Polymer-Based Carbon Monoxide Sensors
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Highly Sensitive and Selective Chemiresistor Gas/Vapor Sensors Based on Polyaniline Nanocomposite: a Comprehensive Review
Accepted Manuscript Highly Sensitive and Selective Chemiresistor Gas/Vapor Sensors based on Polyaniline Nanocomposite: A comprehensive review Sadanand Pandey PII: S2468-2179(16)30163-0 DOI: 10.1016/j.jsamd.2016.10.005 Reference: JSAMD 67 To appear in: Journal of Science: Advanced Materials and Devices Received Date: 17 September 2016 Revised Date: 11 October 2016 Accepted Date: 12 October 2016 Please cite this article as: S. Pandey, Highly Sensitive and Selective Chemiresistor Gas/Vapor Sensors based on Polyaniline Nanocomposite: A comprehensive review, Journal of Science: Advanced Materials and Devices (2016), doi: 10.1016/j.jsamd.2016.10.005. This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT Highly Sensitive and Selective Chemiresistor Gas/Vapor Sensors based on Polyaniline Nanocomposite: A comprehensive review Sadanand Pandey a,b * aDepartment of Applied chemistry, University of Johannesburg, P.O. Box 17011, Doornfontien 2028, Johannesburg, Republic of South Africa (RSA) bCentre for Nanomaterials Science Research, University of Johannesburg, Republic of South Africa (RSA) ABSTRACT This current review pays particular attention to some current breakthrough develop in the area of gas sensors based on polyaniline (PANI) nanocomposite. Conducting polymers symbolize a paramount class of organic materials with boost the resistivity towards external stimuli. -
Modeling of Vapor Sorption in Nanoparticle Chemiresistors Alexandra Oliveira [email protected]
University of Connecticut OpenCommons@UConn Honors Scholar Theses Honors Scholar Program Spring 5-16-2019 Modeling of Vapor Sorption in Nanoparticle Chemiresistors Alexandra Oliveira [email protected] Follow this and additional works at: https://opencommons.uconn.edu/srhonors_theses Part of the Other Chemical Engineering Commons, and the Semiconductor and Optical Materials Commons Recommended Citation Oliveira, Alexandra, "Modeling of Vapor Sorption in Nanoparticle Chemiresistors" (2019). Honors Scholar Theses. 610. https://opencommons.uconn.edu/srhonors_theses/610 Modeling of Vapor Sorption in Nanoparticle Chemiresistors Alexandra Oliveira, Dr. Brian G. Willis Department of Chemical and Biomolecular Engineering University of Connecticut Table of Contents Abstract .......................................................................................................................................... 3 1. Introduction ............................................................................................................................... 3 2. Objective .................................................................................................................................... 4 3. Theory ........................................................................................................................................ 6 A. AuNP Sensor Fabrication ..................................................................................................................... 6 B. Volumetric Expansion of Organic Ligands -
A Chemiresistor Sensor Array for Insect Infestation Detection By
A Chemiresistor Sensor Array for Insect Infestation Detection by Kanchana Anuruddika Kumari Weerakoon A dissertation submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree of Doctor of Philosophy Auburn, Alabama May 7th , 2012 Key words: Polythiophene sensor Polyaniline sensor, Polymer/carbon composite sensor, Sensor array, insect infestation, Thin film sensor array Copyright 2012 by Kanchana Anuruddika Kumari Weerakoon Approved by Bryan A. Chin, Chair, Professor of Materials Engineering Minseo Park, Associate Professor of Physics Dong Joo (Daniel) Kim, Associate Professor of Materials Engineering Zhong Yang Cheng, Associate Professor of Materials Engineering Abstract Plants emit volatile organic compounds as a defensive mechanism to protect themselves from insects and pathogens. These volatile organic chemicals, also known as phytochemicals, are given off during the early stages of insect infestation and may be detected using a chemical sensor array. The chemiresistor sensor array, investigated in this study, consists of a silicon substrate, electroactive polymer based active layer and microelectronically fabricated interdigitated electrodes. The sensor array is inexpensive, easy to fabricate, and could be used for onsite detection of insect infestation. Compared to traditional methods of detecting insect infestation such as leaf inspection and insect traps, this method is quick, inexpensive and would not require trained personal. The sensor array investigated in this dissertation uses three types of polymers as active sensing layers; polythiophene, carbon/polymer and polyaniline. The polymer coatings were deposited onto the sensor platforms via drop casting and spin coating methods. The sensor array was exposed and found to be sensitive to a variety of phytochemicals including γ-terpinene, α- pinene, p-cymene, farnesene, limonene, and cis-hexenyl acetate. -
