A Chemiresistor Sensor Array for Insect Infestation Detection By

Total Page:16

File Type:pdf, Size:1020Kb

A Chemiresistor Sensor Array for Insect Infestation Detection By A Chemiresistor Sensor Array for Insect Infestation Detection by Kanchana Anuruddika Kumari Weerakoon A dissertation submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree of Doctor of Philosophy Auburn, Alabama May 7th , 2012 Key words: Polythiophene sensor Polyaniline sensor, Polymer/carbon composite sensor, Sensor array, insect infestation, Thin film sensor array Copyright 2012 by Kanchana Anuruddika Kumari Weerakoon Approved by Bryan A. Chin, Chair, Professor of Materials Engineering Minseo Park, Associate Professor of Physics Dong Joo (Daniel) Kim, Associate Professor of Materials Engineering Zhong Yang Cheng, Associate Professor of Materials Engineering Abstract Plants emit volatile organic compounds as a defensive mechanism to protect themselves from insects and pathogens. These volatile organic chemicals, also known as phytochemicals, are given off during the early stages of insect infestation and may be detected using a chemical sensor array. The chemiresistor sensor array, investigated in this study, consists of a silicon substrate, electroactive polymer based active layer and microelectronically fabricated interdigitated electrodes. The sensor array is inexpensive, easy to fabricate, and could be used for onsite detection of insect infestation. Compared to traditional methods of detecting insect infestation such as leaf inspection and insect traps, this method is quick, inexpensive and would not require trained personal. The sensor array investigated in this dissertation uses three types of polymers as active sensing layers; polythiophene, carbon/polymer and polyaniline. The polymer coatings were deposited onto the sensor platforms via drop casting and spin coating methods. The sensor array was exposed and found to be sensitive to a variety of phytochemicals including γ-terpinene, α- pinene, p-cymene, farnesene, limonene, and cis-hexenyl acetate. The sensor array created a unique fingerprint pattern for each of the different volatile gases. These fingerprints were further analyzed using principle component analysis. To optimize the uniqueness of the fingerprint, sensors that operated with different mechanisms were used. Incorporating sensors with multiple mechanisms into a single array system can be difficult, especially if different film responses are ii measured. Therefore, the same film response, relative resistance, was measured as a function of exposure time to the specific volatile gases. Polythiophene sensors in this study had a sensor detection mechanism that involved physical interactions between the volatile organic vapor and the sensor. The polyaniline sensor had a sensor mechanism which was redox reactions based. The polymer/carbon composite sensors, which consisted of a polymer matrix and carbon particles, operated through a mechanism involving the percolation point. iii Acknowledgments I would like to thank my advisor Dr. Bryan A. Chin for his guidance in doing this research, helping me to develop and complete my dissertation and funding my education at Auburn University. I would also like to thank Dr. Dong-Joo Kim, Dr. Zhong-Yang Cheng and Dr. Minseo Park for agreeing to be a part of my dissertation committee. I would also like to thank Dr. Maria Auad for agreeing to be my university reader. I would like to thank my lab mates for all their support. I would like to thank past members of our group Dr. Helen Yang for helping me start this research work and guiding me in the right direction. I would also like to thank Dr. John Shu for all his help with test cell design, data acquisition setup and testing methodology. I would like to thank Yating Chai for all her help. I would also like to thank Shin Horikawa for all the help and useful discussions. I would also like to thank Tom Carrington in the chemistry department for helping me with Gas Chromatography and Dr Maria Auad for helping me with Atomic Force Microscopy. Last but not least I would like to thank my family. My husband Pathum Mendis for helping me and being there for me always. My daughter Saneli Mendis for being a good baby specially while writing my dissertation. My Parents and Parents in laws Menik Weerakoon, Gamini Weerakoon, Premila Mendis and Pemsiri Mendis for all their help, love and encouragement. I would also like to thank my brothers, brother in law and sisters in laws for all their love and support. iv Table of Contents Abstract ......................................................................................................................................... ii Acknowledgments........................................................................................................................ iv List of Tables ................................................................................................................................ x List of Figures .............................................................................................................................. xi 1. Introduction ............................................................................................................................ 1 1.1. Back Ground ............................................................................................................. 1 1.1.1. Insect Infestation and Global Economy ............................................................... 1 1.1.2. Current Methods of Detection ............................................................................... 