1999: Comparing Multilevel and Single-Level Negative

Total Page:16

File Type:pdf, Size:1020Kb

1999: Comparing Multilevel and Single-Level Negative COMPARING MULTILEVEL AND SINGLE-LEVEL NEGATIVE BINOMIAL REGRESSION MODELS OF PERSONAL CRIMES: EVIDENCE FROM THE NATIONAL CRIME VICTIMIZATION SURVEY. Andromachi Tseloni, Department of Criminology and Criminal Justice, University of Maryland, 2220 LeFrak Hall, College Park MD 20742 Key words: Multilevel Models, Negative Binomial, The sample, in principle, represents the non Personal Crimes institutionalized permanent residents of the U.S. 12 years or older. The Address List from the Decennial 1. Introduction Census provides the sampling frame for a rotating panel Multilevel/hierarchical modeling explicitly oi" housing units. The survey collects detailed " accounts for the clustering of the units of analysis in information about the victimization experiences of each surveys which use multi-stage sampling, such as the member 12 years or older of the households which live National Crime Victimization Survey (NCVS). It thus in the selected housing units. The housing units remain avoids atomistic or ecological fallacy which occurs in the NCVS sample for three years and their eligible when one analyzes such data assuming that they are the residents are interviewed every six months during that product of simple random sampling. In empirical period. victimization research the clustering of crime incidents The 1994 NCVS includes information within individuals, individuals within households, collected during three interviews between January 1994 households within neighborhoods etc. makes multilevel and June 1995. Therefore it includes information on modeling quite attractive. To my knowledge, the only victimizations which occurred during a period of one published studies in the field of victimology using and a half years. Being a sample of housing units the hierarchical techniques are Rountree et al. (1994) and NCVS has serious attrition problems . since it does not Rountree and Land (1996) which model the risk of follow (or trace back) the households if they move out burglary and violent crime in the neighborhoods of (or in) the selected units before the end of the survey. Seattle. Neither, however, discusses how its results The sample of this study consists of all the differ from conventional regression modeling nor does households which occupied the selected housing units it analyze the implications of random effects. at the time of the first interview (January to June 1994) This study is concerned with comparing the of the 1994 NCVS public use file. Households which results between estimated single-level" and multilevel moved in after this period have been removed from the models of personal crimes drawn from the 1994 NCVS. data set. Thus the sampling unit of the employed data The main interest here is to find out whether and, if so, set is the household (rather than the housing unit) with how the multilevel specification offers new insights all its members 12 years or older. Housing units which into victimization. Unlike most empirical victimization were occupied by more than one household during the research this work focuses on personal crime counts or period of the survey are not overcounted here. Another incidence rates rather than risks which ignore the very advantage is that most included households (91.3%) prevalent phenomenon of crime concentration (Farrell, had a bounding (or pre-survey) interview. This is very 1992; Osborn and Tseloni, 1998). The statistical important because it ensures lack of telescoping in specification employed is the negative binomial crime reporting. The data offer a natural 2 level regression model which accounts for the population hierarchy of individuals (level-1 unit) nested within unexplained heterogeneity in cross section analyses households (level-2 unit). Table 1 presents the (Osborn and Tseloni, 1998: 308). distribution of individuals per household in the sample. The next section is an overview of the data set employed. Sections 3 and 4 describe the variables used 3. The response variable in this study and give theoretical justification for their The response variable of this study, I/,./., is a selection. Section 5 presents the statistical models and count which gives the number of personal crimes each section 6 gives the results. A concluding section 7 household member 12 years or older has experienced discusses the implications of this exercise and offers during a maximum of 18 months prior to the last suggestions for future research. interview of the NCVS. Personal crimes is a composite variable which includes rape, sexual assault, robbery, 2. The data assault, threats, pocket-picking and larceny. In The study employs data from the 1994 NCVS. particular, Yu takes on values yo. =0, 1 ..... where i The NCVS is conducted monthly by the Census Bureau denotes the individual andj his or her household. of the U.S. on behalf of the Bureau of Justice Statistics. 