Peter Goddard with Hitoshi Murayama and Hirosi Ooguri
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Stephen Hawking (1942–2018) World-Renowned Physicist Who Defied the Odds
COMMENT OBITUARY Stephen Hawking (1942–2018) World-renowned physicist who defied the odds. hen Stephen Hawking was speech synthesizer processed his words and diagnosed with motor-neuron generated the androidal accent that became disease at the age of 21, it wasn’t his trademark. In this way, he completed his Wclear that he would finish his PhD. Against best-selling book A Brief History of Time all expectations, he lived on for 55 years, (Bantam, 1988), which propelled him to becoming one of the world’s most celebrated celebrity status. IAN BERRY/MAGNUM scientists. Had Hawking achieved equal distinction Hawking, who died on 14 March 2018, was in any other branch of science besides cos- born in Oxford, UK, in 1942 to a medical- mology, it probably would not have had the researcher father and a philosophy-graduate same resonance with a worldwide public. As mother. After attending St Albans School I put it in The Telegraph newspaper in 2007, near London, he earned a first-class degree “the concept of an imprisoned mind roaming in physics from the University of Oxford. He the cosmos” grabbed people’s imagination. began his research career in 1962, enrolling In 1965, Stephen married Jane Wilde. as a graduate student in a group at the Uni- After 25 years of marriage, and three versity of Cambridge led by one of the fathers children, the strain of Stephen’s illness of modern cosmology, Dennis Sciama. and of sharing their home with a team of The general theory of relativity was at that nurses became too much and they sepa- time undergoing a renaissance, initiated in rated, divorcing in 1995. -
Prvních Deset Abelových Cen Za Matematiku
Prvních deset Abelových cen za matematiku The first ten Abel Prizes for mathematics [English summary] In: Michal Křížek (author); Lawrence Somer (author); Martin Markl (author); Oldřich Kowalski (author); Pavel Pudlák (author); Ivo Vrkoč (author); Hana Bílková (other): Prvních deset Abelových cen za matematiku. (English). Praha: Jednota českých matematiků a fyziků, 2013. pp. 87–88. Persistent URL: http://dml.cz/dmlcz/402234 Terms of use: © M. Křížek © L. Somer © M. Markl © O. Kowalski © P. Pudlák © I. Vrkoč Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use. This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz Summary The First Ten Abel Prizes for Mathematics Michal Křížek, Lawrence Somer, Martin Markl, Oldřich Kowalski, Pavel Pudlák, Ivo Vrkoč The Abel Prize for mathematics is an international prize presented by the King of Norway for outstanding results in mathematics. It is named after the Norwegian mathematician Niels Henrik Abel (1802–1829) who found that there is no explicit formula for the roots of a general polynomial of degree five. The financial support of the Abel Prize is comparable with the Nobel Prize, i.e., about one million American dollars. Niels Henrik Abel (1802–1829) M. Křížek a kol.: Prvních deset Abelových cen za matematiku, JČMF, Praha, 2013 87 Already in 1899, another famous Norwegian mathematician Sophus Lie proposed to establish an Abel Prize, when he learned that Alfred Nobel would not include a prize in mathematics among his five proposed Nobel Prizes. -
1 Getting a Knighthood
Getting a knighthood (Bristol, June 1996) It's unreal, isn't it? I've always had a strong sense of the ridiculous, of the absurd, and this is working overtime now. Many of you must have been thinking, ‘Why Berry?’ Well, since I am the least knightly person I know, I have been asking the same question, and although I haven't come up with an answer I can offer a few thoughts. How does a scientist get this sort of national recognition? One way is to do something useful to the nation, that everyone agrees is important to the national well- being or even survival. Our home-grown example is of course Sir Charles Frank's war work. Or, one can sacrifice several years of one's life doing high-level scientific administration, not always received with gratitude by the scientific hoi polloi but important to the smooth running of the enterprise. Sir John Kingman is in this category. Another way – at least according to vulgar mythology – is to have the right family background. Well, my father drove a cab in London and my mother ruined her eyes as a dressmaker. Another way is to win the Nobel Prize or one of the other huge awards like the Wolf or King Faisal prizes, like Sir George Porter as he then was, or Sir Michael Atiyah. The principle here I suppose is, to those that have, more shall be given. I don't qualify on any of these grounds. The nearest I come is to have have won an fairly large number of smaller awards. -
AHMED H. ZEWAIL 26 February 1946 . 2 August 2016