Polymer Based Chemical Sensor Array Fabricated with Conventional Microelectronic Processes
JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS, Vol. 12, No. 5, May 2010, p. 1147 - 1152 Polymer based chemical sensor array fabricated with conventional microelectronic processes M. KITSARAa,b, D. GOUSTOURIDISa, E. VALAMONTESc, P. OIKONOMOUa, K. BELTSIOSb, I. RAPTISa* aInstitute of Microelectronics, NCSR “Demokritos”, 15310, Athens, Greece bMaterials Science and Engineering Dept, University of Ioannina, Ioannina 45110 Greece cElectronics Engineering Dept, TEI of Athens, Egaleo 12243, Greece A polymer array fabricated on the same substrate with conventional microelectronic processes is introduced for gas sensing applications. The process is based on photolithographic processes and takes advantage of the balance between UV exposure dose, material tone and developers used. The sensing properties of the lithographically defined films in the array were characterized for various analytes through in situ monitoring of films swelling by white light reflectance spectroscopy. The sensing responses are post processed by Principal Component Analysis and the discrimination between analytes with similar and totally different analytes is presented. (Received January 4, 2010; accepted May 26, 2010) Keywords: Chemical sensors, Polymer deposition, Photolithography, Vapor sorption, Polymer swelling 1. Introduction providing bulk absorption. Vacuum deposition techniques are also possible methods of obtaining thin polymer films One of the most important problems in chemical including mostly sputtering [13], plasma polymerization sensor fabrication is the controlled deposition of the [14]. chemically sensitive layer on the transducer [1]. This In the present work a series of photosensitive problem becomes more critical in the case of sensor arrays polymeric materials is defined on the same substrate using where different sensing materials should be deposited on conventional lithographic techniques only. -
Highly Sensitive and Selective Chemiresistor Gas/Vapor Sensors Based on Polyaniline Nanocomposite: a Comprehensive Review
Journal of Science: Advanced Materials and Devices 1 (2016) 431e453 Contents lists available at ScienceDirect Journal of Science: Advanced Materials and Devices journal homepage: www.elsevier.com/locate/jsamd Review Article Highly sensitive and selective chemiresistor gas/vapor sensors based on polyaniline nanocomposite: A comprehensive review * Sadanand Pandey a, b, a Department of Applied Chemistry, University of Johannesburg, P.O. Box 17011, Doornfontien 2028, Johannesburg, South Africa b Centre for Nanomaterials Science Research, University of Johannesburg, South Africa article info abstract Article history: This review article directs particular attention to some current breakthrough developments in the area of Received 17 September 2016 gas sensors based on polyaniline (PANI) nanocomposite. Conducting polymers symbolize a paramount Received in revised form class of organic materials that boost the resistivity towards external stimuli. Nevertheless, PANI-based 11 October 2016 sensor experiences some disadvantages of relatively low reproducibility, selectivity, and stability. In Accepted 12 October 2016 order to overcome these restrictions, PANI was functionalised or incorporated with nanoparticles (NPs) Available online 18 October 2016 (metallic or bimetallic NPs, metal oxide NPs), carbon compounds (like CNT or graphene, chalcogenides, polymers), showing improved gas sensing characteristics. It has been suggested that hosteguest Keywords: Gas sensors chemistry combined with the utilization of organic and inorganic analog in nanocomposite may allow for Polyaniline improvement of the sensor performance due to synergetic/complementary effects. Herein, we summa- Sensitivity rize recent advantages in PANI nanocomposite preparation, sensor construction, and sensing properties Chemiresistive response of various PANI nanocomposite-based gas/vapor sensors, such as NH3,H2, HCl, NO2,H2S, CO, CO2,SO2, Metal oxide nanoparticles LPG, vapor of volatile organic compounds (VOCs) as well as chemical warfare agents (CWAs). -
