Supplementary Material Table S1. Potential Species That Gyps Vultures

Total Page:16

File Type:pdf, Size:1020Kb

Supplementary Material Table S1. Potential Species That Gyps Vultures Supplementary material Table S1. Potential species that Gyps vultures scavenge on across Indian subcontinent. English name Scientific name Bovidae Banteng Bos javanicus Indian cow Bos indicus European cow Bos taurus Gaur Bos gaurus Yak Bos grunniens Domestic water buffalo Bubalus bubalis Wild water buffalo Bubalus arnee Goat Capra hircus Markhor Capra falconeri Sheep Ovis aries Blue sheep Pseudois nayaur Himalayan tahr Hemitragus jemlahicus Nilgiri tahr Nilgiritragus hylocrius Ghoral Naemorhedus goral Takin Budorcas taxicolor Chinkara Gazella bennetii Blackbuck Antilope cervicapra Nilgai Boselaphus tragocamelus Four-horned antelope Tetracerus quadricornis Cervidae Spotted deer Axis axis Hog deer Hyelaphus porcinus Red deer Cervus elaphus Barasingha Rucervus duvaucelii Sambar Rusa unicolor Muntjac Muntiacus muntjak Manipur brow-antlered deer Rucervus eldii Chevrotain Moschiola indica Camelids Dromedary Camelus dromedarius Bactrian camel Camelus bactrianus Suidae Wild boar Sus scrofa cristatus Domestic pig Sus scrofa domesticus Perissodactyla Horse Equus caballus Donkey Equus asinus Wild ass Equus hemonius Greater one-horned rhinoceros Rhinoceros unicornis Indian Elephant Elephas maximus Carnivora Dhole Cuon alpinus Golden jackal Canis aureus Dog Canis familiaris Wolf Canis lupus Leopard Panthera pardus Tiger Panthera tigris Sloth bear Melursus ursinus Himalayan bear Ursus thibetanus Sun bear Helarctos malayanus Primates Macaque Macaca sp. Langur Semnopithecus sp. Rodents Marmot Marmota sp. Figure S1. Metabarcode region and primer positions (12S mitochondrial gene) for the potential diet species (from NCBI nucleotide database). Figure S2. Schematic representation of the benchtop workflow for DNA metabarcoding. .
Recommended publications
  • Food Selection by Northern Yellow-Cheeked Crested Gibbons (Nomascus Annamensis)In Northern Cambodia
    Food Selection by Northern Yellow-cheeked Crested Gibbons (Nomascus annamensis)in Northern Cambodia Naven Hon A thesis submitted to Victoria University of Wellington in partial fulfilment of the requirements for the degree of Master of Science in Ecology and Biodiversity School of Biological Sciences Victoria University of Wellington New Zealand 2016 i Abstract Tropical regions have extremely high plant diversity, which in turn supports a high diversity of animals. However, not all plant species are selected by animals as food sources, with some herbivores selecting only specific plants as food as not all plants have the same nutrient make up. Animals must select which food items to include in their diets, as the amount and type of nutrients in their diet can affect lifespan, health, fitness, and reproduction. Gibbon populations have declined significantly in recent years due to habitat destruction and hunting. Northern yellow-cheeked crested gibbon (Nomascus annamensis) is a newly described species, and has a limited distribution restricted to Cambodia, Laos and Vietnam. The northern yellow-cheeked crested gibbons play an important role in seed dispersal, yet little is currently known about this species, including its food selection and nutritional needs. However, data on food selection and nutritional composition of selected food items would greatly inform the conservation of both wild and captive populations of this species. This study aims to quantify food selection by the northern yellow-cheeked crested gibbons by investigating the main plant species consumed and the influence of the availability of food items on their selection. The study also explores the nutritional composition of food items consumed by this gibbon species and identifying key plant species that provide these significant nutrients.
