Eulimacrostoma Gen. Nov., a New Genus of Eulimidae
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Caenogastropoda Eulimidae) from the Western Iberian Peninsula
Biodiversity Journal, 2021, 12 (2): 277–282, https://doi.org/10.31396/Biodiv.Jour.2021.12.2.277.282 https://zoobank.org:pub:AA55BDF3-1E5E-469D-84A8-5EC6A013150F A new minute eulimid (Caenogastropoda Eulimidae) from the western Iberian Peninsula Serge Gofas1 & Luigi Romani2* 1Departamento de Biología Animal, Universidad de Málaga, Campus de Teatinos s/n, 29071 Málaga, Spain,; e-mail: [email protected] 2Via delle ville 79, 55012 Capannori (Lucca), Italy; e-mail: [email protected] *Corresponding author ABSTRACT An enigmatic small-sized gastropod is recorded on few shells originating from the western Iberian Peninsula. It is assigned to the family Eulimidae relying on shell characters, and com- pared to species of several genera which share some morphological features with it. It is de- scribed as new and provisionally included in Chileutomia Tate et Cossmann, 1898, although with reservation, as we refrain to establish a new genus without anatomical and molecular data which can clarify the phylogenetic relationships of the new species. KEY WORDS Gastropoda; new species; NW Atlantic Ocean. Received 06.01.2020; accepted 28.02.2021; published online 12.04.2021 INTRODUCTION tematics and intra-familial relationships is at its very beginning, for instance the phylogenetic posi- The Eulimidae Philippi, 1853 are a species-rich tion of the Eulimidae within the Caenogastropoda taxon of marine snails, mostly parasitic of Echino- was assessed by molecular means only recently dermata (Warén, 1984). The family comprises (Takano & Kano, 2014), leading to consider them about one thousand recent valid species recognized as sister-group to the Vanikoridae (Bouchet et al., worldwide (MolluscaBase, 2021a), but a more re- 2017). -
Has Its Charm
VOL. XXXV NO.1 JANUARY. 1987 NEW SERIES 325 TREE SNAILERS! IT'S TIME TO UNITE Has Its Charm ByRON KNIGHT LORENGAU, MANUS ISLAND, PAPUA NEW By TWILA BRATCHER GUINEA - We amateur specialists in terrestrial Unspoiled Rowley Shoals lies in the easternmost molluscs are subject to some special handicaps. Not Indian Ocean, about 180 miles west of Broome, only are we scattered around the world and fre- Western Australia. The occasionalcharter boats that visit the area have been doing so only recently, and quently isolated in the much larger body of marine foreign fishing fleets are not permitted there. shell enthusiasts, but we suffer from a seeming shor- The only important scientific work on Rowley tage of literature. Many of us have nowhere to turn Shoalswas done by groups from the Western Aus- tralian Museum in Perth. for advice, assistance and comparative material. I was a participant in a recent privately organized Professionals interested in the pulmonates have trip to the Rowley Shoals. Lynn Funkhouser, the easier access to literature, of course, but they face group leader, is an accomplished professional a more subtle handicap. That is their wide separa- underwater photographer and president of the tion from the enthusiasts in the field who tradi- Chicago Shell Club. Others were JeanetteRidley, underwater photographer from Seattle; Philip and tionally supply the scientists with the specimens, Heidrun Faulconer, underwaterphotographers from data and puzzlers that are the feed stock of the San Diego, John and Mary Poble, underwater technical literature. All of us - scientists and photographersfrom Nebraska, my sister Billee Dil- amateurs, professionals and beginners - are the worth Brown, a docent at Scripps Aquarium in La McNally's Trophies Photo: Schoenberg Jolla, and myself. -