1 1.1.2.1. Conventinal Methods .......................................................................................... 4 1.1.2.1.1. Regular Inspection ........................................................................................... 4 1.1.2.1.2. Traps ................................................................................................................ 4 1.1.2.1.3. Barriers ............................................................................................................. 5 1.1.2.1.4. Physical Disturbances ...................................................................................... 6 1.1.2.2. Modern Methods ................................................................................................. 6 1.1.2.2.1. Irradiation ......................................................................................................... 6 1.1.2.2.2. Temperature Control ........................................................................................ 7 1.1.2.2.3. Gas chromatography Analysis ......................................................................... 7 1.1.2.2.4. Acoustic Wave Sensor Control ........................................................................ 8 1.1.3. A Plant Defense Mechanism: Phytochemical Emmision ...................................... 8 v 1.1.4. Using Defense Mechanisms of Plants to Detect Insect Infestation ..................... 17 1.2 Sensors for Volatile Organic Compound Detection ................................................ 19 1.2.1. Metal Oxide Sensors ............................................................................................ 19 1.2.2. Acoustic Gas Sensors ........................................................................................... 25 1.2.3. Optical Sensors .................................................................................................... 30 1.2.4. Conductive Electroactive Polymer Sensors ......................................................... 32 1.2.4.1. Intrinsically Conductive Polymer Sensors ........................................................ 32 1.2.4.2. Polymer/Carbon Composite for Sensing Volatiles ........................................... 45 1.3. Research Objectives ................................................................................................ 51 1.4. References ............................................................................................................... 53 2. Sensor Design and Gas Exposure Test Setup ........................................................................ 56 2.1 Sensor Substrate ....................................................................................................... 56 2.2 Electrode Pattern ...................................................................................................... 56 2.3. Microfabrication Procedure ................................................................................................ 57 2.3.1. Wafer Cleaning Procedure ............................................................................................... 57 2.3.2. Thermal Oxidation ........................................................................................................... 61 2.3.3. Photoresist Deposition ..................................................................................................... 61 2.3.4. Photoresist Exposure and Pattern Development .............................................................. 64 2.3.5. Electrode Deposition ........................................................................................................ 66 2.3.6. Lift off Procedure ............................................................................................................. 66 2.3.7. Wafer Dicing Process ...................................................................................................... 68 2.4. Polymer Film Deposition .................................................................................................... 68 2.4.1.
Recommended publications
  • Highly Sensitive and Selective Chemiresistor Gas/Vapor Sensors Based on Polyaniline Nanocomposite: a Comprehensive Review
    Accepted Manuscript Highly Sensitive and Selective Chemiresistor Gas/Vapor Sensors based on Polyaniline Nanocomposite: A comprehensive review Sadanand Pandey PII: S2468-2179(16)30163-0 DOI: 10.1016/j.jsamd.2016.10.005 Reference: JSAMD 67 To appear in: Journal of Science: Advanced Materials and Devices Received Date: 17 September 2016 Revised Date: 11 October 2016 Accepted Date: 12 October 2016 Please cite this article as: S. Pandey, Highly Sensitive and Selective Chemiresistor Gas/Vapor Sensors based on Polyaniline Nanocomposite: A comprehensive review, Journal of Science: Advanced Materials and Devices (2016), doi: 10.1016/j.jsamd.2016.10.005. This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT Highly Sensitive and Selective Chemiresistor Gas/Vapor Sensors based on Polyaniline Nanocomposite: A comprehensive review Sadanand Pandey a,b * aDepartment of Applied chemistry, University of Johannesburg, P.O. Box 17011, Doornfontien 2028, Johannesburg, Republic of South Africa (RSA) bCentre for Nanomaterials Science Research, University of Johannesburg, Republic of South Africa (RSA) ABSTRACT This current review pays particular attention to some current breakthrough develop in the area of gas sensors based on polyaniline (PANI) nanocomposite. Conducting polymers symbolize a paramount class of organic materials with boost the resistivity towards external stimuli.