    [Show full text]
  • Wild Or Bactrian Camel French: German: Wildkamel Spanish: Russian: Dikiy Verblud Chinese
    1 of 4 Proposal I / 7 PROPOSAL FOR INCLUSION OF SPECIES ON THE APPENDICES OF THE CONVENTION ON THE CONSERVATION OF MIGRATORY SPECIES OF WILD ANIMALS A. PROPOSAL: Inclusion of the Wild camel Camelus bactrianus in Appendix I of the Convention on the Conservation of Migratory Species of Wild Animals: B. PROPONENT: Mongolia C. SUPPORTING STATEMENT 1. Taxon 1.1. Classis: Mammalia 1.2. Ordo: Tylopoda 1.3. Familia: Camelidae 1.4. Genus: Camelus 1.5. Species: Camelus bactrianus Linnaeus, 1758 1.6. Common names: English: Wild or Bactrian camel French: German: Wildkamel Spanish: Russian: Dikiy verblud Chinese: 2. Biological data 2.1. Distribution Wild populations are restricted to 3 small, remnant populations in China and Mongolia:in the Taklamakan Desert, the deserts around Lop Nur, and the area in and around region A of Mongolia’s Great Gobi Strict Protected Area (Reading et al 2000). In addition, there is a small semi-captive herd of wild camels being maintained and bred outside of the Park. 2.2. Population Surveys over the past several decades have suggested a marked decline in wild bactrian camel numbers and reproductive success rates (Zhirnov and Ilyinsky 1986, Anonymous 1988, Tolgat and Schaller 1992, Tolgat 1995). Researchers suggest that fewer than 500 camels remain in Mongolia and that their population appears to be declining (Xiaoming and Schaller 1996). Globally, scientists have recently suggested that less than 900 individuals survive in small portions of Mongolia and China (Tolgat and Schaller 1992, Hare 1997, Tolgat 1995, Xiaoming and Schaller 1996). However, most of the population estimates from both China and Mongolia were made using methods which preclude rigorous population estimation.
    [Show full text]
  • Keshav Ravi by Keshav Ravi
    by Keshav Ravi by Keshav Ravi Preface About the Author In the whole world, there are more than 30,000 species Keshav Ravi is a caring and compassionate third grader threatened with extinction today. One prominent way to who has been fascinated by nature throughout his raise awareness as to the plight of these animals is, of childhood. Keshav is a prolific reader and writer of course, education. nonfiction and is always eager to share what he has learned with others. I have always been interested in wildlife, from extinct dinosaurs to the lemurs of Madagascar. At my ninth Outside of his family, Keshav is thrilled to have birthday, one personal writing project I had going was on the support of invested animal advocates, such as endangered wildlife, and I had chosen to focus on India, Carole Hyde and Leonor Delgado, at the Palo Alto the country where I had spent a few summers, away from Humane Society. my home in California. Keshav also wishes to thank Ernest P. Walker’s Just as I began to explore the International Union for encyclopedia (Walker et al. 1975) Mammals of the World Conservation of Nature (IUCN) Red List species for for inspiration and the many Indian wildlife scientists India, I realized quickly that the severity of threat to a and photographers whose efforts have made this variety of species was immense. It was humbling to then work possible. realize that I would have to narrow my focus further down to a subset of species—and that brought me to this book on the Endangered Mammals of India.
    [Show full text]
  • Bactrian Camel, Two-Humped Camel
    Camelus ferus/bactrianus Common name: Bactrian camel, two-humped camel Local name: Havtagai (Mongolian), Wildkamel (German), Jya nishpa yapung (Ladakhi) Classification: Kingdom: Animalia Phylum: Chordata Class: Mammalia Order: Artiodactyla Family: Camelidae Genus: Camelus Species: ferus/bactrianus Profile: The scientific name of the wild Bactrian camel is Camelus ferus, while the domesticated form is called Camelus bactrianus. The distinctive feature of the animal is that it is two-humped whereas the Dromedary camel has a single hump. DNA tests have revealed that there are two or three distinct genetic differences and about 3% base difference between the wild and domestic populations of Bactrian camels. They also differ physically. The wild Bactrian camel is smaller and slender than the domestic breed. The wild camels have a sandy gray- brown coat while the domestic ones have a dark brown coat. The predominant difference between them however is the shape of the humps. While that of the wild camel are small and pyramid-like, those of the domestic ones are large and irregular. The face of a Bactrian camel is long and triangular with a split upper lip. The Bactrian camel is highly adapted to surviving the cold desert climate. Each foot has an undivided sole with two large toes that can spread wide apart for walking on sand. The ears and nose are lined with hair to protect against sand and the muscular nostrils can be closed during sandstorms. The eyes are protected from sand and debris by a double layer of long eyelashes while bushy eyebrows give protection from the sun. It grows a thick shaggy coat during winter, which is shed very rapidly in spring to give the animal a shorn look.