Mollusca: Gastropoda), Con Caracteres Singulares, Recolectadas En Las Cuevas Submarinas De Cuba
Rev. Acad. Canar. Cienc, XXII (Num. 3), 189-198 (2010) (publicado en octubre de 201 1) NUEVAS ESPECIES DE MOLUSCOS GASTEROPODOS (MOLLUSCA: GASTROPODA), CON CARACTERES SINGULARES, RECOLECTADAS EN LAS CUEVAS SUBMARINAS DE CUBA J. Espinosa 1 & J. Ortea2 1 a Institute) de Oceanologia, Avda. l n° 18406, E. 184 y 186, Playa, La Habana, Cuba 2 Departamento BOS, Universidad de Oviedo, Espafia RESUMEN Se describen un genero y cuatro especies nuevas de gasteropodos marinos, con con- chas muy distintivas, recolectados en cuevas submarinas de Santa Lucia y Guanahacabibes, Cuba. Diodora seme, especie nueva, caracterizada por su patron de coloracion y por su ori- ficio, muy por debajo del apice y en forma de cerradura antigua. Milicheilea hidalgogatoae genero y especie nuevos, singularizada por su apofisis interna, unida solamente a la porcion central de la base de la concha y proyectada mas de cuatro veces la longitud de esta. Murexiella dalli, especie nueva, caracterizada por su protoconcha con pocas vueltas, por su escultura y por presentar un largo canal sifonal, marcadamente inclinado hacia la parte dor- sal de la concha. Chrysallida thetisae, especie nueva, que se distingue por su protoconcha heterostrofica, parcialmente sumergida en la espira, por su escultura y por la columela con dos pliegues en la pared parieto-columelar. Palabras claves: Mollusca, Gastropoda, fauna cavernicola, genero nuevo, especies nuevas, Cuba. ABSTRACT One new genus and four new species of marine gastropods with very distinctive shells are described. They were collected in submarine caves of Santa Lucia and Guanahacabibes, Cuba. Diodora serae, new species, characterized by its color pattern and by its hole, well below the apex and keyhole-shaped. -
^% So STATUS of EULIMA SUBCARINATA ORBIGNY, 1842 ANDE CAROLIIDALL, 1889(GASTROPODA: MELANELLIDAE)1
Vol. 92 (2) April 27, 1978 The Nautilus 79 ^% S o % ‘ 4 . w * 4 ’S STATUS OF EULIMA SUBCARINATA ORBIGNY, 1842 AN DE CAROLIIDALL, 1889(GASTROPODA: MELANELLIDAE)1 William G. Lyons Florida Department of Natural Resources Marine Research Laboratory St. Petersburg, Florida 33701 ABSTRACT Eulima subcarinata Orbigny, 184.2, is redescribed and transferred to the genus Eulimostraca Bartsch, 1917. The species occurs from the Caribbean and Yucatan to intermediate-depth shelf waters off Florida and North Carolina. Confusion regard ing the species’ identity is discussed. Eulima carolii Dali, 1889 (formerly affinis C. B. Adams, 1850, non Philippi, 1844) is considered nomen a dubium. Orbigny (1842) introduced the name Eulima of typical, unornamented melanellid form but subcarinata for a small melanellid from with a peripheral line suggesting a low carina on Guadeloupe, West Indies. Among the characters the last whorl. included in his Latin description (1845) were “an- Mörch (1875) reported the species from St. fractibus octonis. linea fulva omatis, ultimo Thomas [Virgin Islands]; and Dali (1889a) ex subcarinato”, expanded in French (1853) as “le tended the range to the southeastern United dernier [tour] un peu caréné en avant. States.. No subsequent records have appeared, Couleur. Blanc uniforme avec une légère bande although the name has been continuously used in jaunâtre ou fauve sur la partie caréneé ancompilation lists of western Atlantic marine térieure.” His illustrations (1842, pi. XVI, Figs. mollusks. 4-6) were somewhat schematic, depicting a shell I recently examined the holotype of Eulima 1 Contribution no. 316, Florida Department of Natural subcarinata, presently in the British Museum of Resources, Marine Research Laboratory. -