    [Show full text]
  • Modeling of Vapor Sorption in Nanoparticle Chemiresistors Alexandra Oliveira [email protected]
    University of Connecticut OpenCommons@UConn Honors Scholar Theses Honors Scholar Program Spring 5-16-2019 Modeling of Vapor Sorption in Nanoparticle Chemiresistors Alexandra Oliveira [email protected] Follow this and additional works at: https://opencommons.uconn.edu/srhonors_theses Part of the Other Chemical Engineering Commons, and the Semiconductor and Optical Materials Commons Recommended Citation Oliveira, Alexandra, "Modeling of Vapor Sorption in Nanoparticle Chemiresistors" (2019). Honors Scholar Theses. 610. https://opencommons.uconn.edu/srhonors_theses/610 Modeling of Vapor Sorption in Nanoparticle Chemiresistors Alexandra Oliveira, Dr. Brian G. Willis Department of Chemical and Biomolecular Engineering University of Connecticut Table of Contents Abstract .......................................................................................................................................... 3 1. Introduction ............................................................................................................................... 3 2. Objective .................................................................................................................................... 4 3. Theory ........................................................................................................................................ 6 A. AuNP Sensor Fabrication ..................................................................................................................... 6 B. Volumetric Expansion of Organic Ligands
    [Show full text]
  • Highly Sensitive and Selective Chemiresistor Gas/Vapor Sensors Based on Polyaniline Nanocomposite: a Comprehensive Review
    Journal of Science: Advanced Materials and Devices 1 (2016) 431e453 Contents lists available at ScienceDirect Journal of Science: Advanced Materials and Devices journal homepage: www.elsevier.com/locate/jsamd Review Article Highly sensitive and selective chemiresistor gas/vapor sensors based on polyaniline nanocomposite: A comprehensive review * Sadanand Pandey a, b, a Department of Applied Chemistry, University of Johannesburg, P.O. Box 17011, Doornfontien 2028, Johannesburg, South Africa b Centre for Nanomaterials Science Research, University of Johannesburg, South Africa article info abstract Article history: This review article directs particular attention to some current breakthrough developments in the area of Received 17 September 2016 gas sensors based on polyaniline (PANI) nanocomposite. Conducting polymers symbolize a paramount Received in revised form class of organic materials that boost the resistivity towards external stimuli. Nevertheless, PANI-based 11 October 2016 sensor experiences some disadvantages of relatively low reproducibility, selectivity, and stability. In Accepted 12 October 2016 order to overcome these restrictions, PANI was functionalised or incorporated with nanoparticles (NPs) Available online 18 October 2016 (metallic or bimetallic NPs, metal oxide NPs), carbon compounds (like CNT or graphene, chalcogenides, polymers), showing improved gas sensing characteristics. It has been suggested that hosteguest Keywords: Gas sensors chemistry combined with the utilization of organic and inorganic analog in nanocomposite may allow for Polyaniline improvement of the sensor performance due to synergetic/complementary effects. Herein, we summa- Sensitivity rize recent advantages in PANI nanocomposite preparation, sensor construction, and sensing properties Chemiresistive response of various PANI nanocomposite-based gas/vapor sensors, such as NH3,H2, HCl, NO2,H2S, CO, CO2,SO2, Metal oxide nanoparticles LPG, vapor of volatile organic compounds (VOCs) as well as chemical warfare agents (CWAs).