19 Table 1: Number of Individuals 12 years old or older guardianship through knowledge of the neighborhood per Household. and friendship networks. Number of Individuals Frequency Two dummy variables, 6 and 12 months, 1 27,011 which are defined at the person level, capture the effect 2 89,126 of shorter reference periods for those who moved out 3 42,051 before the end of the survey. 4 26,307 The level-2 or household covariates include 5 8,718 indicators of affluence, such as number of cars owned, 6 2,307 annual family income, tenure, and type of 7 681 accommodation; household composition, namely 8 257 number of adults and children in the household; and 9 108 protection against crime. The last is measured by 10 52 whether devices against intruders are fitted and 11 11 participation in neighborhood watch. Place size in Total 196,629 terms of population and urban area of residence which are also defined at the household level depict physical Table 2 presents the empirical frequency proximity to potential offenders. distributions of personal victimizations which occurred Table 3 summarizes the descriptive statistics, within 6, 12 or 18 months. The distribution of the total namely mean, standard deviation (S.D.) where number of personal crimes (last column) is clearly very appropriate, and range of values, of the set of covariates skewed and the bulk of cases are concentrated around used in this study. They are qualitative except for age zero events (97.5%). Overdispersion, whereby the and number of adults which are discrete. The reference variance is greater than the mean, exists in the data. The category of each non-binary qualitative covariate is negative binomial regression model which allows for indicated as the base in Table 3 and shown in extra-Poisson variation seems appropriate for modeling parentheses next to the variable name in Table 4 of personal crimes (Cameron and Trivedi, 1986; modeling results below. McCullagh and Nelder, 1989). 5. The statistical model 4. The covariates 5.1. The multilevel Poisson model The empirical modeling of this study follows Goldstein (1995) describes multilevel models the routine activities or lifestyle theory of criminal for proportions and presents models for counts as an victimization. Proponents of the theory (Hindelang et extension of the former. The negative binomial al., 1978; Cohen and Felson, 1979; Felson, 1998) argue multilevel model derives as an extension of the that the demographic and socio-economic Poisson. First I define the Poisson multilevel model. characteristics of individuals and their households, as Let /zU be the expected number of well as their lifestyle patterns and everyday routine victimizations. The log link function for the Poisson activities determine their exposure to crime. With model with random coefficients is regard to personal crime they do so by determining ln/z 0 - r/0 - Xijfl + ZP=0 urjzTij + ~.rr=p+l bl rj Z rj individuals' vulnerability and their chances of coming (1) into contact with motivated offenders through social where 7:=0,1 .... r with r being the total number of and physical proximity in the absence of effective random coefficients in the model including the guardians. intercept. Note that the coefficients are random at To model the number of personal level-2 (household), or higher if there was any. The victimizations the characteristics of the individuals and level-1 (individual) randomness solely defines the their households, which theory and previous research probability distribution of the observed response suggest, are employed here. Similarly to the response (Goldstein et al., 1998). variable they are drawn from the 1994 NCVS. The covariates which refer to the person (level-l) include X~j is a row vector of K (K >_ r) covariates for the 0" socio-demographic characteristics, such as sex, age, individual including the intercept, some of which may race, marital status, educational level, and employment refer to the individuals' household, zoij-1, zrij = xro status, as well as lifestyle factors, namely shopping, for 77=1.... p, are covariates for the 0" individual with evenings out, and use of public transportation. Length random effects, zrj = xrj, for 77=p+1..., r, refer to the of time living at the address is an indicator of r-p random effects covariates for the j household. 20 [urj]_ N (0, f)u) is the random departure from thej-th variable var(Udj) is restricted to zero for avoiding household (Goldstein, 1995). overspecification in the level-2 random part of the The probability distribution for I10. follows the model. In this case the variance of /tO between Poisson distribution so that the probability that Yo takes households of the base category, Xdj- O, is given by the specific value y ij is: var(uo), whereas var(uo.Q+2cov(uoj, U,l~ gives the Pr(Y0 - Y o ) - exp(-/l(i)/l~0 yii! , yij=O,1 ..... (2) between households with Xdj -- 1 variance (Goldstein, 1995). Thus, each household type defined by the with the usual property that E(~=var(Y~.j)--=~O " which dummy variable has different unexplained equals to exp(r/0") from Eq.
