Wildland Fire Emission Factors in North America: Synthesis of Existing Data, Measurement Needs and Management Applications

Total Page:16

File Type:pdf, Size:1020Kb

Wildland Fire Emission Factors in North America: Synthesis of Existing Data, Measurement Needs and Management Applications CSIRO PUBLISHING International Journal of Wildland Fire 2020, 29, 132–147 https://doi.org/10.1071/WF19066 Wildland fire emission factors in North America: synthesis of existing data, measurement needs and management applications Susan J. PrichardA,E, Susan M. O’NeillB, Paige EagleA, Anne G. AndreuA, Brian DryeA, Joel DubowyA, Shawn UrbanskiC and Tara M. StrandD AUniversity of Washington School of Environmental and Forest Sciences, Box 352100, Seattle, WA 98195-2100, USA. BPacific Wildland Fire Sciences Laboratory, US Forest Service Pacific Northwest Research Station, 400 N. 34th Street, Seattle, WA 98103, USA. CMissoula Fire Sciences Laboratory, US Forest Service Rocky Mountain Research Station, 5775 W Broadway Street, Missoula, MT 59808, USA. DScion Research, Te Papa Tipu Innovation Park, 49 Sala Street, Rotorua 3010, Private Bag 3020, Rotorua 3046, New Zealand. ECorresponding author. Email: [email protected] Abstract. Field and laboratory emission factors (EFs) of wildland fire emissions for 276 known air pollutants sampled across Canada and the US were compiled. An online database, the Smoke Emissions Repository Application (SERA), was created to enable analysis and summaries of existing EFs to be used in smoke management and emissions inventories. We evaluated how EFs of select pollutants (CO, CO2,CH4,NOx, total particulate matter (PM), PM2.5 and SO2) are influenced by combustion phase, burn type and fuel type. Of the 12 533 records in the database, over a third (n ¼ 5637) are represented by 23 air pollutants, most designated as US Environmental Protection Agency criteria air pollutants, greenhouse gases, hazardous air pollutants or known air toxins. Among all pollutants in the database, including the most common pollutants PM, CO, CO2 and CH4, records are unevenly distributed with a bias towards flaming combustion, prescribed burning and laboratory measurements. Across all EFs, records are most common for south-eastern and western conifer forests and western shrubland types. Based on identified data gaps, we offer recommendations for future studies, including targeting underrepresented air pollutants, smouldering combustion phases and improved source characterisation of wildland fire emissions. Additional keywords: air quality, greenhouse gas emissions, particulate matter, prescribed fire emissions, smoke management, wildfire emissions. Received 24 April 2019, accepted 26 October 2019, published online 7 January 2020 Introduction fire management, smoke modelling and emission inventories in Over the past decade, field and laboratory studies have made North America. substantial progress in characterising the chemical composition The Smoke Emissions Repository Application (SERA) pre- of wildland fire smoke and quantifying emission factors (EFs) in sented here is a searchable online database of existing EFs of 276 North America. EFs are defined as the mass of a gas or aerosol known air pollutants in standardised units (g kgÀ1) (https://depts. pollutant per dry weight unit mass of consumed fuel (Urbanski washington.edu/nwfire/sera, accessed 26 November 2019). 2014). Since the seminal review of Andreae and Merlet (2001), EF records include modified combustion efficiency (MCE, several reviews have summarised existing EFs by vegetation Yokelson et al. 1996), fuel type, study type (laboratory or field), type or region (Akagi et al. 2011; Yokelson et al. 2013; Urbanski measurement platform (ground, tower or air-based), geographic 2014), and studies were compiled into a summary dataset using location and source reference. The database was created to enable unpublished and published data from the 1960s to 2011 (Lincoln analysis and summaries of existing EFs, and creation of average et al. 2014). These developments, including several more recent EFs to be used in decision support tools for smoke management, studies, represent a large advancement in emissions character- including Consume (Prichard 2007), FOFEM (Reinhardt et al. isation and justify the creation of a master repository of EFs that 1997) and the BlueSky Smoke Modelling Framework (Larkin can be used to produce consistent values applicable for wildland et al. 2009), as well as future updates to national emissions Journal