    [Show full text]
  • Characterization of Caseins from Mongolian Yak, Khainak, and Bactrian Camel B Ochirkhuyag, Jm Chobert, M Dalgalarrondo, Y Choiset, T Haertlé
    Characterization of caseins from Mongolian yak, khainak, and bactrian camel B Ochirkhuyag, Jm Chobert, M Dalgalarrondo, Y Choiset, T Haertlé To cite this version: B Ochirkhuyag, Jm Chobert, M Dalgalarrondo, Y Choiset, T Haertlé. Characterization of caseins from Mongolian yak, khainak, and bactrian camel. Le Lait, INRA Editions, 1997, 77 (5), pp.601-613. hal-00929550 HAL Id: hal-00929550 https://hal.archives-ouvertes.fr/hal-00929550 Submitted on 1 Jan 1997 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Lait (1997) 77, 601-613 601 © Eisevier/Inra Original article Characterization of caseins from Mongolian yak, khainak, and bactrian cam el B Ochirkhuyag 2, lM Chobert 1*, M Dalgalarrondo 1, Y Choiset 1, T Haertlé ' 1 Laboratoire d'étude des interactions des molécules alimentaires, Inra, rue de la Géraudière, BP 71627, 44316 Nantes cedex 03, France; 2 Institute of Chemistry, Academy of Sciences, Vlan Bator, Mongolia (Received 25 November 1996; accepted 5 May 1997) Summary - The composition of acid-precipitated caseins from ruminant Mongolian domestic ani- maIs was analyzed and a comparative study between camel (Camelus bactrianus) and dromedary (Camelus dromedarius) was realized. Acid-precipitated whole caseins were analyzed for ami no acid composition, separated by anion exchange chromatography and identified by alkaline urea-PAGE.
    [Show full text]
  • Bantengbanteng Populationpopulation Inin Cambodia:Cambodia: Thethe Establishedestablished Baselinebaseline Densitydensity © FA / WWF-Cambodia
    FACTSHEET 2011 BantengBanteng PopulationPopulation inin Cambodia:Cambodia: TheThe EstablishedEstablished BaselineBaseline DensityDensity © FA / WWF-Cambodia Between 2009-2011 in dry seasons, the research team of WWF-Cambodia conducted the first vigorous surveys on population abundance of large mammals which includes wild cattle, deer, and wild pig in the Eastern Plain Landscape (EPL) of Cambodia covering an area of approximately 6,000km2. Banteng: Globally Endangered Species Banteng (bos javanicus) is a species of wild cattle that historically inhabited deciduous and semi- evergreen forests from Northeast India and Southern Yunnan through mainland Southeast Asia and Peninsular Malaysia to Borneo and Java. Since 1996, banteng has been listed by IUCN as globally endangered on the basis of an inferred decline over the last 30 years of more than 50%. Banteng is most likely the ancestor of Southeast Asia’s domestic cattle and it is considered to be one of the most beautiful and graceful of all wild cattle species. In Cambodia, banteng populations have decreased dramatically since the late 1960s. Poaching to sell the meat and horns as trophies constitutes a major threat to remnant populations even though banteng is legally protected. © FA / WWF-Cambodia Monitoring Banteng Population in the Landscape Knowledge of animal populations is central to understanding their status and to planning their management and conservation. That is why WWF has several research projects in the EPL to gain more information about the biodiversity values of PPWS and MPF. Regular line transect surveys are conducted to collect data on large ungulates like banteng, gaur, and Eld’s deer--all potential prey species for large carnivores including tigers.