Recommended publications
  • Statistical Approaches for Highly Skewed Data 1
    Running head: STATISTICAL APPROACHES FOR HIGHLY SKEWED DATA 1 (in press) Journal of Clinical Child and Adolescent Psychology Statistical Approaches for Highly Skewed Data: Evaluating Relations between Child Maltreatment and Young Adults’ Non-Suicidal Self-injury Ana Gonzalez-Blanks, PhD Jessie M. Bridgewater, MA *Tuppett M. Yates, PhD Department of Psychology University of California, Riverside Acknowledgments: We gratefully acknowledge Dr. Chandra Reynolds who provided generous instruction and consultation throughout the execution of the analyses reported herein. *Please address correspondence to: Tuppett M. Yates, Department of Psychology, University of California, Riverside CA, 92521. Email: [email protected]. STATISTICAL APPROACHES FOR HIGHLY SKEWED DATA 2 Abstract Objective: Clinical phenomena often feature skewed distributions with an overabundance of zeros. Unfortunately, empirical methods for dealing with this violation of distributional assumptions underlying regression are typically discussed in statistical journals with limited translation to applied researchers. Therefore, this investigation compared statistical approaches for addressing highly skewed data as applied to the evaluation of relations between child maltreatment and non-suicidal self-injury (NSSI). Method: College students (N = 2,651; 64.2% female; 85.2% non-White) completed the Child Abuse and Trauma Scale and the Functional Assessment of Self-Mutilation. Statistical models were applied to cross-sectional data to provide illustrative comparisons across predictions to a) raw, highly skewed NSSI outcomes, b) natural log, square-root, and inverse NSSI transformations to reduce skew, c) zero-inflated Poisson (ZIP) and negative-binomial zero- inflated (NBZI) regression models to account for both disproportionate zeros and skewness in the NSSI data, and d) the skew-t distribution to model NSSI skewness.
    [Show full text]
  • Negative Binomial Regression Models and Estimation Methods
    Appendix D: Negative Binomial Regression Models and Estimation Methods By Dominique Lord Texas A&M University Byung-Jung Park Korea Transport Institute This appendix presents the characteristics of Negative Binomial regression models and discusses their estimating methods. Probability Density and Likelihood Functions The properties of the negative binomial models with and without spatial intersection are described in the next two sections. Poisson-Gamma Model The Poisson-Gamma model has properties that are very similar to the Poisson model discussed in Appendix C, in which the dependent variable yi is modeled as a Poisson variable with a mean i where the model error is assumed to follow a Gamma distribution. As it names implies, the Poisson-Gamma is a mixture of two distributions and was first derived by Greenwood and Yule (1920). This mixture distribution was developed to account for over-dispersion that is commonly observed in discrete or count data (Lord et al., 2005). It became very popular because the conjugate distribution (same family of functions) has a closed form and leads to the negative binomial distribution. As discussed by Cook (2009), “the name of this distribution comes from applying the binomial theorem with a negative exponent.” There are two major parameterizations that have been proposed and they are known as the NB1 and NB2, the latter one being the most commonly known and utilized. NB2 is therefore described first. Other parameterizations exist, but are not discussed here (see Maher and Summersgill, 1996; Hilbe, 2007). NB2 Model Suppose that we have a series of random counts that follows the Poisson distribution: i e i gyii; (D-1) yi ! where yi is the observed number of counts for i 1, 2, n ; and i is the mean of the Poisson distribution.
    [Show full text]
  • Measures of Fit for Logistic Regression Paul D
    Paper 1485-2014 SAS Global Forum Measures of Fit for Logistic Regression Paul D. Allison, Statistical Horizons LLC and the University of Pennsylvania ABSTRACT One of the most common questions about logistic regression is “How do I know if my model fits the data?” There are many approaches to answering this question, but they generally fall into two categories: measures of predictive power (like R-square) and goodness of fit tests (like the Pearson chi-square). This presentation looks first at R-square measures, arguing that the optional R-squares reported by PROC LOGISTIC might not be optimal. Measures proposed by McFadden and Tjur appear to be more attractive. As for goodness of fit, the popular Hosmer and Lemeshow test is shown to have some serious problems. Several alternatives are considered. INTRODUCTION One of the most frequent questions I get about logistic regression is “How can I tell if my model fits the data?” Often the questioner is expressing a genuine interest in knowing whether a model is a good model or a not-so-good model. But a more common motivation is to convince someone else--a boss, an editor, or a regulator--that the model is OK. There are two very different approaches to answering this question. One is to get a statistic that measures how well you can predict the dependent variable based on the independent variables. I’ll refer to these kinds of statistics as measures of predictive power. Typically, they vary between 0 and 1, with 0 meaning no predictive power whatsoever and 1 meaning perfect predictions.