compilation Ó IAWF 2020 Open Access CC BY-NC-ND www.publish.csiro.au/journals/ijwf Wildland fire emission factors in North America Int. J. Wildland Fire 133 inventories (e.g. US EPA 2017). Prior to updates provided by generally associated with marginally combustible fuels such as Urbanski (2014), models that predict wildland fire emissions such coarse wood (i.e. stumps and downed logs .7.6 cm in diameter) as Consume, FOFEM and BlueSky used EFs published within the and duff that generally have incomplete combustion and smoulder 2001 Smoke Management Guide (Hardy et al. 2001) and sup- for extended periods (Ottmar 2014). ported a relatively small list of pollutants, including particulate Smoke management guides have traditionally summarised matter (PM), carbon monoxide (CO), carbon dioxide (CO2), EFs by major vegetation or fuel type. For example, the 2001 methane (CH4), non-methane organic compounds (NMOCs) Smoke Management Guide (Hardy et al. 2001) compiled and sulfur dioxide (SO2). SERA was designed to provide a pollutant EFs from existing studies of prescribed burns, includ- synthesis of existing EFs and summary values for emissions ing EFs summarised from broadcast burned slash of Douglas fir, modelling that can facilitate more rapid incorporation of EFs than juniper and ponderosa pine forests (Ward et al. 1989), broadcast was previously available through a relational database main- burned brush (Hardy et al. 1996) and wildfires (Hardy et al. tained by the US Forest Service Pacific Wildland Fire Sciences 1992). Hardy et al. (2001) also provided EFs by flaming, short- Laboratory (Seattle, WA). term smouldering and long-term residual smouldering phases of For many air pollutants, selecting the most appropriate EFs combustion. Summarising EFs by combustion phase is gener- to represent emissions from biomass burning needs to consider ally useful for fire managers to inform smoke reduction techni- the combustion of fuels that burn in smouldering combustion ques, such as finding optimal burn windows that maximise and low-heat pyrolysis phases (e.g. coarse wood and organic flaming combustion and minimise long-term smouldering soils). Modified combustion efficiency (MCE ¼ DCO2/ (MACTEC Federal Programs 2004), which can contribute to (DCO2 þ DCO)) is a measure of the relative fraction of flaming greater overall pollutant emissions of PM and CO and nighttime and smouldering combustion, and has been demonstrated to intrusions into communities (Miller et al. 2019). be highly correlated with EFs for pollutant emissions (such as Since the original smoke management guide was published in CO, CH4 and NMOCs) that are more concentrated in smoul- 2001, a large number of prescribed burn studies and a relatively dering combustion phases (Urbanski 2014). Emissions studies small number of wildfire emissions studies have been conducted. often include a measure of MCE to characterise source com- Urbanski (2014) synthesised fire-average EFs for major pollutant bustion phase (Yokelson et al. 1996; Urbanski 2014). For species by burn type (i.e. prescribed burns and wildfires) and example, Urbanski (2013) found that Rocky Mountain wildfire region and/or vegetation type. Fire-average flaming and smoul- emissions from prescribed fires in moderate to heavy coarse dering EFs and their estimated uncertainty were summarised wood had a much lower MCE than that observed in studies of based on six prescribed fire groupings in the US, including prescribed fires in the south-east, from where the majority of south-eastern (SE) conifer, south-western (SW) conifer and the EFs reported in the literature for NMOCs and PM2.5 north-western (NW) conifer forests, western shrublands and have been derived. More recently, Sekimoto et al. (2018) western grasslands, and two wildfire categories including W examined relationships between high- and low-temperature conifer wildfires and boreal wildfires. Additional residual pyrolysis and found that these two variables explained most of smouldering EFs were included for coarse wood, temperate forest the variability in non-methane organic gas emissions and organic soils and boreal forest organic soils (referred to hereafter outperformed MCE. The relationship between wildland fire as duff). More recently, sampled plumes from western US emissions and combustion highlights the need to develop wildfires suggest that the quantity and composition of fuels algorithms for extrapolating EFs to broadly representative burned in summer (May–October) wildfires may substantially fuel