Laboratory Reference Module Summary Report LR22
Laboratory Reference Module Summary Report Benthic Invertebrate Component - 2017/18 LR22 26 March 2018 Author: Tim Worsfold Reviewer: David Hall, NMBAQCS Project Manager Approved by: Myles O'Reilly, Contract Manager, SEPA Contact: [email protected] MODULE / EXERCISE DETAILS Module: Laboratory Reference (LR) Exercises: LR22 Data/Sample Request Circulated: 10th July 2017 Sample Submission Deadline: 31st August 2017 Number of Subscribing Laboratories: 7 Number of LR Received: 4 Contents Table 1. Summary of mis-identified taxa in the Laboratory Reference module (LR22) (erroneous identifications in brackets). Table 2. Summary of identification policy differences in the Laboratory Reference Module (LR22) (original identifications in brackets). Appendix. LR22 individual summary reports for participating laboratories. Table 1. Summary of mis-identified taxa in the Laboratory Reference Module (LR22) (erroneous identifications in brackets). Taxonomic Major Taxonomic Group LabCode Edits Polychaeta Oligochaeta Crustacea Mollusca Other Spio symphyta (Spio filicornis ) - Leucothoe procera (Leucothoe ?richardii ) - - Scolelepis bonnieri (Scolelepis squamata ) - - - - BI_2402 5 Laonice (Laonice sarsi ) - - - - Dipolydora (Dipolydora flava ) - - - - Goniada emerita (Goniadella bobrezkii ) - Nebalia reboredae (Nebalia bipes ) - - Polydora sp. A (Polydora cornuta ) - Diastylis rathkei (Diastylis cornuta ) - - BI_2403 7 Syllides? (Anoplosyllis edentula ) - Abludomelita obtusata (Tryphosa nana ) - in mixture - - Spirorbinae (Ditrupa arietina ) - - - - -
Tampa Bay Benthic Monitoring Program: Status of Middle Tampa Bay: 1993-1998
Tampa Bay Benthic Monitoring Program: Status of Middle Tampa Bay: 1993-1998 Stephen A. Grabe Environmental Supervisor David J. Karlen Environmental Scientist II Christina M. Holden Environmental Scientist I Barbara Goetting Environmental Specialist I Thomas Dix Environmental Scientist II MARCH 2003 1 Environmental Protection Commission of Hillsborough County Richard Garrity, Ph.D. Executive Director Gerold Morrison, Ph.D. Director, Environmental Resources Management Division 2 INTRODUCTION The Environmental Protection Commission of Hillsborough County (EPCHC) has been collecting samples in Middle Tampa Bay 1993 as part of the bay-wide benthic monitoring program developed to (Tampa Bay National Estuary Program 1996). The original objectives of this program were to discern the ―health‖—or ―status‖-- of the bay’s sediments by developing a Benthic Index for Tampa Bay as well as evaluating sediment quality by means of Sediment Quality Assessment Guidelines (SQAGs). The Tampa Bay Estuary Program provided partial support for this monitoring. This report summarizes data collected during 1993-1998 from the Middle Tampa Bay segment of Tampa Bay. 3 METHODS Field Collection and Laboratory Procedures: A total of 127 stations (20 to 24 per year) were sampled during late summer/early fall ―Index Period‖ 1993-1998 (Appendix A). Sample locations were randomly selected from computer- generated coordinates. Benthic samples were collected using a Young grab sampler following the field protocols outlined in Courtney et al. (1993). Laboratory procedures followed the protocols set forth in Courtney et al. (1995). Data Analysis: Species richness, Shannon-Wiener diversity, and Evenness were calculated using PISCES Conservation Ltd.’s (2001) ―Species Diversity and Richness II‖ software. -
Gastropoda, Acteonidae) and Remarks on the Other Mediterranean Species of the Family Acteonidae D’Orbigny, 1835