    [Show full text]
  • Multiple Binomial Regression Models of Learning Style Preferences of Students of Sidhu School, Wilkes University
    International Journal of Statistics and Probability; Vol. 7, No. 3; May 2018 ISSN 1927-7032 E-ISSN 1927-7040 Published by Canadian Center of Science and Education Multiple Binomial Regression Models of Learning Style Preferences of Students of Sidhu School, Wilkes University Adekanmbi, D. B1 1 Department of Statistics, Ladoke Akintola University of Technology, Nigeria Correspondence: Adekanmbi, D.B, Department of Statistics, Ladoke Akintola University of Technology, Ogbomoso, Nigeria. Received: November 6, 2017 Accepted: November 27, 2017 Online Published: March 13, 2018 doi:10.5539/ijsp.v7n3p9 URL: https://doi.org/10.5539/ijsp.v7n3p9 Abstract The interest of this study is to explore the relationship between a dichotomous response, learning style preferences by university students of Sidhu School, Wilkes University, as a function of the following predictors: Gender, Age, employment status, cumulative grade point assessment (GPA) and level of study, as in usual generalized linear model. The response variable is the students’ preference for either Behaviorist or Humanist learning style. Four different binomial regression models were fitted to the data. Model A is a logit regression model that fits all the predictors, Model B is a probit model that fits all the predictors, Model C is a logit model with an effect modifier, while Model D is a probit model also with an effect modifier. Models A and B appeared to have performed poorly in fitting the data. Models C and D fit the data well as confirmed by the non-significant chi-square lack of fit with p-values 0.1409 and 0.1408 respectively. Among the four models considered for fitting the data, Model D, the probit model with effect modifier fit best.
    [Show full text]
  • Regression Models for Count Data Jason Brinkley, Abt Associates
    SESUG Paper SD135-2018 Regression Models for Count Data Jason Brinkley, Abt Associates ABSTRACT Outcomes in the form of counts are becoming an increasingly popular metric in a wide variety of fields. For example, studying the number of hospital, emergency room, or in-patient doctor’s office visits has been a major focal point for many recent health studies. Many investigators want to know the impact of many different variables on these counts and help describe ways in which interventions or therapies might bring those numbers down. Traditional least squares regression was the primary mechanism for studying this type of data for decades. However, alternative methods were developed some time ago that are far superior for dealing with this type of data. The focus of this paper is to illustrate how count regression models can outperform traditional methods while utilizing the data in a more appropriate manner. Poisson Regression and Negative Binomial Regression are popular techniques when the data are overdispersed and using Zero-Inflated techniques for data with many more zeroes than is expected under traditional count regression models. These examples are applied to studies with real data. INTRODUCTION Outcomes in the form of counts are becoming an increasingly popular metric in a wide variety of fields. In the health sciences examples include number of hospitalizations, chronic conditions, medications, and so on. Many investigators want to know the impact of many different variables on these counts and help describe ways in which interventions or therapies might bring those numbers down. Standard methods (regression, t-tests, ANOVA) are useful for some count data studies.