types and burning conditions (e.g. flaming v. smouldering increase estimates of pollutant emissions, including greenhouse and prescribed underburn v. crown fire). Because many gases (e.g. CO2 and CH4) and particulate matter (Liu et al. 2017). smoke management issues associated with wildland fire The objectives of this study were to develop a centralised emissions are from residual long-term smouldering sources, repository for evaluating and synthesising emissions factor characterising the fuels and EFs associated with these burning datasets for major fuel types in North America and to provide conditions is critical for fire management applications updates to best-estimate EFs for major pollutant species. (Urbanski 2013; Yokelson et al. 2013; Hu et al. 2018; Peterson Because wildland fire emissions
Recommended publications
  • Emission Factors ⇑ Shawn Urbanski
    Forest Ecology and Management 317 (2014) 51–60 Contents lists available at SciVerse ScienceDirect Forest Ecology and Management journal homepage: www.elsevier.com/locate/foreco Wildland fire emissions, carbon, and climate: Emission factors ⇑ Shawn Urbanski Missoula Fire Sciences Laboratory, Rocky Mountain Research Station, US Forest Service, 5775 US Highway 10 W, Missoula, MT 59808, USA article info abstract Article history: While the vast majority of carbon emitted by wildland fires is released as CO2, CO, and CH4, wildland fire Available online 21 June 2013 smoke is nonetheless a rich and complex mixture of gases and aerosols. Primary emissions include sig- nificant amounts of CH4 and aerosol (organic aerosol and black carbon), which are short-lived climate Keywords: forcers. In addition to CO2 and short-lived climate forcers, wildland fires release CO, non-methane organic Biomass burning compounds (NMOC), nitrogen oxides (NOx =NO+NO2), NH3, and SO2. These species play a role in radia- Greenhouse gases tive forcing through their photochemical processing, which impacts atmospheric levels of CO2,CH4, tro- Emission factors pospheric O3, and aerosol. This paper reviews the current state of knowledge regarding the chemical composition of emissions and emission factors for fires in United States vegetation types as pertinent to radiative forcing and climate. Emission factors are critical input for the models used to estimate wild- land fire greenhouse gas and aerosol emission inventories. Published by Elsevier B.V. 1. Introduction Fuels are defined as biomass (dead and live) that is available for combustion (Sandberg et al., 2001). While most emission models Emissions from wildland fires are a significant source of carbo- are based on Eq.
    [Show full text]
  • Wildland Fire Emission Sampling at Fishlake National Forest, Utah Using an Unmanned Aircraft System
    Atmospheric Environment 247 (2021) 118193 Contents lists available at ScienceDirect Atmospheric Environment journal homepage: http://www.elsevier.com/locate/atmosenv Wildland fire emission sampling at Fishlake National Forest, Utah using an unmanned aircraft system J. Aurell a, B. Gullett b,*, A. Holder b, F. Kiros a, W. Mitchell b, A. Watts c, R. Ottmar d a University of Dayton Research Institute, 300 College Park, Dayton, OH, 45469, USA b U.S. Environmental Protection Agency, Office of Research and Development, 109 T.W. Alexander Drive Research Triangle Park, NC, 27711, USA c Desert Research Institute, 2215 Raggio Parkway, Reno, NV, 89512, USA d U.S. Forest Service, Pacific Wildland Forest Sciences Laboratory, 400 North 34th Street, Seattle, WA, 98103, USA HIGHLIGHTS GRAPHICAL ABSTRACT • An unmanned aircraft system was used to measure air pollutants from a wild­ land fire. • The prescribed fire included slash pile burns and crown fires. • Emission factors were determined for a comprehensive list of gases and particles. • Emissions typically decreased with increasing combustion efficiency. • The system enabled unprecedented ac­ cess to the fire while minimizing risk. ARTICLE INFO ABSTRACT Keywords: Emissions from a stand replacement prescribed burn were sampled using an unmanned aircraft system (UAS, or Prescribed fire “drone”) in Fishlake National Forest, Utah, U.S.A. Sixteen flightsover three days in June 2019 provided emission Wildfire factors for a broad range of compounds including carbon monoxide (CO), carbon dioxide (CO2), nitric oxide Emissions (NO), nitrogen dioxide (NO2), particulate matter < 2.5 μm in diameter (PM2.5), volatile organic compounds Measurements (VOCs) including carbonyls, black carbon, and elemental/organic carbon.