    [Show full text]
  • Bushmeat Hunting and Extinction Risk to the World’S Rsos.Royalsocietypublishing.Org Mammals
    Downloaded from http://rsos.royalsocietypublishing.org/ on October 26, 2017 Bushmeat hunting and extinction risk to the world’s rsos.royalsocietypublishing.org mammals 1,2 4,5 Research William J. Ripple , Katharine Abernethy , Matthew G. Betts1,2, Guillaume Chapron6, Cite this article: Ripple WJ et al.2016 Bushmeat hunting and extinction risk to the Rodolfo Dirzo7, Mauro Galetti8,9, Taal Levi1,2,3, world’s mammals R. Soc. open sci. 3: 160498. 10,11 12 http://dx.doi.org/10.1098/rsos.160498 Peter A. Lindsey , David W. Macdonald , Brian Machovina13, Thomas M. Newsome1,14,15,16, Carlos A. Peres17, Arian D. Wallach18, Received: 10 July 2016 Accepted: 20 September 2016 Christopher Wolf1,2 and Hillary Young19 1GlobalTrophic Cascades Program, Department of Forest Ecosystems and Society, 2Forest Biodiversity Research Network, Department of Forest Ecosystems and Society, and 3Department of Fisheries and Wildlife, Oregon State University, Corvallis, Subject Category: OR 97331, USA Biology (whole organism) 4School of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK 5Institut de Recherche en Ecologie Tropicale, CENAREST, BP 842 Libreville, Gabon Subject Areas: 6Grimsö Wildlife Research Station, Department of Ecology, Swedish University of ecology Agricultural Sciences, 73091 Riddarhyttan, Sweden 7Department of Biology, Stanford University, Stanford, CA 94305, USA Keywords: 8Universidade Estadual Paulista (UNESP), Instituto Biociências, Departamento de wild meat, bushmeat, hunting, mammals, Ecologia, 13506-900 Rio Claro, São Paulo, Brazil extinction 9Department of Bioscience, Ecoinformatics and Biodiversity, Aarhus University, 8000 Aarhus, Denmark 10Panthera, 8 West 40th Street, 18th Floor, New York, NY 10018, USA 11 Author for correspondence: Mammal Research Institute, Department of Zoology and Entomology, University of William J.
    [Show full text]
  • Tibet's Biodiversity
    Published in (Pages 40-46): Tibet’s Biodiversity: Conservation and Management. Proceedings of a Conference, August 30-September 4, 1998. Edited by Wu Ning, D. Miller, Lhu Zhu and J. Springer. Tibet Forestry Department and World Wide Fund for Nature. China Forestry Publishing House. 188 pages. People-Wildlife Conflict Management in the Qomolangma Nature Preserve, Tibet. By Rodney Jackson, Senior Associate for Ecology and Biodiversity Conservation, The Mountain Institute, Franklin, West Virginia And Conservation Director, International Snow Leopard Trust, Seattle, Washington Presented at: Tibet’s Biodiversity: Conservation and Management. An International Workshop, Lhasa, August 30 - September 4, 1998. 1. INTRODUCTION Established in March 1989, the Qomolangma Nature Preserve (QNP) occupies 33,819 square kilometers around the world’s highest peak, Mt. Everest known locally as Chomolangma. QNP is located at the junction of the Palaearctic and IndoMalayan biogeographic realms, dominated by Tibetan Plateau and Himalayan Highland ecoregions. Species diversity is greatly enhanced by the extreme elevational range and topographic variation related to four major river valleys which cut through the Himalaya south into Nepal. Climatic conditions differ greatly from south to north as well as in an east to west direction, due to the combined effect of exposure to the monsoon and mountain-induced rain s- hadowing. Thus, southerly slopes are moist and warm while northerly slopes are cold and arid. Li Bosheng (1994) reported on biological zonation and species richness within the QNP. Surveys since the 1970's highlight its role as China’s only in-situ repository of central Himalayan ecosystems and species with Indian subcontinent affinities. Most significant are the temperate coniferous and mixed broad-leaved forests with their associated fauna that occupy the deep gorges of the Pungchu, Rongshar, Nyalam (Bhote Kosi) and Kyirong (Jilong) rivers.