Two-Dimensional Chemiresistive Covalent Organic Framework with 8 High Intrinsic Conductivity 9 10 Zheng Meng,1 Robert M
Page 1 of 11 Journal of the American Chemical Society 1 2 3 4 5 6 7 Two-Dimensional Chemiresistive Covalent Organic Framework with 8 High Intrinsic Conductivity 9 10 Zheng Meng,1 Robert M. Stolz,1 Katherine A. Mirica*1 11 12 1Department of Chemistry, Burke Laboratory, Dartmouth College, Hanover, New Hampshire, 03755 13 14 15 16 Supporting Information Placeholder 17 18 ABSTRACT: This paper describes the synthesis of a novel intrinsically conductive two-dimensional (2D) covalent organic 19 framework (COF) through the aromatic annulation of 2,3,9,10,16,17,23,24-octa-aminophthalocyanine nickel(II) and pyrene- 20 4,5,9,10-tetraone. The intrinsic bulk conductivity of the COF material (termed COF-DC-8) reached 2.5110-3 S/m, and increased 21 by three orders of magnitude with I2 doping. Electronic calculations revealed an anisotropic band structure, with the possibility 22 for significant contribution from out-of-plane charge-transport to the intrinsic bulk conductivity. Upon integration into 23 chemiresistive devices, this conductive COF showed excellent responses to various reducing and oxidizing gases, including NH3, 24 H2S, NO, and NO2, with parts-per-billion (ppb) level of limits of detection (LOD for NH3=70 ppb, for H2S=204 ppb, for NO=5 25 ppb, and for NO2=16 ppb based on 1.5 min exposure). Electron paramagnetic resonance spectroscopy and X-ray photoelectron 26 spectroscopy studies suggested that the chemiresistive response of the COF-DC-8 involves charge transfer interactions 27 between the analyte and nickelphthalocyanine component of the framework. 28 29 30 INTRODUCTION molecular solids,11 and conductive coordination polymers),5b, 31 5c, 12 the strategy for maximizing the intrinsic bulk 32 The development of chemically robust, porous, and conductivity of COFs can leverage through-bond and 33 electrically conductive nanomaterials drives progress in 1 2 3 through-space charge transport characteristics. -
Wearable RF Resonant Gaseous Chemical Sensor Array
Wearable RF Resonant Gaseous Chemical Sensor Array by Wei Ting Chen A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Doctor of Philosophy in Electrical and Computer Engineering Waterloo, Ontario, Canada, 2015 © Wei Ting Chen 2015 AUTHOR’S DECLARATION I hereby declare that I am the sole author of the thesis. This is the true copy of the thesis, including any required final revision, as accepted by the examiners. I understand that my thesis may be made electronically available to the public. ii ABSTRACT Biomarker detection is a major engineering goal that enables numerous applications in the fields of biomedical and law enforcement. By monitoring the conditions of the subject with a dedicated biomarker detection system, the health condition as well as other biomedical parameters of interest can be evaluated in real-time, and further preemptive measures can be taken to improve the safety and chance of survival of the subject. In the pursuit of a better biomarker monitoring system, the ubiquitous and unobtrusiveness of the sensor is proven to be a critical design factor that directly impacts the subject’s safety and the comfort level. The thesis presents the research results obtained for a novel single-port, multi-pole resonant sensor array fabricated on a novel Frame-Flex flexible substrate for a wearable epidermal ethanol sensor system in an attempt to achieve minimal obtrusiveness to the subject under testing. In this system, individual sensors carrying different functional polymers are brought together to share the same electrical input and output, and their resonance behavior along with inter-resonator coupling are captured through a single reflected array response curve (S11). -
Electronic Nose for Analysis of Volatile Organic Compounds in Air and Exhaled Breath