    [Show full text]
  • Critical Assessment of Wildland Fire Emissions Inventories: Methodology, Uncertainty, Effectiveness Final Report Joint Fire Sciences Program Project # 12-1-07-1
    Critical Assessment of Wildland Fire Emissions Inventories: Methodology, Uncertainty, Effectiveness Final Report Joint Fire Sciences Program Project # 12-1-07-1 Principal Investigator: Wei Min Hao US Forest Service, Rocky Mountain Research Station Missoula Fire Sciences Laboratory 5775 W US Highway 10 Missoula, MT 59808 Co-Principal Investigators Shawn Urbanski, US Forest Service, Rocky Mountain Research Station, Missoula Fire Sciences Laboratory, Missoula, MT Helen Naughton, University of Montana Department of Economics University of Montana Missoula, MT 59812-4572 Background and Purpose Fires emit a substantial amount of atmospheric pollutants (CO, CH4, non-methane organic compounds (NMOC), NOx, PM2.5), greenhouse gases (CO2, CH4, N2O), and black carbon that can have major impacts on regional air quality and global climate. In addition to being primary pollutants, the photochemical processing of NOX and NMOC leads to the formation of ozone and secondary PM2.5. The most important criteria for assessing the impacts of fires on the regional and global environment are accurate, reliable information on the spatial and temporal distribution of fire emissions (Riebau and Fox, 2010). Fire Emission Inventories (FEI) provide a spatially and temporally resolved accounting of air pollutants released to the atmosphere by wildland fires. On a national level FEI typically indicate fires as a major source of PM2.5 on an annual basis (Figure 1). However, since most fires occur during the wildfire season, the annual, CONUS wide figures greatly understate the potential impact of fire emissions on air quality. During active periods of the wildfire season, fire emissions are believed to dwarf anthropogenic sources of PM2.5 and NMOC (Figure 2), the latter of which includes hazardous air pollutants (HAP) and reactive gases that can lead to the formation of ozone and secondary PM2.5.
    [Show full text]
  • Wildland Fire Emissions, Carbon, and Climate: Emission Factors
    Forest Ecology and Management 317 (2014) 51–60 Contents lists available at SciVerse ScienceDirect Forest Ecology and Management journal homepage: www.elsevier.com/locate/foreco Wildland fire emissions, carbon, and climate: Emission factors ⇑ Shawn Urbanski Missoula Fire Sciences Laboratory, Rocky Mountain Research Station, US Forest Service, 5775 US Highway 10 W, Missoula, MT 59808, USA article info abstract Article history: While the vast majority of carbon emitted by wildland fires is released as CO2, CO, and CH4, wildland fire Available online 21 June 2013 smoke is nonetheless a rich and complex mixture of gases and aerosols. Primary emissions include sig- nificant amounts of CH4 and aerosol (organic aerosol and black carbon), which are short-lived climate Keywords: forcers. In addition to CO2 and short-lived climate forcers, wildland fires release CO, non-methane organic Biomass burning compounds (NMOC), nitrogen oxides (NOx =NO+NO2), NH3, and SO2. These species play a role in radia- Greenhouse gases tive forcing through their photochemical processing, which impacts atmospheric levels of CO2,CH4, tro- Emission factors pospheric O3, and aerosol. This paper reviews the current state of knowledge regarding the chemical composition of emissions and emission factors for fires in United States vegetation types as pertinent to radiative forcing and climate. Emission factors are critical input for the models used to estimate wild- land fire greenhouse gas and aerosol emission inventories. Published by Elsevier B.V. 1. Introduction Fuels are defined as biomass (dead and live) that is available for combustion (Sandberg et al., 2001). While most emission models Emissions from wildland fires are a significant source of carbo- are based on Eq.
    [Show full text]
  • Abstracts and Presenter Biographical Information Oral Presentations
    ABSTRACTS AND PRESENTER BIOGRAPHICAL INFORMATION ORAL PRESENTATIONS Abstracts for oral presentations and biographical information for presenters are listed alphabetically below by presenting author’s last name. Abstracts and biographical information appear unmodified, as submitted by the corresponding authors. Day, time, and room number of presentation are also provided. Abatzoglou, John John Abatzoglou, Assistant Professor of Geography, University of Idaho. Research interests span the weather-climate continuum and both basic and applied scientific questions on past, present and future climate dynamics as well as their influence on wildfire, ecology and agriculture and is a key player in the development of integrated climate scenarios for the Pacific Northwest, US. Oral presentation, Wednesday, 2:30 PM, B114 Will climate change increase the occurrence of megafires in the western United States? The largest wildfires in the western United States account for a substantial portion of annual area burned and are associated with numerous direct and indirect geophysical impacts in addition to commandeering suppression resources and national attention. While substantial prior work has been devoted to understand the influence of climate, and weather on annual area burned, there has been limited effort to identify factors that enable and drive the very largest wildfires, or megafires. We hypothesize that antecedent climate and shorter-term biophysically relevant meteorological variables play an essen- tial role in favoring or deterring historical megafire occurrence identified using the Monitoring Trends in Burn Severity Atlas from 1984-2010. Antecedent climatic factors such as drought and winter and spring temperature were found to vary markedly across geographic areas, whereas regional commonality of prolonged extremely low fuel moisture and high fire danger prior to and immediately following megafire discovery.
