Stephen Hawking (1942–2018) World-Renowned Physicist Who Defied the Odds

Total Page:16

File Type:pdf, Size:1020Kb

Stephen Hawking (1942–2018) World-Renowned Physicist Who Defied the Odds COMMENT OBITUARY Stephen Hawking (1942–2018) World-renowned physicist who defied the odds. hen Stephen Hawking was speech synthesizer processed his words and diagnosed with motor-neuron generated the androidal accent that became disease at the age of 21, it wasn’t his trademark. In this way, he completed his Wclear that he would finish his PhD. Against best-selling book A Brief History of Time all expectations, he lived on for 55 years, (Bantam, 1988), which propelled him to becoming one of the world’s most celebrated celebrity status. IAN BERRY/MAGNUM scientists. Had Hawking achieved equal distinction Hawking, who died on 14 March 2018, was in any other branch of science besides cos- born in Oxford, UK, in 1942 to a medical- mology, it probably would not have had the researcher father and a philosophy-graduate same resonance with a worldwide public. As mother. After attending St Albans School I put it in The Telegraph newspaper in 2007, near London, he earned a first-class degree “the concept of an imprisoned mind roaming in physics from the University of Oxford. He the cosmos” grabbed people’s imagination. began his research career in 1962, enrolling In 1965, Stephen married Jane Wilde. as a graduate student in a group at the Uni- After 25 years of marriage, and three versity of Cambridge led by one of the fathers children, the strain of Stephen’s illness of modern cosmology, Dennis Sciama. and of sharing their home with a team of The general theory of relativity was at that nurses became too much and they sepa- time undergoing a renaissance, initiated in rated, divorcing in 1995. Jane wrote a book part by Roger Penrose at Birkbeck College, about their life together, Travelling to Infinity London, who had introduced new math- (Alma, 2008), and both she and Stephen ematical techniques. These showed that were happy with the telling of their story generic gravitational collapse would lead to in the 2014 film The Theory of Everything singularities — infinities that signal the need (although it elides and conflates Stephen’s for new physics. was that the radiation would cause black science). After a second, briefer marriage, The implications for black holes and holes to ‘evaporate’. This process would be Stephen was supported by an entourage of the Big Bang were developed by Hawking unobservably slow, except in ‘mini-holes’ assistants, as well as his family. in a series of papers collated in the 1973 the size of atoms — and these are thought Stephen remained remarkably positive monograph The Large Scale Structure not to exist. Yet Hawking radiation — and throughout his life, despite the immense of Space-Time (Cambridge University the related issue of whether information frustration that his condition clearly caused. Press), co-authored with George Ellis, a that falls into a black hole is lost or is some- He enjoyed theatre and opera trips, and he near-contemporary who had also been a how recoverable from the radiation — was a seemed energized rather than exhausted student of Sciama. Especially important profound issue, and one that still engenders by his travels to all parts of the world, as was the realization that the area of black controversy among theoretical physicists. well as by his regular trips to the California holes’ horizons (‘one-way membranes’ that Indeed, theorist Andrew Strominger at Institute of Technology in Pasadena. He shroud the singularities, and from within Harvard University in Cambridge, Massa- retained robust common sense and a sense which nothing can escape) could never chusetts, said in 2016 that one of Hawking’s of humour, expressed forceful opinions, decrease. The analogy with entropy — a papers on the subject (S. W. Hawking supported political causes and was happy to measure of disorder that likewise can Phys. Rev. D 14, 2460–2473; 1976) had engage with the media, despite its insistent never decrease — was developed further caused “more sleepless nights among theo- attention. His comments gained outsized by physicist Jacob Bekenstein. retical physicists than any paper in history”. attention even on subjects in which he was These findings gained Hawking election By the end of the 1970s, Hawking had not a specialist, such as philosophy and the to the Royal Society in London in 1974, at been appointed to the Lucasian Chair dangers of artificial intelligence. the age of 32. By then, he was so frail that of Mathematics at Cambridge (former Stephen’s expectations when he was both movement and speech were difficult, incumbents include Isaac Newton and Paul diagnosed dropped to zero; he said that and most of us suspected that his days in Dirac); he held the