BASTERIA, 60: 183-193, 1996 Central Tyrrhenian sea Mollusca: XI. of Callostracon Description tyrrhenicum sp. nov. (Gastropoda, Acteonidae) and remarks on the other Mediterranean species of the family Acteonidae d’Orbigny, 1835 Carlo Smriglio Via di Valle Aurelia 134, 1-00167 Rome, Italy & Paolo Mariottini Dipartimento di Biologia, Terza Universita degli Studi di Roma, Via Ostiense 173, 1-00154 Rome, Italy A new acteonid species, collected in the Central Tyrrhenian Sea, is here described. It is placed in Callostracon and named C. Hamlin, 1884, tyrrhenicum. The description is based on shell morpho- logyonly. Remarks on the four bathyal and the three infralittoral species ofthe familyActeonidae known from the Mediterranean Sea, are also featured. Key-words: Gastropoda, Opisthobranchia, Acteonidae, Callostracon, taxonomy, bathyal fauna, Central Tyrrhenian Sea, Italy. INTRODUCTION In the framework of carried an investigation out over the past decade, we continue to characterize the bathyal faunal assemblages from the Central Tyrrhenian Sea, off the Latial coast (Italy) (Smriglio et al., 1987, 1990, 1992, 1993). In particular, we are interested in the molluscan fauna occurring in the deep-sea coral (biocoenose des and des coraux blancs, CB) muddy-bathyal (biocoenose vases bathyales, VB) commu- nities & of this In this we describe of (Peres Picard, 1964) area. paper a new species acteonid, Callostracon tyrrhenicum, from material dredged in a deep-sea coral bank off the coast. Latial Among the molluscan fauna associated with C. tyrrhenicum, we have iden- tified four which bathyal acteonids, we think worth reporting: Acteon monterosatoi Crenilabium Dautzenberg, 1889, exile (Jeffreys, 1870, ex Forbes ms.), Japonacteon pusillus and Liocarenus (McGillavray, 1843), globulinus (Forbes, 1844). -
The Limpet Form in Gastropods: Evolution, Distribution, and Implications for the Comparative Study of History
UC Davis UC Davis Previously Published Works Title The limpet form in gastropods: Evolution, distribution, and implications for the comparative study of history Permalink https://escholarship.org/uc/item/8p93f8z8 Journal Biological Journal of the Linnean Society, 120(1) ISSN 0024-4066 Author Vermeij, GJ Publication Date 2017 DOI 10.1111/bij.12883 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Biological Journal of the Linnean Society, 2016, , – . With 1 figure. Biological Journal of the Linnean Society, 2017, 120 , 22–37. With 1 figures 2 G. J. VERMEIJ A B The limpet form in gastropods: evolution, distribution, and implications for the comparative study of history GEERAT J. VERMEIJ* Department of Earth and Planetary Science, University of California, Davis, Davis, CA,USA C D Received 19 April 2015; revised 30 June 2016; accepted for publication 30 June 2016 The limpet form – a cap-shaped or slipper-shaped univalved shell – convergently evolved in many gastropod lineages, but questions remain about when, how often, and under which circumstances it originated. Except for some predation-resistant limpets in shallow-water marine environments, limpets are not well adapted to intense competition and predation, leading to the prediction that they originated in refugial habitats where exposure to predators and competitors is low. A survey of fossil and living limpets indicates that the limpet form evolved independently in at least 54 lineages, with particularly frequent origins in early-diverging gastropod clades, as well as in Neritimorpha and Heterobranchia. There are at least 14 origins in freshwater and 10 in the deep sea, E F with known times ranging from the Cambrian to the Neogene. -