AHMED H. ZEWAIL 26 february 1946 . 2 august 2016 PROCEEDINGS OF THE AMERICAN PHILOSOPHICAL SOCIETY VOL. 162, NO. 2, JUNE 2018 biographical memoirs t is often proclaimed that a stylist is someone who does and says things in memorable ways. From an analysis of his experimental Iprowess, his written contributions, his lectures, and even from the details of the illustrations he used in his published papers or during his lectures to scientific and other audiences, Ahmed Zewail, by this or any other definition, was a stylist par excellence. For more than a quarter of a century, I interacted with Ahmed (and members of his family) very regularly. Sometimes he and I spoke several times a week during long-distance calls. Despite our totally different backgrounds we became the strongest of friends, and we got on with one another like the proverbial house on fire. We collaborated scientifi- cally and we adjudicated one another’s work, as well as that of others. We frequently exchanged culturally interesting stories. We each relished the challenge of delivering popular lectures. In common with very many others, I deem him to be unforgettable, for a variety of different reasons. He was one of the intellectually ablest persons that I have ever met. He possessed elemental energy. He executed a succession of brilliant experiments. And, almost single-handedly, he created the subject of femtochemistry, with all its magnificent manifestations and ramifications. From the time we first began to exchange ideas, I felt a growing affinity for his personality and attitude. This was reinforced when I told him that, ever since I was a teenager, I had developed a deep interest in Egyptology and a love for modern Egypt. -
Cadenza Document
2017/18 Whole Group Timetable Semester 1 Mathematics Module CMIS Room Class Event ID Code Module Title Event Type Day Start Finish Weeks Lecturer Room Name Code Capacity Size 3184417 ADM003 Yr 1 Basic Skills Test Test Thu 09:00 10:00 18-20 Tonks, A Dr Fielding Johnson South Wing FJ SW 485 185 Basement Peter Williams PW Lecture Theatre 3198490 ADM003 Yr 1 Basic Skills Test Test Thu 09:00 10:00 18-20 Leschke K Dr KE 323, 185 KE 101, ADR 227, MSB G62, KE 103 3203305 ADM003 Yr 1 Basic Skills Test Test Thu 09:00 10:00 18-20 Hall E J C Dr Attenborough Basement ATT LT1 204 185 Lecture Theatre 1 3216616 ADM005 Yr 2 Basic Skills Test Test Fri 10:00 11:00 18 Brilliantov N BEN 149 Professor F75b, MSB G62, KE 103, KE 323 2893091 MA1012 Calculus & Analysis 1 Lecture Mon 11:00 12:00 11-16, Tonks, A Dr Ken Edwards First Floor KE LT1 249 185 18-21 Lecture Theatre 1 2893092 MA1012 Calculus & Analysis 1 Lecture Tue 11:00 12:00 11-16, Tonks, A Dr Attenborough Basement ATT LT1 204 185 18-21 Lecture Theatre 1 2893129 MA1061 Probability Lecture Thu 10:00 11:00 11-16, Hall E J C Dr Ken Edwards First Floor KE LT1 249 185 18-21 Lecture Theatre 1 2893133 MA1061 Probability Lecture Fri 11:00 12:00 11-16, Hall E J C Dr Bennett Upper Ground Floor BEN LT1 244 185 18-21 Lecture Theatre 1 2902659 MA1104 ELEMENTS OF NUMBER Lecture Tue 13:00 14:00 11-16, Goedecke J Ken Edwards Ground Floor KE LT3 150 100 THEORY 18-21 Lecture Theatre 3 2902658 MA1104 ELEMENTS OF NUMBER Lecture Wed 10:00 11:00 11-16, Goedecke J Astley Clarke Ground Floor AC LT 110 100 THEORY 18-21 Lecture -
The Past Decade and the Future of Cosmology and Astrophysics
Towards a New Enlightenment? A Transcendent Decade The Past Decade and the Future of Cosmology and Astrophysics Martin Rees Martin Rees is a cosmologist and space scientist. After studying at Cambridge University, he held various posts in the UK and elsewhere, before returning to Cambridge, where he has been a professor, Head of the Institute of Astronomy, and Master of Trinity College. He has contributed to our understanding of galaxy formation, black holes, high-energy phenomena in the cosmos, and the concept of the multiverse. He has received substantial international recognition for his research. He has been much involved in science-related policy, being a member of the UK’s House of Lords and (during 2005–10) President of the Royal Society, the independent scientific academy of the UK Martin Rees and the Commonwealth. Apart from his research publications, he writes and University of Cambridge lectures widely for general audiences, and is the author of eight books, the most recent being On the Future (2018). Recommended books: Universe, Martin Rees, Dorling Kindersley, 2012; On the Future, Martin Rees, Princeton University Press, 2018. In the last decade, there has been dramatic progress in exploring the cosmos. Highlights include close-up studies of the planets and moons of our Solar System; and (even more dramatic) the realization that most stars are orbited by planets, and that there may be millions of Earth-like planets in our Galaxy. On a still larger scale, we have achieved a better understanding of how galaxies have developed, over 13.8 billion years of cosmic history, from primordial fluctuations. -
TRINITY COLLEGE Cambridge Trinity College Cambridge College Trinity Annual Record Annual