    [Show full text]
  • Wildland Fire Emission Factors in North America: Synthesis of Existing Data, Measurement Needs and Management Applications
    CSIRO PUBLISHING International Journal of Wildland Fire 2020, 29, 132–147 https://doi.org/10.1071/WF19066 Wildland fire emission factors in North America: synthesis of existing data, measurement needs and management applications Susan J. PrichardA,E, Susan M. O’NeillB, Paige EagleA, Anne G. AndreuA, Brian DryeA, Joel DubowyA, Shawn UrbanskiC and Tara M. StrandD AUniversity of Washington School of Environmental and Forest Sciences, Box 352100, Seattle, WA 98195-2100, USA. BPacific Wildland Fire Sciences Laboratory, US Forest Service Pacific Northwest Research Station, 400 N. 34th Street, Seattle, WA 98103, USA. CMissoula Fire Sciences Laboratory, US Forest Service Rocky Mountain Research Station, 5775 W Broadway Street, Missoula, MT 59808, USA. DScion Research, Te Papa Tipu Innovation Park, 49 Sala Street, Rotorua 3010, Private Bag 3020, Rotorua 3046, New Zealand. ECorresponding author. Email: [email protected] Abstract. Field and laboratory emission factors (EFs) of wildland fire emissions for 276 known air pollutants sampled across Canada and the US were compiled. An online database, the Smoke Emissions Repository Application (SERA), was created to enable analysis and summaries of existing EFs to be used in smoke management and emissions inventories. We evaluated how EFs of select pollutants (CO, CO2,CH4,NOx, total particulate matter (PM), PM2.5 and SO2) are influenced by combustion phase, burn type and fuel type. Of the 12 533 records in the database, over a third (n ¼ 5637) are represented by 23 air pollutants, most designated as US Environmental Protection Agency criteria air pollutants, greenhouse gases, hazardous air pollutants or known air toxins. Among all pollutants in the database, including the most common pollutants PM, CO, CO2 and CH4, records are unevenly distributed with a bias towards flaming combustion, prescribed burning and laboratory measurements.
    [Show full text]
  • NWCG Smoke Management Guide for Prescribed Fire, PMS 420-3
    A publication of the National Wildfire Coordinating Group NWCG Smoke Management Guide for Prescribed Fire PMS 420-3 November 2020 NFES 001279 NWCG Smoke Management Guide for Prescribed Fire November 2020 PMS 420-3 NFES 001279 The NWCG Smoke Management Guide for Prescribed Fire contains information on prescribed fire smoke management techniques, air quality regulations, smoke monitoring, modeling, communication, public perception of prescribed fire and smoke, climate change, practical meteorological approaches, and smoke tools. The primary focus of this document is to serve as the textbook in support of NWCG’s RX- 410, Smoke Management Techniques course which is required for the position of Prescribed Fire Burn Boss Type 2 (RXB2). The Guide is useful to all who use prescribed fire, from private land owners to federal land managers, with practical tools, and underlying science. Many chapters are helpful for addressing air quality impacts from wildfires. It is intended to assist those who are following the guidance of the NWCG’s Interagency Prescribed Fire Planning and Implementation Procedures Guide, PMS 484, https://www.nwcg.gov/publications/484, in planning for, and addressing, smoke when conducting prescribed fires. For a glossary of relevant terminology, consult the NWCG Glossary of Wildland Fire Terminology, PMS 205, https://www.nwcg.gov/glossary/a-z. For smoke management and air quality terms not commonly used by NWCG, consult the Smokepedia at https://www.frames.gov/smokepedia. The National Wildfire Coordinating Group (NWCG) provides national leadership to enable interoperable wildland fire operations among federal, state, tribal, territorial, and local partners. NWCG operations standards are interagency by design; they are developed with the intent of universal adoption by the member agencies.