Gastropoda: Caenogastropoda: Eulimidae) from Japan, with a Revised Diagnosis of the Genus
VENUS 78 (3–4): 71–85, 2020 ©The Malacological Society of Japan DOI: http://doi.org/10.18941/venus.78.3-4_71Three New Species of Hemiliostraca September 25, 202071 Three New Species of Hemiliostraca and a Redescription of H. conspurcata (Gastropoda: Caenogastropoda: Eulimidae) from Japan, with a Revised Diagnosis of the Genus Haruna Matsuda1*, Daisuke Uyeno2 and Kazuya Nagasawa3 1Center for Faculty-wide General Education, Shikoku University, 123-1, Ebisuno, Furukawa, Ojin-cho, Tokushima-shi, Tokushima 771-1192, Japan 2Graduate School of Science and Engineering, Kagoshima University, 1-21-35, Korimoto, Kagoshima 890-0065, Japan 3Aquaparasitology Laboratory, 365-61 Kusanagi, Shizuoka 424-0886, Japan Abstract: Three new species of the eulimid gastropod genus Hemiliostraca Pilsbry, 1917, i.e., H. capreolus n. sp., H. tenuis n. sp., and H. maculata n. sp., are described and H. conspurcata (A. Adams, 1863) is redescribed based on newly obtained material from Japan. The diagnosis of the genus is also revised. Hemiliostraca capreolus n. sp. was previously misidentied as H. samoensis in museum collections and in literature. This new species was collected from Okinawa-jima Island and Amami-Oshima Island, southern Japan, and can be distinguished from H. samoensis by its distinct color patterns and markings. A recently collected specimen from an unidentied species of ophiuroid from Wakayama Prefecture, central Japan, is herein conrmed to be identiable with H. conspurcata, which has not been recorded since its originally description from central Japan in 1863. Hemiliostraca tenuis n. sp. was collected from an unidentied species of sponge and the ophiuroid Ophiarachnella septemspinosa from Kume-jima Island, southern Japan. -
An Annotated Checklist of the Marine Macroinvertebrates of Alaska David T
NOAA Professional Paper NMFS 19 An annotated checklist of the marine macroinvertebrates of Alaska David T. Drumm • Katherine P. Maslenikov Robert Van Syoc • James W. Orr • Robert R. Lauth Duane E. Stevenson • Theodore W. Pietsch November 2016 U.S. Department of Commerce NOAA Professional Penny Pritzker Secretary of Commerce National Oceanic Papers NMFS and Atmospheric Administration Kathryn D. Sullivan Scientific Editor* Administrator Richard Langton National Marine National Marine Fisheries Service Fisheries Service Northeast Fisheries Science Center Maine Field Station Eileen Sobeck 17 Godfrey Drive, Suite 1 Assistant Administrator Orono, Maine 04473 for Fisheries Associate Editor Kathryn Dennis National Marine Fisheries Service Office of Science and Technology Economics and Social Analysis Division 1845 Wasp Blvd., Bldg. 178 Honolulu, Hawaii 96818 Managing Editor Shelley Arenas National Marine Fisheries Service Scientific Publications Office 7600 Sand Point Way NE Seattle, Washington 98115 Editorial Committee Ann C. Matarese National Marine Fisheries Service James W. Orr National Marine Fisheries Service The NOAA Professional Paper NMFS (ISSN 1931-4590) series is pub- lished by the Scientific Publications Of- *Bruce Mundy (PIFSC) was Scientific Editor during the fice, National Marine Fisheries Service, scientific editing and preparation of this report. NOAA, 7600 Sand Point Way NE, Seattle, WA 98115. The Secretary of Commerce has The NOAA Professional Paper NMFS series carries peer-reviewed, lengthy original determined that the publication of research reports, taxonomic keys, species synopses, flora and fauna studies, and data- this series is necessary in the transac- intensive reports on investigations in fishery science, engineering, and economics. tion of the public business required by law of this Department. -