    [Show full text]
  • Two-Dimensional Chemiresistive Covalent Organic Framework with 8 High Intrinsic Conductivity 9 10 Zheng Meng,1 Robert M
    Page 1 of 11 Journal of the American Chemical Society 1 2 3 4 5 6 7 Two-Dimensional Chemiresistive Covalent Organic Framework with 8 High Intrinsic Conductivity 9 10 Zheng Meng,1 Robert M. Stolz,1 Katherine A. Mirica*1 11 12 1Department of Chemistry, Burke Laboratory, Dartmouth College, Hanover, New Hampshire, 03755 13 14 15 16 Supporting Information Placeholder 17 18 ABSTRACT: This paper describes the synthesis of a novel intrinsically conductive two-dimensional (2D) covalent organic 19 framework (COF) through the aromatic annulation of 2,3,9,10,16,17,23,24-octa-aminophthalocyanine nickel(II) and pyrene- 20 4,5,9,10-tetraone. The intrinsic bulk conductivity of the COF material (termed COF-DC-8) reached 2.5110-3 S/m, and increased 21 by three orders of magnitude with I2 doping. Electronic calculations revealed an anisotropic band structure, with the possibility 22 for significant contribution from out-of-plane charge-transport to the intrinsic bulk conductivity. Upon integration into 23 chemiresistive devices, this conductive COF showed excellent responses to various reducing and oxidizing gases, including NH3, 24 H2S, NO, and NO2, with parts-per-billion (ppb) level of limits of detection (LOD for NH3=70 ppb, for H2S=204 ppb, for NO=5 25 ppb, and for NO2=16 ppb based on 1.5 min exposure). Electron paramagnetic resonance spectroscopy and X-ray photoelectron 26 spectroscopy studies suggested that the chemiresistive response of the COF-DC-8 involves charge transfer interactions 27 between the analyte and nickelphthalocyanine component of the framework. 28 29 30 INTRODUCTION molecular solids,11 and conductive coordination polymers),5b, 31 5c, 12 the strategy for maximizing the intrinsic bulk 32 The development of chemically robust, porous, and conductivity of COFs can leverage through-bond and 33 electrically conductive nanomaterials drives progress in 1 2 3 through-space charge transport characteristics.
    [Show full text]
  • Electronic Nose for Analysis of Volatile Organic Compounds in Air and Exhaled Breath
    University of Louisville ThinkIR: The University of Louisville's Institutional Repository Electronic Theses and Dissertations 5-2017 Electronic nose for analysis of volatile organic compounds in air and exhaled breath. Zhenzhen Xie University of Louisville Follow this and additional works at: https://ir.library.louisville.edu/etd Part of the Engineering Commons Recommended Citation Xie, Zhenzhen, "Electronic nose for analysis of volatile organic compounds in air and exhaled breath." (2017). Electronic Theses and Dissertations. Paper 2707. https://doi.org/10.18297/etd/2707 This Doctoral Dissertation is brought to you for free and open access by ThinkIR: The University of Louisville's Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of the author, who has retained all other copyrights. For more information, please contact [email protected]. ELECTRONIC NOSE FOR ANALYSIS OF VOLATILE ORGANIC COMPOUNDS IN AIR AND EXHALED BREATH By Zhenzhen Xie M.S., University of Louisville, 2013 B.S., Heilongjiang University, 2011 A Dissertation Submitted to the Faculty of the J. B. Speed School of Engineering University of Louisville in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Chemical Engineering Department of Chemical Engineering Louisville, KY May 2017 ELECTRONIC NOSE FOR ANALYSIS OF VOLATILE ORGANIC COMPOUNDS IN AIR AND EXHALED BREATH by Zhenzhen Xie B.S., Heilongjiang University, 2011 M.S., University of Louisville, 2013 A Dissertation Approved On 04/03/2017 by the Following Committee: ___________________________________ Dr. Xiao-An Fu, Dissertation Director ___________________________________ Dr.