    [Show full text]
  • Generalized Linear Models and Point Count Data: Statistical Considerations for the Design and Analysis of Monitoring Studies
    Generalized Linear Models and Point Count Data: Statistical Considerations for the Design and Analysis of Monitoring Studies Nathaniel E. Seavy,1,2,3 Suhel Quader,1,4 John D. Alexander,2 and C. John Ralph5 ________________________________________ Abstract The success of avian monitoring programs to effec- Key words: Generalized linear models, juniper remov- tively guide management decisions requires that stud- al, monitoring, overdispersion, point count, Poisson. ies be efficiently designed and data be properly ana- lyzed. A complicating factor is that point count surveys often generate data with non-normal distributional pro- perties. In this paper we review methods of dealing with deviations from normal assumptions, and we Introduction focus on the application of generalized linear models (GLMs). We also discuss problems associated with Measuring changes in bird abundance over time and in overdispersion (more variation than expected). In order response to habitat management is widely recognized to evaluate the statistical power of these models to as an important aspect of ecological monitoring detect differences in bird abundance, it is necessary for (Greenwood et al. 1993). The use of long-term avian biologists to identify the effect size they believe is monitoring programs (e.g., the Breeding Bird Survey) biologically significant in their system. We illustrate to identify population trends is a powerful tool for bird one solution to this challenge by discussing the design conservation (Sauer and Droege 1990, Sauer and Link of a monitoring program intended to detect changes in 2002). Short-term studies comparing bird abundance in bird abundance as a result of Western juniper (Juniper- treated and untreated areas are also important because us occidentalis) reduction projects in central Oregon.
    [Show full text]
  • Lecture 3 Residual Analysis + Generalized Linear Models
    Lecture 3 Residual Analysis + Generalized Linear Models Colin Rundel 1/23/2017 1 Residual Analysis 2 Atmospheric CO2 (ppm) from Mauna Loa 360 co2 350 1988 1992 1996 date 3 360 co2 350 1988 1992 1996 date 2.5 0.0 resid −2.5 1988 1992 1996 date Where to start? Well, it looks like stuff is going up on average … 4 360 co2 350 1988 1992 1996 date 2.5 0.0 resid −2.5 1988 1992 1996 date Where to start? Well, it looks like stuff is going up on average … 4 2.5 0.0 resid −2.5 1988 1992 1996 date 1.0 0.5 0.0 resid2 −0.5 −1.0 1988 1992 1996 date and then? Well there is some periodicity lets add the month … 5 2.5 0.0 resid −2.5 1988 1992 1996 date 1.0 0.5 0.0 resid2 −0.5 −1.0 1988 1992 1996 date and then? Well there is some periodicity lets add the month … 5 1.0 0.5 0.0 resid2 −0.5 −1.0 1988 1992 1996 date 0.8 0.4 0.0 resid3 −0.4 −0.8 1988 1992 1996 date and then and then? Maybe there is some different effect by year … 6 1.0 0.5 0.0 resid2 −0.5 −1.0 1988 1992 1996 date 0.8 0.4 0.0 resid3 −0.4 −0.8 1988 1992 1996 date and then and then? Maybe there is some different effect by year … 6 Too much (lm = lm(co2~date + month + as.factor(year), data=co2_df)) ## ## Call: ## lm(formula = co2 ~ date + month + as.factor(year), data = co2_df) ## ## Coefficients: ## (Intercept) date monthAug ## -2.645e+03 1.508e+00 -4.177e+00 ## monthDec monthFeb monthJan ## -3.612e+00 -2.008e+00 -2.705e+00 ## monthJul monthJun monthMar ## -2.035e+00 -3.251e-01 -1.227e+00 ## monthMay monthNov monthOct ## 4.821e-01 -4.838e+00 -6.135e+00 ## monthSep as.factor(year)1986 as.factor(year)1987 ## -6.064e+00 -2.585e-01 9.722e-03 ## as.factor(year)1988 as.factor(year)1989 as.factor(year)1990 ## 1.065e+00 9.978e-01 7.726e-01 ## as.factor(year)1991 as.factor(year)1992 as.factor(year)1993 ## 7.067e-01 1.236e-02 -7.911e-01 ## as.factor(year)1994 as.factor(year)1995 as.factor(year)1996 ## -4.146e-01 1.119e-01 3.768e-01 ## as.factor(year)1997 7 ## NA 360 co2 350 1988 1992 1996 date 8 Generalized Linear Models 9 Background A generalized linear model has three key components: 1.