University of Louisville ThinkIR: The University of Louisville's Institutional Repository Electronic Theses and Dissertations 5-2017 Electronic nose for analysis of volatile organic compounds in air and exhaled breath. Zhenzhen Xie University of Louisville Follow this and additional works at: https://ir.library.louisville.edu/etd Part of the Engineering Commons Recommended Citation Xie, Zhenzhen, "Electronic nose for analysis of volatile organic compounds in air and exhaled breath." (2017). Electronic Theses and Dissertations. Paper 2707. https://doi.org/10.18297/etd/2707 This Doctoral Dissertation is brought to you for free and open access by ThinkIR: The University of Louisville's Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of the author, who has retained all other copyrights. For more information, please contact [email protected]. ELECTRONIC NOSE FOR ANALYSIS OF VOLATILE ORGANIC COMPOUNDS IN AIR AND EXHALED BREATH By Zhenzhen Xie M.S., University of Louisville, 2013 B.S., Heilongjiang University, 2011 A Dissertation Submitted to the Faculty of the J. B. Speed School of Engineering University of Louisville in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Chemical Engineering Department of Chemical Engineering Louisville, KY May 2017 ELECTRONIC NOSE FOR ANALYSIS OF VOLATILE ORGANIC COMPOUNDS IN AIR AND EXHALED BREATH by Zhenzhen Xie B.S., Heilongjiang University, 2011 M.S., University of Louisville, 2013 A Dissertation Approved On 04/03/2017 by the Following Committee: ___________________________________ Dr. Xiao-An Fu, Dissertation Director ___________________________________ Dr. -
Microarray Study of Temperature Dependent Sensitivity and Selectivity of Metal/Oxide Sensing Interfaces
Microarray study of temperature dependent sensitivity and selectivity of metal/oxide sensing interfaces J. Tiffany, R. E. Cavicchi, S. Semancik National Institute of Standards and Technology Gaithersburg, MD 20899 ABSTRACT Conductometric gas microsensors offer the benefits of ppm-level sensitivity, real-time data, simple interfacing to electronics hardware, and low power consumption. The type of device we have been exploring consists of a sensor film deposited on a "microhotplate"- a 100 micron platform with built-in heating (to activate reactions on the sensing surface) and thermometry. We have been using combinatorial studies of 36-element arrays to characterize the relationship between sensor film composition, operating temperature, and response, as measured by the device's sensitivity and selectivity. Gases that have been tested on these arrays include methanol, ethanol, dichloromethane, propane, methane, acetone, benzene, hydrogen, and carbon monoxide, and are of interest in the management of environmental waste sites. These experiments compare tin oxide films modified by catalyst overlayers, and ultrathin metal seed layers. The seed layers are used as part of a chemical vapor deposition process that uses each array element's microheater to activate the deposition of SnO2, and control its microstructure. Low coverage (2 nm) catalytic metals (Pd, Cu, Cr, In, Au) are deposited on the oxides by masked evaporation or sputtering. This presentation demonstrates the value of an array-based approach for developing film processing methods, measuring performance characteristics, and establishing reproducibility. It also illustrates how temperature-dependent response data for varied metal/oxide compositions can be used to tailor a microsensor array for a given application. -
Development of a Nanocomposite Chemiresistor Sensor Based on Π
Sensors & Actuators: B. Chemical 271 (2018) 353–357 Contents lists available at ScienceDirect Sensors and Actuators B: Chemical journal homepage: www.elsevier.com/locate/snb Development of a nanocomposite chemiresistor sensor based on π- conjugated azo polymer and graphene blend for detection of dissolved T oxygen ⁎ André Olean-Oliveira, Marcos F.S. Teixeira Department of Chemistry and Biochemistry – School of Science and Technology, University of State of Sao Paulo (UNESP), Rua Roberto Simonsen, 305, CEP 19060-900 Presidente Prudente, SP, Brazil ARTICLE INFO ABSTRACT Keywords: The present paper describes the electrochemical impedance activity of a hybrid film with graphene and poly(azo- Azo conductive polymers Bismarck Brown Y) as the chemiresistor material. This nanocomposite film exhibits interesting properties based Chemiresistor on the redox properties of the azo polymer combined with the great electronic conductivity and stability of Nanocomposite graphene. Electrochemical impedance spectroscopy at the poly(azo-BBY)-rGO electrode in solutions with dif- Oxygen sensor ferent dissolved O concentrations revealed that the resistance values are very sensitive to variations in the O Graphene 2 2 concentration. 1. Introduction 2. Experimental Chemiresistors represent a new class and emerging area of electro- All measurements were performed in a conventional electro- chemical sensors [1,2]. Their operation is based on the change in the chemical cell containing three electrodes: a saturated calomel electrode electrical resistance of the material due to chemical interaction with the (SCE) as the reference; platinum wire as the counter electrode and a analyte [3]. A variety of materials have been investigated for applica- fluoride-doped tin oxide (FTO) electrode coated with a poly(azo-BBY)- tion as chemiresistors, such as semiconductor metal oxides [4], con- rGO blend as the working electrode (1.0 cm2). -