2016 TRINITY COLLEGE cambridge trinity college cambridge annual record annual record 2016 Trinity College Cambridge Annual Record 2015–2016 Trinity College Cambridge CB2 1TQ Telephone: 01223 338400 e-mail: [email protected] website: www.trin.cam.ac.uk Contents 5 Editorial 11 Commemoration 12 Chapel Address 15 The Health of the College 18 The Master’s Response on Behalf of the College 25 Alumni Relations & Development 26 Alumni Relations and Associations 37 Dining Privileges 38 Annual Gatherings 39 Alumni Achievements CONTENTS 44 Donations to the College Library 47 College Activities 48 First & Third Trinity Boat Club 53 Field Clubs 71 Students’ Union and Societies 80 College Choir 83 Features 84 Hermes 86 Inside a Pirate’s Cookbook 93 “… Through a Glass Darkly…” 102 Robert Smith, John Harrison, and a College Clock 109 ‘We need to talk about Erskine’ 117 My time as advisor to the BBC’s War and Peace TRINITY ANNUAL RECORD 2016 | 3 123 Fellows, Staff, and Students 124 The Master and Fellows 139 Appointments and Distinctions 141 In Memoriam 155 A Ninetieth Birthday Speech 158 An Eightieth Birthday Speech 167 College Notes 181 The Register 182 In Memoriam 186 Addresses wanted CONTENTS TRINITY ANNUAL RECORD 2016 | 4 Editorial It is with some trepidation that I step into Boyd Hilton’s shoes and take on the editorship of this journal. He managed the transition to ‘glossy’ with flair and panache. As historian of the College and sometime holder of many of its working offices, he also brought a knowledge of its past and an understanding of its mysteries that I am unable to match. -
Banknote Character Advisory Committee Minutes
BANKNOTE CHARACTER ADVISORY COMMITTEE (1) MINUTES Bank of England, Threadneedle Street 13.45 ‐ 15.00: 14 March 2018 Advisory Committee Members: Ben Broadbent (Chair), Sir David Cannadine, Victoria Cleland, Sandy Nairne, Baroness Lola Young Also present: Head of Banknote Resilience Programme Manager, Banknote Transformation Programme Senior Manager, Banknote Development Secretary to the Committee Minutes 1 Introduction and background 1.1 The Chair welcomed the Committee. He reminded members that their discussions should remain confidential. 1.2 Following the successful launch of the £5 and £10, the Bank was considering plans to launch a polymer £50. Governors and Court had approved a polymer £50 and the Banknote Character Advisory Committee had been re‐convened. 1.3 The Chair advised that the Chancellor’s Spring Statement the previous day had announced a call for evidence relating to the future of cash. The results of this exercise could impact the future of the £50 and it would be inappropriate for the Bank to press forward with a polymer £50 while the Government was considering the future denominational mix. 1.4 The closing date for receipt of evidence is 5 June and a decision might be expected around the Autumn budget. If HM Treasury decided to continue with the denomination and the Bank chose to develop a polymer £50, the Bank could presumptively make an announcement in early 2019 to avoid the public nomination process spanning Christmas 2018. 1 2 Equality considerations for selecting the field 2.1 The Bank reminded the Committee that equality considerations need to be consciously considered during the character selection process. -
Review of the Year 2009/10
Invest in future scientific leaders and in innovation Review of the year 2009/10 1 Celebrating 350 years Review of the year 2009/10 02 Review of the year 2009/10 President’s foreword Executive Secretary’s report Review of the year 2009/10 03 Contents President’s foreword ..............................................................02 Inspire an interest in the joy, wonder Executive Secretary’s report ..................................................03 and excitement of scientific discovery ..................................16 Invest in future scientific leaders and in innovation ..............04 Seeing further: the Royal Society celebrates 350 years .......20 Influence policymaking with the best scientific advice ........08 Summarised financial statements .........................................22 Invigorate science and mathematics education ...................10 Income and expenditure statement ......................................23 Increase access to the best science internationally ..............12 Fundraising and support ........................................................24 List of donors ..........................................................................25 President’s Executive foreword Secretary’s report This year we have focused on the excellent This has been a remarkable year for the Society, our opportunity afforded by our 350th anniversary 350th, and we have mounted a major programme not only to promote the work of the Society to inspire minds, young and old alike, with the but to raise the profile of science -
The Atiyah-Singer Index Theorem, Formulated and Proved in 1962–3, Is a Vast Generalization to Arbitrary Elliptic Operators on Compact Manifolds of Arbitrary Dimension