    [Show full text]
  • Controlled Animals
    Environment and Sustainable Resource Development Fish and Wildlife Policy Division Controlled Animals Wildlife Regulation, Schedule 5, Part 1-4: Controlled Animals Subject to the Wildlife Act, a person must not be in possession of a wildlife or controlled animal unless authorized by a permit to do so, the animal was lawfully acquired, was lawfully exported from a jurisdiction outside of Alberta and was lawfully imported into Alberta. NOTES: 1 Animals listed in this Schedule, as a general rule, are described in the left hand column by reference to common or descriptive names and in the right hand column by reference to scientific names. But, in the event of any conflict as to the kind of animals that are listed, a scientific name in the right hand column prevails over the corresponding common or descriptive name in the left hand column. 2 Also included in this Schedule is any animal that is the hybrid offspring resulting from the crossing, whether before or after the commencement of this Schedule, of 2 animals at least one of which is or was an animal of a kind that is a controlled animal by virtue of this Schedule. 3 This Schedule excludes all wildlife animals, and therefore if a wildlife animal would, but for this Note, be included in this Schedule, it is hereby excluded from being a controlled animal. Part 1 Mammals (Class Mammalia) 1. AMERICAN OPOSSUMS (Family Didelphidae) Virginia Opossum Didelphis virginiana 2. SHREWS (Family Soricidae) Long-tailed Shrews Genus Sorex Arboreal Brown-toothed Shrew Episoriculus macrurus North American Least Shrew Cryptotis parva Old World Water Shrews Genus Neomys Ussuri White-toothed Shrew Crocidura lasiura Greater White-toothed Shrew Crocidura russula Siberian Shrew Crocidura sibirica Piebald Shrew Diplomesodon pulchellum 3.
    [Show full text]
  • The Phylogenetic Relationship of the Muskox and Takin Based on High Resolution, G-Banded, Chromosome Analysis
    Paper presented at The First Arctic Ungulate Conference, Nuuk, Greenland, 3-8 September, 1991. Expanded abstract The phylogenetic relationship of the muskox and takin based on high resolution, G-banded, chromosome analysis M. Pasitschniak-Arts1, P. F. Flood2, S. M. Schmutz3, S. Tedesco2 and B. Seidel4 1 Department of Biology, 2 Department of Veterinary Anatomy, and 3 Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 0W0. 4 Tierpark Berlin-Friedrichsfelde, Am Tierpark 125, D-1136 Berlin, Germany Key words: muskox, takin, chromosomes, G-banded karyotypes Rangifer, 12 (3) 203-205 Muskoxen, Ovibos moschatus, currently inhabit The relationship of the muskox to other parts of the Canadian mainland tundra, nume• members in the Bovidae is somewhat unclear. rous Arctic islands, regions of Alaska, Norway, Many related genera of bovids adapted to cold• Sweden, northern and eastern Greenland, and er climates are now extinct, leaving only the the Taymyr Peninsula (Lent, 1988). The takin, muskox and takin (Jia-Yan, 1989; Lent, 1988; Budorcas taxicolor, is an Asian species presently Neas and Hoffman, 1987). Despite the apparent found in mountainous areas of west central close relatedness of the two species, banded ka• China, Burma, Bhutan and India Qia-Yan, 1989; ryotypes of the muskox and takin have yet to Neas and Hoffman, 1987). Both species appear be compared. to have originated from a common ancestor in In the Bovidae, individual autosome pairs can• Asia and exhibit morphological similarities. not be reliably distinguished using conventional Muskoxen apparently dispersed from north cen• staining (Lin et aL, 1977), but they have been tral Asia to North America during the Illinoian identified using G-banding (Wang and Federoff, glaciation Qia-Yan, 1989).