post until he retired in every thing that had happened since had front-line research were numbered. But in 2009. During these years, in which his focus been a bonus. And what a bonus — for phys- that same year, he came up with his most shifted to the quantum aspects of the Big ics, for the millions enlightened by his books distinctive contribution to science: Hawking Bang, the issue of information loss in black and for the even larger number inspired by radiation. holes continued to challenge him. his achievement against all the odds. ■ By linking quantum theory and gravity, In 1985, Stephen underwent a Hawking showed that a black hole would not trache otomy, which removed his already Martin Rees is Astronomer Royal of the be completely black, but would radiate with limited powers of speech. He was able United Kingdom. He was a student in a well-defined temperature that depended to control a cursor on a screen and type Dennis Sciama’s research group at the inversely on its mass (S. W. Hawking Nature out sentences — albeit with increasingly University of Cambridge at the same time as 248, 30–31; 1974). Black-hole entropy was painful slowness (first with his hand, and Stephen Hawking. more than just an analogy. The implication eventually only with a cheek muscle). A e-mail: [email protected] 444 | NATURE | VOL 555 | 22 MARCH©20 201818 Mac millan Publishers Li mited, part of Spri nger Nature. All ri ghts reserved. .
Recommended publications
  • CERN Celebrates Discoveries
    INTERNATIONAL JOURNAL OF HIGH-ENERGY PHYSICS CERN COURIER VOLUME 43 NUMBER 10 DECEMBER 2003 CERN celebrates discoveries NEW PARTICLES NETWORKS SPAIN Protons make pentaquarks p5 Measuring the digital divide pl7 Particle physics thrives p30 16 KPH impact 113 KPH impact series VISyN High Voltage Power Supplies When the objective is to measure the almost immeasurable, the VISyN-Series is the detector power supply of choice. These multi-output, card based high voltage power supplies are stable, predictable, and versatile. VISyN is now manufactured by Universal High Voltage, a world leader in high voltage power supplies, whose products are in use in every national laboratory. For worldwide sales and service, contact the VISyN product group at Universal High Voltage. Universal High Voltage Your High Voltage Power Partner 57 Commerce Drive, Brookfield CT 06804 USA « (203) 740-8555 • Fax (203) 740-9555 www.universalhv.com Covering current developments in high- energy physics and related fields worldwide CERN Courier (ISSN 0304-288X) is distributed to member state governments, institutes and laboratories affiliated with CERN, and to their personnel. It is published monthly, except for January and August, in English and French editions. The views expressed are CERN not necessarily those of the CERN management. Editor Christine Sutton CERN, 1211 Geneva 23, Switzerland E-mail: [email protected] Fax:+41 (22) 782 1906 Web: cerncourier.com COURIER Advisory Board R Landua (Chairman), P Sphicas, K Potter, E Lillest0l, C Detraz, H Hoffmann, R Bailey
    [Show full text]
  • AHMED H. ZEWAIL 26 February 1946 . 2 August 2016
    AHMED H. ZEWAIL 26 february 1946 . 2 august 2016 PROCEEDINGS OF THE AMERICAN PHILOSOPHICAL SOCIETY VOL. 162, NO. 2, JUNE 2018 biographical memoirs t is often proclaimed that a stylist is someone who does and says things in memorable ways. From an analysis of his experimental Iprowess, his written contributions, his lectures, and even from the details of the illustrations he used in his published papers or during his lectures to scientific and other audiences, Ahmed Zewail, by this or any other definition, was a stylist par excellence. For more than a quarter of a century, I interacted with Ahmed (and members of his family) very regularly. Sometimes he and I spoke several times a week during long-distance calls. Despite our totally different backgrounds we became the strongest of friends, and we got on with one another like the proverbial house on fire. We collaborated scientifi- cally and we adjudicated one another’s work, as well as that of others. We frequently exchanged culturally interesting stories. We each relished the challenge of delivering popular lectures. In common with very many others, I deem him to be unforgettable, for a variety of different reasons. He was one of the intellectually ablest persons that I have ever met. He possessed elemental energy. He executed a succession of brilliant experiments. And, almost single-handedly, he created the subject of femtochemistry, with all its magnificent manifestations and ramifications. From the time we first began to exchange ideas, I felt a growing affinity for his personality and attitude. This was reinforced when I told him that, ever since I was a teenager, I had developed a deep interest in Egyptology and a love for modern Egypt.