    [Show full text]
  • The Overlooked Potential of Generalized Linear Models in Astronomy, I: Binomial Regression
    Astronomy and Computing 12 (2015) 21–32 Contents lists available at ScienceDirect Astronomy and Computing journal homepage: www.elsevier.com/locate/ascom Full length article The overlooked potential of Generalized Linear Models in astronomy, I: Binomial regression R.S. de Souza a,∗, E. Cameron b, M. Killedar c, J. Hilbe d,e, R. Vilalta f, U. Maio g,h, V. Biffi i, B. Ciardi j, J.D. Riggs k, for the COIN collaboration a MTA Eötvös University, EIRSA ``Lendulet'' Astrophysics Research Group, Budapest 1117, Hungary b Department of Zoology, University of Oxford, Tinbergen Building, South Parks Road, Oxford, OX1 3PS, United Kingdom c Universitäts-Sternwarte München, Scheinerstrasse 1, D-81679, München, Germany d Arizona State University, 873701, Tempe, AZ 85287-3701, USA e Jet Propulsion Laboratory, 4800 Oak Grove Dr., Pasadena, CA 91109, USA f Department of Computer Science, University of Houston, 4800 Calhoun Rd., Houston TX 77204-3010, USA g INAF — Osservatorio Astronomico di Trieste, via G. Tiepolo 11, 34135 Trieste, Italy h Leibniz Institute for Astrophysics, An der Sternwarte 16, 14482 Potsdam, Germany i SISSA — Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, 34136 Trieste, Italy j Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, D-85748 Garching, Germany k Northwestern University, Evanston, IL, 60208, USA article info a b s t r a c t Article history: Revealing hidden patterns in astronomical data is often the path to fundamental scientific breakthroughs; Received 26 September 2014 meanwhile the complexity of scientific enquiry increases as more subtle relationships are sought. Con- Accepted 2 April 2015 temporary data analysis problems often elude the capabilities of classical statistical techniques, suggest- Available online 29 April 2015 ing the use of cutting edge statistical methods.
    [Show full text]
  • Negative Binomial Regression Second Edition, Cambridge University Press
    Negative Binomial Regression Second edition, Cambridge University Press Joseph M Hilbe ERRATA & COMMENTS as of 12 January, 2012 Note: Data sets and software code can be downloaded from: http://works.bepress.com/joseph_hilbe/ ERRATA P. xv: The inset following the 1st paragraph on page, replace Stata bookstore (Stata files/commands) http://www.Stata.com/bookstore/nbr2.html with Data sets, software code, and electronic Extensions to the text can be downloaded from: http://works.bepress.com/joseph_hilbe/ p 17 Table 2.2. second to last line in table, final term should read, prop.r=FALSE, not pror.r. Read as CrossTable(survived, age, prop.t=FALSE, prop.r=FALSE, prop.c=FALSE, prop.chisq=FALSE) p 18 Equation 2.3. The second or middle term should have (implied) product signs, not division. Read as: p. 20 Table 2.4. The final three lines can be reduced to one line: irr*rse. Revise Table 2.4 to appear as: Table 2.4: R – Poisson model with robust standard errors ==================================================== titanic$class <- relevel(factor(titanic$class), ref=3) tit3 <- glm(survived ~ factor(class), family=poisson, data=titanic) irr <- exp(coef(tit3)) # vector of IRRs library("sandwich") rse <- sqrt(diag(vcovHC(tit3, type="HC0"))) # coef robust SEs irr*rse # IRR robust SEs ==================================================== P 22 Table 2.5. The final three lines of the code may be condensed to one line, as it was in Table 2.4 above. Replace ec2 <- c(irr2) rs2 <- c(rse2) ec2 * rs2 with irr2 * rse2 P 27 The interpretation of the model (in italics) can better be expressed as: “the odds of a child surviving on the Titanic is nearly twice that of adults.” The line below the italicized interpretation should be amended to that this section in the book should read as: ----------------------------------------------------------------------------------------------- The odds of a child surviving on the Titanic is nearly twice that of adults.