    [Show full text]
  • Development of a Nanocomposite Chemiresistor Sensor Based on Π
    Sensors & Actuators: B. Chemical 271 (2018) 353–357 Contents lists available at ScienceDirect Sensors and Actuators B: Chemical journal homepage: www.elsevier.com/locate/snb Development of a nanocomposite chemiresistor sensor based on π- conjugated azo polymer and graphene blend for detection of dissolved T oxygen ⁎ André Olean-Oliveira, Marcos F.S. Teixeira Department of Chemistry and Biochemistry – School of Science and Technology, University of State of Sao Paulo (UNESP), Rua Roberto Simonsen, 305, CEP 19060-900 Presidente Prudente, SP, Brazil ARTICLE INFO ABSTRACT Keywords: The present paper describes the electrochemical impedance activity of a hybrid film with graphene and poly(azo- Azo conductive polymers Bismarck Brown Y) as the chemiresistor material. This nanocomposite film exhibits interesting properties based Chemiresistor on the redox properties of the azo polymer combined with the great electronic conductivity and stability of Nanocomposite graphene. Electrochemical impedance spectroscopy at the poly(azo-BBY)-rGO electrode in solutions with dif- Oxygen sensor ferent dissolved O concentrations revealed that the resistance values are very sensitive to variations in the O Graphene 2 2 concentration. 1. Introduction 2. Experimental Chemiresistors represent a new class and emerging area of electro- All measurements were performed in a conventional electro- chemical sensors [1,2]. Their operation is based on the change in the chemical cell containing three electrodes: a saturated calomel electrode electrical resistance of the material due to chemical interaction with the (SCE) as the reference; platinum wire as the counter electrode and a analyte [3]. A variety of materials have been investigated for applica- fluoride-doped tin oxide (FTO) electrode coated with a poly(azo-BBY)- tion as chemiresistors, such as semiconductor metal oxides [4], con- rGO blend as the working electrode (1.0 cm2).
    [Show full text]
  • Review on Smart Gas Sensing Technology
    sensors Review Review on Smart Gas Sensing Technology Shaobin Feng 1, Fadi Farha 1, Qingjuan Li 1, Yueliang Wan 2,3, Yang Xu 1, Tao Zhang 4,* and Huansheng Ning 1,2,* 1 School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing 100083, China 2 Beijing Engineering Research Center for Cyberspace Data Analysis and Applications, Beijing 100083, China 3 Research Institute, Run Technologies Co., Ltd. Beijing, Beijing 100192, China 4 Key Lab of Information Network Security of Ministry of Public Security (The Third Research Institute of Ministry of Public Security), Shanghai 201204, China * Correspondence: [email protected] (T.Z.); [email protected] (H.N.); Tel.: +86-186-2132-0315 (T.Z.); +86-010-6233-3406 (H.N.) Received: 17 July 2019; Accepted: 28 August 2019; Published: 30 August 2019 Abstract: With the development of the Internet-of-Things (IoT) technology, the applications of gas sensors in the fields of smart homes, wearable devices, and smart mobile terminals have developed by leaps and bounds. In such complex sensing scenarios, the gas sensor shows the defects of cross sensitivity and low selectivity. Therefore, smart gas sensing methods have been proposed to address these issues by adding sensor arrays, signal processing, and machine learning techniques to traditional gas sensing technologies. This review introduces the reader to the overall framework of smart gas sensing technology, including three key points; gas sensor arrays made of different materials, signal processing for drift compensation and feature extraction, and gas pattern recognition including Support Vector Machine (SVM), Artificial Neural Network (ANN), and other techniques.
    [Show full text]
  • The UV Effect on the Chemiresistive Response of Zno Nanostructures to Isopropanol and Benzene at PPM Concentrations in Mixture with Dry and Wet Air
    chemosensors Article The UV Effect on the Chemiresistive Response of ZnO Nanostructures to Isopropanol and Benzene at PPM Concentrations in Mixture with Dry and Wet Air Maksim A. Solomatin 1,2, Olga E. Glukhova 3,4 , Fedor S. Fedorov 5 , Martin Sommer 6, Vladislav V. Shunaev 3 , Alexey S. Varezhnikov 1 , Albert G. Nasibulin 5 , Nikolay M. Ushakov 2,3 and Victor V. Sysoev 1,* 1 Department of Physics, Yuri Gagarin State Technical University of Saratov, 410054 Saratov, Russia; [email protected] (M.A.S.); [email protected] (A.S.V.) 2 Saratov Branch of Kotelnikov Institute of Radioengineering and Electronics of RAS, 410019 Saratov, Russia; [email protected] 3 Institute of Physics, Saratov State University, 410012 Saratov, Russia; [email protected] (O.E.G.); [email protected] (V.V.S.) 4 Institute for Bionic Technologies and Engineering, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia 5 Skolkovo Institute of Science and Technology, 121205 Moscow, Russia; [email protected] (F.S.F.); [email protected] (A.G.N.) 6 Institute for Microstructure Technology, Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany; [email protected] * Correspondence: [email protected] Citation: Solomatin, M.A.; Glukhova, O.E.; Fedorov, F.S.; Sommer, M.; Abstract: Towards the development of low-power miniature gas detectors, there is a high interest in Shunaev, V.V.; Varezhnikov, A.S.; the research of light-activated metal oxide gas sensors capable to operate at room temperature (RT). Nasibulin, A.G.; Ushakov, N.M.; Herein, we study ZnO nanostructures grown by the electrochemical deposition method over Si/SiO2 Sysoev, V.V.