    [Show full text]
  • Wildland Fire Emissions, Carbon, and Climate
    Forest Ecology and Management 317 (2014) 1–8 Contents lists available at ScienceDirect Forest Ecology and Management journal homepage: www.elsevier.com/locate/foreco Wildland fire emissions, carbon, and climate: Science overview and knowledge needs ⇑ William T. Sommers a, , Rachel A. Loehman b, Colin C. Hardy b a George Mason University, 1200 University Boulevard, Fairfax, Virginia 22030, USA b USDA Forest Service, Rocky Mountain Research Station, Missoula Fire Sciences Laboratory, 5775 US Hwy 10 W., Missoula, MT 59808, USA article info abstract Article history: Wildland fires have influenced the global carbon cycle for 420 million years of Earth history, interacting Available online 6 January 2014 with climate to define vegetation characteristics and distributions, trigger abrupt ecosystem shifts, and move carbon among terrestrial and atmospheric pools. Carbon dioxide (CO2) is the dominant driver of Keywords: ongoing climate change and the principal emissions component of wildland fires, while black carbon Wildland fire and other aerosols found in fire emissions contribute to uncertainties in climate projections. Fire emis- Climate sions research to date has been focused on developing knowledge for air pollution regulatory needs Forests and for assessing global climate impacts. Quantifying wildland fire emissions is difficult because their Carbon cycle amount and chemical composition vary greatly among fires depending on the amount and type of com- Emissions busted fuel, its structure, arrangement, chemistry, and condition, and meteorological conditions during the fire. Prediction of potential future wildland fire emissions requires integration of complex interac- tions of climate, fire, and vegetation; e.g., inference about the direct effects of climate changes on vege- tation (fuel) distribution, amount, and condition; direct effects on fire occurrence, behavior, and effects; and feedbacks of altered fire regimes to vegetation and the climate system.
    [Show full text]
  • Wildfire Particulate Matter in Europe During Summer 2003: Meso-Scale Modeling of Smoke Emissions, Transport and Radiative Effect
    Atmos. Chem. Phys., 7, 4043–4064, 2007 www.atmos-chem-phys.net/7/4043/2007/ Atmospheric © Author(s) 2007. This work is licensed Chemistry under a Creative Commons License. and Physics Wildfire particulate matter in Europe during summer 2003: meso-scale modeling of smoke emissions, transport and radiative effects A. Hodzic1,*, S. Madronich1, B. Bohn2, S. Massie1, L. Menut3, and C. Wiedinmyer1 1National Center for Atmospheric Research, Atmospheric Chemistry Division, Boulder CO, USA 2Forschungszentrum Juelich, ICG Institut II: Troposphere, 52425 Juelich, Germany 3Institut Pierre-Simon Laplace, Ecole Polytechnique, Palaiseau, France Received: 14 March 2007 – Published in Atmos. Chem. Phys. Discuss.: 5 April 2007 Revised: 18 July 2007 – Accepted: 25 July 2007 – Published: 2 August 2007 Abstract. The present study investigates effects of wildfire cations for air quality over a large part of Europe are signif- emissions on air quality in Europe during an intense fire sea- icant during this episode. First, directly, the modeled wild- son that occurred in summer 2003. A meso-scale chemistry fire emissions caused an increase in average PM2.5 ground transport model CHIMERE is used, together with ground concentrations from 20 to 200%. The largest enhancement based and satellite aerosol optical measurements, to assess in PM2.5 concentrations stayed, however, confined within a the dispersion of fire emissions and to quantify the associated 200 km area around the fire source locations and reached up radiative effects. The model has been improved to take into to 40 µg/m3. Second, indirectly, the presence of elevated account a MODIS-derived daily smoke emission inventory smoke layers over Europe significantly altered atmospheric as well as the injection altitude of smoke particles.
    [Show full text]
  • Speciated and Total Emission Factors of Particulate Organics from Burning Western U.S
    Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-840 Manuscript under review for journal Atmos. Chem. Phys. Discussion started: 21 August 2018 c Author(s) 2018. CC BY 4.0 License. Speciated and total emission factors of particulate organics from burning western U.S. wildland fuels and their dependence on combustion efficiency Coty N. Jen1,6*, Lindsay E. Hatch2, Vanessa Selimovic3, Robert J. Yokelson3, Robert Weber1, Arantza 5 E. Fernandez4, Nathan M. Kreisberg4, Kelley C. Barsanti2, Allen H. Goldstein1,5 1 Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA, 94720, USA 2 Department of Chemical and Environmental Engineering and College of Engineering – Center for Environmental Research and Technology, University of California, Riverside, Riverside, CA, 92507, USA 10 3 Department of Chemistry, University of Montana, Missoula, 59812, USA 4Aerosol Dynamics Inc., Berkeley, CA 94710, USA 5Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, CA 94720, USA 6now at Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA *correspond author: [email protected] 15 Keywords: Biomass burning, FIREX, emission factors, I/SVOCs, MCE Abstract: Western U.S. wildlands experience frequent and large-scale wildfires which are predicted to increase in the future. As a result, wildfire smoke emissions are expected to play an increasing role in atmospheric chemistry while negatively impacting regional air quality and human health. Understanding the impacts of smoke on the environment is informed by 20 identifying and quantifying the chemical compounds that are emitted during wildfires and by providing empirical relationships that describe how the amount and composition of the emissions change based upon different fire conditions and fuels.