    [Show full text]
  • R-Squared Measures for Count Data Regression Models with Applications to Health Care Utilization
    R-Squared Measures for Count Data Regression Models With Applications to Health Care Utilization A. Colin Cameron Dept. of Economics University of California Davis CA 95616-8578 USA Frank A.G. Windmeijer Dept. of Economics University College London London WC1E 6BT UK April 1995 Journal of Business and Economic Statistics (forthcoming) Abstract R-squared measures of goodness of fit for count data are rarely, if ever, reported in empirical studies or by statistical packages. We propose several R-squared measures based on various definitions of residuals, for the basic Poisson regression model and for more general models such as negative binomial that accommodate overdispersed data. The preferred R-squared is based on the deviance residual. An application to data on health care service utilization measured in counts illustrates the performance and usefulness of the various R-squareds. KEY WORDS: Goodness-of-fit, Poisson regression, negative binomial regression, deviance, deviance residual, Pearson residual. 1. INTRODUCTION R-squared (R 2 ) measures were originally developed for linear regression models with homoscedastic errors. Extensions to models with heteroscedastic errors with known variance were proposed by Buse (1973). Extensions to other models are rare, with the notable exceptions of logit and probit models, see Windmeijer (1994) and the references therein, and tobit models, surveyed by Veall and Zimmermann (1994). In this paper we investigate R 2 measures for Poisson and other related count data regression models. Surprisingly, R 2 is rarely reported in empirical studies or by statistical packages for count data. (For Poisson, exceptions are Merkle and Zimmermann (1992) and the statistical package STATA.
    [Show full text]
  • Negative Binomial Regression
    NCSS Statistical Software NCSS.com Chapter 326 Negative Binomial Regression Introduction Negative binomial regression is similar to regular multiple regression except that the dependent (Y) variable is an observed count that follows the negative binomial distribution. Thus, the possible values of Y are the nonnegative integers: 0, 1, 2, 3, and so on. Negative binomial regression is a generalization of Poisson regression which loosens the restrictive assumption that the variance is equal to the mean made by the Poisson model. The traditional negative binomial regression model, commonly known as NB2, is based on the Poisson-gamma mixture distribution. This formulation is popular because it allows the modelling of Poisson heterogeneity using a gamma distribution. Some books on regression analysis briefly discuss Poisson and/or negative binomial regression. We are aware of only a few books that are completely dedicated to the discussion of count regression (Poisson and negative binomial regression). These are Cameron and Trivedi (2013) and Hilbe (2014). Most of the results presented here were obtained from these books. This program computes negative binomial regression on both numeric and categorical variables. It reports on the regression equation as well as the goodness of fit, confidence limits, likelihood, and deviance. It performs a comprehensive residual analysis including diagnostic residual reports and plots. It can perform a subset selection search, looking for the best regression model with the fewest independent variables. It provides confidence intervals on predicted values. The Negative Binomial Distribution The Poisson distribution may be generalized by including a gamma noise variable which has a mean of 1 and a scale parameter of ν.
    [Show full text]
  • Multiple Approaches to Analyzing Count Data in Studies of Individual
    TIONAL AND P SY CHOLOGICAL MEASUREMENT MAN Multiple Approaches to Analyzing Count Data in Studies of Individual Differences: The Propensity for Type 1 Errors, Illustrated with the Case of Absenteeism Prediction Michael C, Sturman, Louisiana State University The present study compares eight models for analyzing count data: ordinary least squares (OLS), OLS with a transformed dependent variable, Tobit, Poisson, overdispersed Poisson, negative binomial, ordinal logistic, and ordinal probit regressions. Simulation reveals the extent that each model produces false positives. Results suggest that, despite methodological expectations, OLS regression does not produce more false positives than expected by chance. The Tobit and Poisson models yield too many false positives. The negative binomial models produce fewer than expected false positives. A fundamental problem with scientific research is that the way we try to solve a problem affects what kind of results we see (Kuhn, 1970). This is partly reflected in the social sciences because the statistical method used to analyze data affects what kind of relationships we observe (Schmidt, 1996). When the assumptions of the employed statistical model are met, the observed coefficients usually describe the actual relationship well (Greene, 1993). However, when these assumptions are violated, such as when using ordinary least squares (OLS) regression to analyze nonnormal data, resulting estimates may not be meaningful. This can result in true relationships not being discovered (i.e., Type II errors) or the misidentification of nonexistent relationships (i.e., Type I errors). Analyses of count data in studies of individual differences have often been criticized for the use of inappropriate methodologies. An example for human resources is research on absenteeism.
    [Show full text]