    [Show full text]
  • The Use of Graphene and Its Derivatives in Chemical and Biological Sensing
    The Use of Graphene and its Derivatives in Chemical and Biological Sensing By Gregory Morgan B. S. in Chemistry, Slippery Rock University, 2010 Submitted to the Graduate Faculty of The Kenneth P. Dietrich School of Arts and Sciences in partial fulfillment of the requirement for the degree of Master of Science UNIVERSITY OF PITTSBURGH 2016 University of Pittsburgh Kenneth P. Dietrich School of Arts and Sciences This thesis was presented by Gregory Joseph Morgan It was defended on October 29, 2015 and approved by Dr. Jill Millstone, Assistant Professor, Chemistry Dr. Nat Rosi, Professor, Chemistry Committee Chair: Dr. Alex Star, Professor, Chemistry ii The Use of Graphene and its Derivatives in Chemical and Biological Sensing Gregory Joseph Morgan, M.S. University of Pittsburgh, 2016 Abstract A chemical sensor is defined as a transducer comprised of, or coated with, a layer that responds to changes in its local chemical environment. Chemical sensors convert various forms of energy into a measurable signal. For instance, the chemical energy involved with bonds breaking or forming can change the electronic properties of the transducer, creating an observable signal such as an increase or decrease in electrical resistance. Chemical sensing is important in many facets of research including environmental, bio-medical/pharmaceutical, industrial, automotive, and human safety. For a sensor to be practical it must interact preferentially with the target chemical analyte. A sensor should be precise, accurate, robust, cost efficient to manufacture, low in power consumption, portable otherwise the sensor is undesirable. Another key value of chemical sensors is it must exhibit rapid detection. Prior to portable sensors chemical analysis was performed in a laboratory on large, expensive instruments, which is costly in time, equipment fees, and personnel wages to operate.
    [Show full text]
  • Sensing Methamphetamine with Chemiresistive Sensors Based On
    Sensors and Actuators B 255 (2018) 1814–1818 Contents lists available at ScienceDirect Sensors and Actuators B: Chemical jo urnal homepage: www.elsevier.com/locate/snb Sensing methamphetamine with chemiresistive sensors based on polythiophene-blended single-walled carbon nanotubes a a,b a a a Yaqiong Zhang , Benjamin R. Bunes , Na Wu , Adam Ansari , Saleha Rajabali , a,∗ Ling Zang a Nano Institute of Utah and Department of Materials Science and Engineering, University of Utah, Salt Lake City, UT 84112, United States b Vaporsens Inc., Salt Lake City, UT 84112, United States a r t i c l e i n f o a b s t r a c t Article history: A highly sensitive and selective carbon nanotube-based vapor sensor was developed toward the detection Received 1 June 2017 of methamphetamine vapor, one of the most widespread, harmful and addictive illegal drugs in the world. Received in revised form 27 July 2017 Poly[3-(6-carboxyhexyl)thiophene-2,5-diyl)] (P3CT) was chosen to non-covalently functionalize carbon Accepted 29 August 2017 nanotubes, which can facilitate the suspension of carbon nanotubes in the solvents as well as introduce Available online 8 September 2017 a carboxylic acid functional group. The carboxylic acid group in the polymer acts as a binder of organic amines via acid-base interaction. The P3CT-functionalized carbon nanotube sensors show sensitivity to n- Keywords: methylphenethylamine (NMPEA), a detection simulant of methamphetamine, as low as 4 ppb. The sensors Polythiophene were able to distinguish NMPEA from two other amine compounds, various volatile chemical compounds Carbon nanotube Chemiresistor (VOCs), and water vapor by observing the recoverability of the sensor’s signal after exposure.