Chec List Marine and Coastal Biodiversity of Oaxaca, Mexico
Check List 9(2): 329–390, 2013 © 2013 Check List and Authors Chec List ISSN 1809-127X (available at www.checklist.org.br) Journal of species lists and distribution ǡ PECIES * S ǤǦ ǡÀ ÀǦǡ Ǧ ǡ OF ×±×Ǧ±ǡ ÀǦǡ Ǧ ǡ ISTS María Torres-Huerta, Alberto Montoya-Márquez and Norma A. Barrientos-Luján L ǡ ǡǡǡǤͶǡͲͻͲʹǡǡ ǡ ȗ ǤǦǣ[email protected] ćĘęėĆĈęǣ ϐ Ǣ ǡǡ ϐǤǡ ǤǣͳȌ ǢʹȌ Ǥͳͻͺ ǯϐ ʹǡͳͷ ǡͳͷ ȋǡȌǤǡϐ ǡ Ǥǡϐ Ǣ ǡʹͶʹȋͳͳǤʹΨȌ ǡ groups (annelids, crustaceans and mollusks) represent about 44.0% (949 species) of all species recorded, while the ʹ ȋ͵ͷǤ͵ΨȌǤǡ not yet been recorded on the Oaxaca coast, including some platyhelminthes, rotifers, nematodes, oligochaetes, sipunculids, echiurans, tardigrades, pycnogonids, some crustaceans, brachiopods, chaetognaths, ascidians and cephalochordates. The ϐϐǢ Ǥ ēęėĔĉĚĈęĎĔē Madrigal and Andreu-Sánchez 2010; Jarquín-González The state of Oaxaca in southern Mexico (Figure 1) is and García-Madrigal 2010), mollusks (Rodríguez-Palacios known to harbor the highest continental faunistic and et al. 1988; Holguín-Quiñones and González-Pedraza ϐ ȋ Ǧ± et al. 1989; de León-Herrera 2000; Ramírez-González and ʹͲͲͶȌǤ Ǧ Barrientos-Luján 2007; Zamorano et al. 2008, 2010; Ríos- ǡ Jara et al. 2009; Reyes-Gómez et al. 2010), echinoderms (Benítez-Villalobos 2001; Zamorano et al. 2006; Benítez- ϐ Villalobos et alǤʹͲͲͺȌǡϐȋͳͻͻǢǦ Ǥ ǡ 1982; Tapia-García et alǤ ͳͻͻͷǢ ͳͻͻͺǢ Ǧ ϐ (cf. García-Mendoza et al. 2004). ǡ ǡ studies among taxonomic groups are not homogeneous: longer than others. Some of the main taxonomic groups ȋ ÀʹͲͲʹǢǦʹͲͲ͵ǢǦet al. -
SPECIES INFORMATION SHEET Vitreolina Philippi
SPECIES INFORMATION SHEET Vitreolina philippi English name: Scientific name: – Vitreolina philippi Taxonomical group: Species authority: Class: Gastropoda de Rayneval & Ponzi, 1854 Order: Hypsogastropoda Family: Eulimidae Subspecies, Variations, Synonyms: Generation length: Eulima philippi Ponzi, De Rayneval & Van den – Hecke, 1854 Eulima rhaphium Watson, 1897 Vitreolina philippii Rayneval & Ponzi, 1854 (spelling variation) Past and current threats (Habitats Directive Future threats (Habitats Directive article 17 article 17 codes): Unknown (U) codes): Unknown (U) IUCN Criteria: HELCOM Red List DD – Category: Data Deficient Global / European IUCN Red List Category Habitats Directive: NE/NE – Protection and Red List status in HELCOM countries: Denmark –/–, Estonia –/–, Finland –/–, Germany –/R (Extremely rare, incl. North Sea), Latvia –/–, Lithuania –/–, Poland –/–, Russia –/–, Sweden –/– Distribution and status in the Baltic Sea region The species is related to echinoderm hosts. In the HELCOM area it is rare and occurs only in the western parts. The abundance of the hosts is regarded very limited or declining which affects the species negatively. Outside the HELCOM area this species is distributed from Mediterranean to Norway but it is absent from the eastern Channel and the southern North Sea. Vitreolina philippi. Photo: Michael Zettler, Leibniz Institute for Baltic Sea Research Warnemünde (IOW). © HELCOM Red List Benthic Invertebrate Expert Group 2013 www.helcom.fi > Baltic Sea trends > Biodiversity > Red List of species SPECIES INFORMATION SHEET Vitreolina philippi Distribution map The georeferenced records of species compiled from the Danish national database for marine data (MADS) and from the databases of the Swedish Species Information Centre (Artportalen), Swedish Meteorological and Hydrological Institute, International Council for the Exploration of the Sea (ICES), and the Leibniz Institute for Baltic Sea Research (IOW).