A Possible Roadmap for NEMS Sensors
A Possible Roadmap for NEMS Sensors Cornel Cobianu and Bogdan Serban Sensors and Wireless Laboratory Bucharest Honeywell Romania SRL October 4-5th , 2011 International Symposium for Advanced Hybrid Nano-Devices Outline • Milestones of Nanotechnology Evolution • From MEMS to NEMS • Top-Down • Bottom-Up • Mixed Top-Down-Bottom-Up • Honeywell contributions • Conclusions 4-5 October 2011 International Symposium on Advanced Hybrid Nano Devices-Tokyo MilestonesMilestones ofof NanotechnologyNanotechnology EvolutionEvolution Visionary scientists : 1959 : Richard Feynman : “There is plenty of room at the bottom” 1965 : Gordon Moore : “IC complexity will double every 12 months” 1974 : Norio Taniguchi: “Nanotechnology” 1986: Eric Drexler : Engines of creation. The Coming Era of Nanotechnology” Governmental plans: 2000+ : USA’s National Nanotechnology Initiative 2011-2020 : 6 EU FET Research flagship Initiatives (ex. “Guardian Angels”) 2011-2015 : Japan :The 4th S&T Basic Plan( 2011-2015): basic research “Bottom-Up-Top-Down”- a synergetic interaction in S&T policy Why nanotechnology is important ? 4-5 October 2011 International Symposium on Advanced Hybrid Nano Devices-Tokyo MegatrandsMegatrands andand NanotechnologyNanotechnology Ageing Population Globalization Health and environment awareness Urbanization (smart-eco city) Network organizing Technology progress- Megatrends- Society Needs -Technology progress ! 4-5 October 2011 International Symposium on Advanced Hybrid Nano Devices-Tokyo NanotechnologyNanotechnology forfor Society’sSociety’s needsneeds Mihail. C. Roco “ US National Nanotechnology Initiative, 2000” and examples from us 1. Passive Nanostructures: GMR sensors Ag nano-ink for bulk applications, CNT in textile Ultradeformable nanomaterial-medicine TiO2, ZnO in sunscreen 2. Active Nanodevices and Circuits: Nanoelectronics era after 2004 3. Complex Nanomachines : Advanced Research! Future Guardian Angel 4. Productive Nanosystems: Basic research ! Future Systems of nanosystems. -
Development of Cross-Reactive Sensors Array: Practical
i DEVELOPMENT OF CROSS-REACTIVE SENSORS ARRAY: PRACTICAL APPROACH FOR ION DETECTION IN AQUEOUS MEDIA Yuanli Liu A Dissertation Submitted to the Graduate College of Bowling Green State University in partial fulfilment of the requirements for the degree of DOCTOR OF PHILOSOPHY December 2012 Committee: Dr. Pavel Anzenbacher, Advisor Dr. Junfeng Shang Graduate Faculty Representative Dr. Peter Lu Dr. Thomas H. Kinstle ii ABSTRACT Dr. Pavel Anzenbacher Jr., Advisor Chemical sensing platforms that can sensitively, rapidly and accurately detect specific chemical species in various operating media are of great importance, especially in complex aqueous environments. Chemical sensor array coupled with chemometrics methods provide an impressive option for high performance chemical sensing. The efforts of this dissertation focus on the application of fluorimetric sensors array in ions detection in complex aqueous media. This dissertation first presents the various signal transduction mechanisms that involve in optical chemosensor design. The sensing elements are created by embedding chemosensors into polymer matrix, then they are arrayed in microtiter plate containing multiple wells. The chemometrics methods used for analyzing the multivariate signal arising from the sensor array are introduced in detail. In the part of practical application of sensors array. The first work aims to detect ions in water by a simple sensors array contains six off-the shelf chemosensors. It turns out that the sensors array is able to recognize cations, anions and ion-pairs with recognition efficiency (6:35) and higher than 93% classification accuracy in water at a wide range of pH (5-9). Such a high discrimination capacity was generally achieved only with structurally complex chemical sensors.