DoubleSpace) .000 Common filename extension (GEOS) .000 Compressed harddisk data (DoubleSpace) .001 Fax (Hayes JT FAX) (many) .075 75x75 dpi display font (Ventura Publisher) .085 85x85 dpi display font (Ventura Publisher) .091 91x91 dpi display font (Ventura Publisher) .096 96x96 dpi display font (Ventura Publisher) .0b Printer font with lineDraw extended character set (PageMaker) 1 .1 Unformatted manual page (Roff/nroff/troff/groff) .10x Bitmap graphics (Gemini 10x printer graphics file) .123 Data (Lotus123 97) .12m Smartmaster file (Lotus123 97) .15u Printer font with PI font set (PageMaker) .1st Usually README.1ST text 2 .24b Bitmap -
PGP® Desktop for Windows User's Guide
October 2003 PGP® Desktop for Windows User’s Guide Version Information PGP Desktop for Windows User’s Guide, version 8.0.3. Released October, 2003. Copyright Information Copyright © 1991–2003 by PGP Corporation. All Rights Reserved. No part of this document can be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, with- out the express written permission of PGP Corporation. Trademark Information PGP and Pretty Good Privacy are registered trademarks, and the PGP logo is a trademark, of PGP Corpo- ration in the U.S. and other countries. IDEA is a trademark of Ascom Tech AG. All other registered and unregistered trademarks in this document are the sole property of their respective owners. Licensing and Patent Information The IDEA cryptographic cipher described in U.S. patent number 5,214,703 is licensed from Ascom Tech AG. The CAST encryption algorithm is licensed from Northern Telecom, Ltd. PGP Corporation may have patents and/or pending patent applications covering subject matter in this software or its documenta- tion; the furnishing of this software or documentation does not give you any license to these patents. Acknowledgments The compression code in PGP Desktop is by Mark Adler and Jean-Loup Gailly, used with permission from the free Info-ZIP implementation. Export Information Export of this software and documentation may be subject to compliance with the rules and regulations promulgated from time to time by the Bureau of Export Administration, United States Department of Commerce, which restrict the export and re-export of certain products and technical data. -
DLCC Software Catalog
Daniel's Legacy Computer Collections Software Catalog Category Platform Software Category Title Author Year Media Commercial Apple II Integrated Suite Claris AppleWorks 2.0 Claris Corporation and Apple Computer, Inc. 1987 800K Commercial Apple II Operating System Apple IIGS System 1.0.2 --> 1.1.1 Update Apple Computer, Inc. 1984 400K Commercial Apple II Operating System Apple IIGS System 1.1 Apple Computer, Inc. 1986 800K Commercial Apple II Operating System Apple IIGS System 2.0 Apple Computer, Inc. 1987 800K Commercial Apple II Operating System Apple IIGS System 3.1 Apple Computer, Inc. 1987 800K Commercial Apple II Operating System Apple IIGS System 3.2 Apple Computer, Inc. 1988 800K Commercial Apple II Operating System Apple IIGS System 4.0 Apple Computer, Inc. 1988 800K Commercial Apple II Operating System Apple IIGS System 5.0 Apple Computer, Inc. 1989 800K Commercial Apple II Operating System Apple IIGS System 5.0.2 Apple Computer, Inc. 1989 800K Commercial Apple II Reference: Programming ProDOS Basic Programming Examples Apple Computer, Inc. 1983 800K Commercial Apple II Utility: Printer ImageWriter Toolkit 1.5 Apple Computer, Inc. 1984 400K Commercial Apple II Utility: User ProDOS User's Disk Apple Computer, Inc. 1983 800K Total Apple II Titles: 12 Commercial Apple Lisa Emulator MacWorks 1.00 Apple Computer, Inc. 1984 400K Commercial Apple Lisa Office Suite Lisa 7/7 3.0 Apple Computer, Inc. 1984 400K Total Apple Lisa Titles: 2 Commercial Apple Mac OS 0-9 Audio Audioshop 1.03 Opcode Systems, Inc. 1992 800K Commercial Apple Mac OS 0-9 Audio Audioshop 2.0 Opcode Systems, Inc.