    [Show full text]
  • Endangered Species
    Not logged in Talk Contributions Create account Log in Article Talk Read Edit View history Endangered species From Wikipedia, the free encyclopedia Main page Contents For other uses, see Endangered species (disambiguation). Featured content "Endangered" redirects here. For other uses, see Endangered (disambiguation). Current events An endangered species is a species which has been categorized as likely to become Random article Conservation status extinct . Endangered (EN), as categorized by the International Union for Conservation of Donate to Wikipedia by IUCN Red List category Wikipedia store Nature (IUCN) Red List, is the second most severe conservation status for wild populations in the IUCN's schema after Critically Endangered (CR). Interaction In 2012, the IUCN Red List featured 3079 animal and 2655 plant species as endangered (EN) Help worldwide.[1] The figures for 1998 were, respectively, 1102 and 1197. About Wikipedia Community portal Many nations have laws that protect conservation-reliant species: for example, forbidding Recent changes hunting , restricting land development or creating preserves. Population numbers, trends and Contact page species' conservation status can be found in the lists of organisms by population. Tools Extinct Contents [hide] What links here Extinct (EX) (list) 1 Conservation status Related changes Extinct in the Wild (EW) (list) 2 IUCN Red List Upload file [7] Threatened Special pages 2.1 Criteria for 'Endangered (EN)' Critically Endangered (CR) (list) Permanent link 3 Endangered species in the United
    [Show full text]
  • Cic Pheonotype List Caprinae©
    v. 5.25.12 CIC PHEONOTYPE LIST CAPRINAE © ARGALI 1. Altai Argali Ovis ammon ammon (aka Altay Argali) 2. Khangai Argali Ovis ammon darwini (aka Hangai & Mid Altai Argali) 3. Gobi Argali Ovis ammon darwini 4. Northern Chinese Argali - extinct Ovis ammon jubata (aka Shansi & Jubata Argali) 5. Northern Tibetan Argali Ovis ammon hodgsonii (aka Gansu & Altun Shan Argali) 6. Tibetan Argali Ovis ammon hodgsonii (aka Himalaya Argali) 7. Kuruk Tagh Argali Ovis ammon adametzi (aka Kuruktag Argali) 8. Karaganda Argali Ovis ammon collium (aka Kazakhstan & Semipalatinsk Argali) 9. Sair Argali Ovis ammon sairensis 10. Dzungarian Argali Ovis ammon littledalei (aka Littledale’s Argali) 11. Tian Shan Argali Ovis ammon karelini (aka Karelini Argali) 12. Kyrgyz Argali Ovis ammon humei (aka Kashgarian & Hume’s Argali) 13. Pamir Argali Ovis ammon polii (aka Marco Polo Argali) 14. Kara Tau Argali Ovis ammon nigrimontana (aka Bukharan & Turkestan Argali) 15. Nura Tau Argali Ovis ammon severtzovi (aka Kyzyl Kum & Severtzov Argali) MOUFLON 16. Tyrrhenian Mouflon Ovis aries musimon (aka Sardinian & Corsican Mouflon) 17. Introd. European Mouflon Ovis aries musimon (aka European Mouflon) 18. Cyprus Mouflon Ovis aries ophion (aka Cyprian Mouflon) 19. Konya Mouflon Ovis gmelini anatolica (aka Anatolian & Turkish Mouflon) 20. Armenian Mouflon Ovis gmelini gmelinii (aka Transcaucasus or Asiatic Mouflon, regionally as Arak Sheep) 21. Esfahan Mouflon Ovis gmelini isphahanica (aka Isfahan Mouflon) 22. Larestan Mouflon Ovis gmelini laristanica (aka Laristan Mouflon) URIALS 23. Transcaspian Urial Ovis vignei arkal (Depending on locality aka Kopet Dagh, Ustyurt & Turkmen Urial) 24. Bukhara Urial Ovis vignei bocharensis 25. Afghan Urial Ovis vignei cycloceros 26.
    [Show full text]