    [Show full text]
  • Towards a Chemiresistive Sensor-Integrated Electronic Nose: a Review
    Sensors 2013, 13, 14214-14247; doi:10.3390/s131014214 OPEN ACCESS sensors ISSN 1424-8220 www.mdpi.com/journal/sensors Review Towards a Chemiresistive Sensor-Integrated Electronic Nose: A Review Shih-Wen Chiu and Kea-Tiong Tang * Department of Electrical Engineering, National Tsing Hua University/No. 101, Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +886-3-516-2178; Fax: +886-3-571-5971. Received: 7 August 2013; in revised form: 28 September 2013 / Accepted: 9 October 2013 / Published: 22 October 2013 Abstract: Electronic noses have potential applications in daily life, but are restricted by their bulky size and high price. This review focuses on the use of chemiresistive gas sensors, metal-oxide semiconductor gas sensors and conductive polymer gas sensors in an electronic nose for system integration to reduce size and cost. The review covers the system design considerations and the complementary metal-oxide-semiconductor integrated technology for a chemiresistive gas sensor electronic nose, including the integrated sensor array, its readout interface, and pattern recognition hardware. In addition, the state-of-the-art technology integrated in the electronic nose is also presented, such as the sensing front-end chip, electronic nose signal processing chip, and the electronic nose system-on-chip. Keywords: metal-oxide semiconductor; conductive-polymer; sensing front-end; electronic nose signal processing chip; electronic nose system-on-chip (SoC) 1. Introduction Olfaction is one of the five major human senses (vision, hearing, olfaction, taste, and touch).
    [Show full text]
  • Carbon Nanotube Chemiresistor for Wireless Ph Sensing
    OPEN Carbon Nanotube Chemiresistor for SUBJECT AREAS: Wireless pH Sensing NANOSENSORS Pingping Gou1, Nadine D. Kraut1, Ian M. Feigel1, Hao Bai1, Gregory J. Morgan1, Yanan Chen1, CARBON NANOTUBES AND Yifan Tang1, Kara Bocan2, Joshua Stachel2, Lee Berger3, Marlin Mickle2, Ervin Sejdic´2 & Alexander Star1 FULLERENES 1Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States, 2Department of Electrical and Computer Received Engineering, University of Pittsburgh, Pittsburgh, PA 15261, United States, 3Ortho-tag Inc., Pittsburgh, PA, United States. 22 January 2014 Accepted The ability to accurately measure real-time pH fluctuations in-vivo could be highly advantageous. Early 4 March 2014 detection and potential prevention of bacteria colonization of surgical implants can be accomplished by monitoring associated acidosis. However, conventional glass membrane or ion-selective field-effect Published transistor (ISFET) pH sensing technologies both require a reference electrode which may suffer from 26 March 2014 leakage of electrolytes and potential contamination. Herein, we describe a solid-state sensor based on oxidized single-walled carbon nanotubes (ox-SWNTs) functionalized with the conductive polymer poly(1-aminoanthracene) (PAA). This device had a Nernstian response over a wide pH range (2–12) and Correspondence and retained sensitivity over 120 days. The sensor was also attached to a passively-powered radio-frequency requests for materials identification (RFID) tag which transmits pH data through simulated skin. This battery-less, reference electrode free, wirelessly transmitting sensor platform shows potential for biomedical applications as an should be addressed to implantable sensor, adjacent to surgical implants detecting for infection. A.S. ([email protected]) he pH of a solution can have a significant effect on chemical processes, therefore both the measurement and control of pH is important for materials, life, and environmental sciences.
    [Show full text]