    [Show full text]
  • Wildland Fire Emissions, Carbon, and Climate: Wildfireв
    Forest Ecology and Management xxx (2013) xxx–xxx Contents lists available at SciVerse ScienceDirect Forest Ecology and Management journal homepage: www.elsevier.com/locate/foreco Wildland fire emissions, carbon, and climate: Wildfire–climate interactions ⇑ Yongqiang Liu a, , Scott Goodrick a, Warren Heilman b a USDA Forest Service, Southern Research Station, Center for Forest Disturbance Science, 320 Green Street, Athens, GA 30602, USA b USDA Forest Service, Northern Research Station, 1407 S. Harrison Road, Room 220, East Lansing, MI 48823, USA article info abstract Article history: Increasing wildfire activity in recent decades, partially related to extended droughts, along with concern Available online xxxx over potential impacts of future climate change on fire activity has resulted in increased attention on fire–climate interactions. Findings from studies published in recent years have remarkably increased Keywords: our understanding of fire–climate interactions and improved our capacity to delineate probable future Wildfire climate change and impacts. Fires are projected to increase in many regions of the globe under a changing Emission climate due to the greenhouse effect. Burned areas in the western US could increase by more than 50% by Radiative forcing the middle of this century. Increased fire activity is not simply an outcome of the changing climate, but Feedback to climate also a participant in the change. Smoke particles reduce overall solar radiation absorbed by the Earth’s Future fire projection atmosphere during individual fire events and fire seasons, leading to regional climate effects including reduction in surface temperature, suppression of cloud and precipitation, and enhancement of climate anomalies such as droughts. Black carbon (BC) in smoke particles displays some different radiation and climate effects by warming the middle and lower atmosphere, leading to a more stable atmosphere.
    [Show full text]
  • The Effects of Uncertainties in Fire Emissions Estimates on Predictions of Texas Air Quality
    The Effects of Uncertainties in Fire Emissions Estimates on Predictions of Texas Air Quality AQRP Project No. 12-018 Elena McDonald-Buller (PI) and Yosuke Kimura Center for Energy and Environmental Resources The University of Texas at Austin Christine Wiedinmyer (Co-PI) The National Center for Atmospheric Research Chris Emery (Co-PI) and Ed Tai ENVIRON International Corporation Submitted to Dr. David Sullivan Center for Energy and Environmental Resources The University of Texas at Austin Mr. Clint Harper Texas Commission on Environmental Quality November 2013 Table of Contents 1. Background and Study Methods 3 1.1 Fires and Air Quality 3 1.2 Climate Change and Fires 4 1.3 Modeling the Impacts of Fire Emissions 5 2. Objectives 9 3. Fire INventory from NCAR (FINN) Default Configuration 10 3.1 Fire Detection 10 3.2 Land Use/Land Cover Characterization 11 3.3 Area Burned 11 3.4 Biomass Loadings 11 3.5 Fraction of Biomass Burned 12 3.6 Emissions Factors 12 3.7 Chemical Speciation Profiles 12 4. CAMx Base Case 16 4.1 Configuration 16 4.2 BlueSky/SmartFire Emissions Inventory 16 4.3 EPS3 Processing of FINN Emissions 19 5. Climatology of Fires 25 6. Emissions Estimates from the FINN Default Configuration and and BlueSky/SmartFire Inventories 35 7. FINN Sensitivity Studies 42 7.1 Emissions Factors 42 7.2 Land Use/Land Cover Characterization 46 7.3 Fuel Loading 49 7.4 Fire Location and Burned Area: SmartFire 49 7.5 Emissions Estimates 50 8. Effects of Modified FINN Inventories on Ozone and PM2.5 Concentrations 64 9.
    [Show full text]