THE ATIYAH-SINGER INDEX THEOREM DANIEL S. FREED In memory of Michael Atiyah Abstract. The Atiyah-Singer index theorem, a landmark achievement of the early 1960s, brings together ideas in analysis, geometry, and topology. We recount some antecedents and motivations; various forms of the theorem; and some of its implications, which extend to the present. Contents 1. Introduction 2 2. Antecedents and motivations from algebraic geometry and topology 3 2.1. The Riemann-Roch theorem 3 2.2. Hirzebruch’s Riemann-Roch and Signature Theorems 4 2.3. Grothendieck’s Riemann-Roch theorem 6 2.4. Integrality theorems in topology 8 3. Antecedents in analysis 10 3.1. de Rham, Hodge, and Dolbeault 10 3.2. Elliptic differential operators and the Fredholm index 12 3.3. Index problems for elliptic operators 13 4. The index theorem and proofs 14 4.1. The Dirac operator 14 4.2. First proof: cobordism 16 4.3. Pseudodifferential operators 17 4.4. A few applications 18 4.5. Second proof: K-theory 18 5. Variations on the theme 19 5.1. Equivariant index theorems 19 5.2. Index theorem on manifolds with boundary 21 5.3. Real elliptic operators 22 5.4. Index theorems for Clifford linear operators 22 arXiv:2107.03557v1 [math.HO] 8 Jul 2021 5.5. Families index theorem 24 5.6. Coverings and von Neumann algebras 25 6. Heat equation proof 26 6.1. Heat operators, zeta functions, and the index 27 6.2. The local index theorem 29 6.3. Postscript: Whence the Aˆ-genus? 31 7. Geometric invariants of Dirac operators 32 7.1. -
Works of Love
reader.ad section 9/21/05 12:38 PM Page 2 AMAZING LIGHT: Visions for Discovery AN INTERNATIONAL SYMPOSIUM IN HONOR OF THE 90TH BIRTHDAY YEAR OF CHARLES TOWNES October 6-8, 2005 — University of California, Berkeley Amazing Light Symposium and Gala Celebration c/o Metanexus Institute 3624 Market Street, Suite 301, Philadelphia, PA 19104 215.789.2200, [email protected] www.foundationalquestions.net/townes Saturday, October 8, 2005 We explore. What path to explore is important, as well as what we notice along the path. And there are always unturned stones along even well-trod paths. Discovery awaits those who spot and take the trouble to turn the stones. -- Charles H. Townes Table of Contents Table of Contents.............................................................................................................. 3 Welcome Letter................................................................................................................. 5 Conference Supporters and Organizers ............................................................................ 7 Sponsors.......................................................................................................................... 13 Program Agenda ............................................................................................................. 29 Amazing Light Young Scholars Competition................................................................. 37 Amazing Light Laser Challenge Website Competition.................................................. 41 Foundational -
Program Cincinnati Solving the Biggest Challenges in the Digital Universe
July 31-Aug 3, 2019 PROGRAM CINCINNATI SOLVING THE BIGGEST CHALLENGES IN THE DIGITAL UNIVERSE. At Akamai, we thrive on solving complex challenges for businesses, helping them digitally transform, outpace competitors, and achieve their goals. Cloud delivery and security. Video streaming. Secure application access. Our solutions make it easier for many of the world’s top brands to deliver the best, most secure digital experiences — in industries like entertainment, sports, gaming, nance, retail, software, and others. We helped broadcasters deliver high-quality live streaming during the 2018 Pyeongchang Games. We mitigated a record-breaking, memcached-fueled 1.3 Tbps DDoS attack. We’ve managed Black Friday web trafc for the biggest retailers on the planet. SECURE AND GROW YOUR BUSINESS. AKAMAI.COM WELCOME TO MAA MATHFEST! The MAA is pleased that you have joined us in Cincinnati for the math event of the summer. What are my favorite things to do at MAA MathFest? Attend the Invited Addresses! When I think back on prior MAA MathFest meetings, the Invited Addresses are the talks that I still remember and that have renewed my excitement for mathematics. This year will continue that tradition. We have excellent speakers presenting on a variety of exciting topics. If you see an Invited Address title that looks interesting, go to that talk. It will be worth it. Remember to attend the three 20-minute talks given by the MAA Adler Teaching Award winners on Friday afternoon. Jumpstart your passion for teaching and come hear these great educators share their TABLE OF CONTENTS insights on teaching, connecting with students, and the answer to “life, the universe and everything” (okay, maybe they won’t talk about 3 EARLE RAYMOND HEDRICK LECTURE SERIES the last item, but I am sure they will give inspiring and motivating presentations).