    [Show full text]
  • The Past Decade and the Future of Cosmology and Astrophysics
    Towards a New Enlightenment? A Transcendent Decade The Past Decade and the Future of Cosmology and Astrophysics Martin Rees Martin Rees is a cosmologist and space scientist. After studying at Cambridge University, he held various posts in the UK and elsewhere, before returning to Cambridge, where he has been a professor, Head of the Institute of Astronomy, and Master of Trinity College. He has contributed to our understanding of galaxy formation, black holes, high-energy phenomena in the cosmos, and the concept of the multiverse. He has received substantial international recognition for his research. He has been much involved in science-related policy, being a member of the UK’s House of Lords and (during 2005–10) President of the Royal Society, the independent scientific academy of the UK Martin Rees and the Commonwealth. Apart from his research publications, he writes and University of Cambridge lectures widely for general audiences, and is the author of eight books, the most recent being On the Future (2018). Recommended books: Universe, Martin Rees, Dorling Kindersley, 2012; On the Future, Martin Rees, Princeton University Press, 2018. In the last decade, there has been dramatic progress in exploring the cosmos. Highlights include close-up studies of the planets and moons of our Solar System; and (even more dramatic) the realization that most stars are orbited by planets, and that there may be millions of Earth-like planets in our Galaxy. On a still larger scale, we have achieved a better understanding of how galaxies have developed, over 13.8 billion years of cosmic history, from primordial fluctuations.
    [Show full text]
  • Supergravity at 40: Reflections and Perspectives(∗)
    RIVISTA DEL NUOVO CIMENTO Vol. 40, N. 6 2017 DOI 10.1393/ncr/i2017-10136-6 ∗ Supergravity at 40: Reflections and perspectives( ) S. Ferrara(1)(2)(3)andA. Sagnotti(4) (1) Theoretical Physics Department, CERN CH - 1211 Geneva 23, Switzerland (2) INFN - Laboratori Nazionali di Frascati - Via Enrico Fermi 40 I-00044 Frascati (RM), Italy (3) Department of Physics and Astronomy, Mani L. Bhaumik Institute for Theoretical Physics U.C.L.A., Los Angeles CA 90095-1547, USA (4) Scuola Normale Superiore e INFN - Piazza dei Cavalieri 7, I-56126 Pisa, Italy received 15 February 2017 Dedicated to John H. Schwarz on the occasion of his 75th birthday Summary. — The fortieth anniversary of the original construction of Supergravity provides an opportunity to combine some reminiscences of its early days with an assessment of its impact on the quest for a quantum theory of gravity. 280 1. Introduction 280 2. The early times 282 3. The golden age 283 4. Supergravity and particle physics 284 5. Supergravity and string theory 286 6. Branes and M-theory 287 7. Supergravity and the AdS/CFT correspondence 288 8. Conclusions and perspectives ∗ ( ) Based in part on the talk delivered by S.F. at the “Special Session of the DISCRETE2016 Symposium and the Leopold Infeld Colloquium”, in Warsaw, on December 1 2016, and on a joint CERN Courier article. c Societ`a Italiana di Fisica 279 280 S. FERRARA and A. SAGNOTTI 1. – Introduction The year 2016 marked the fortieth anniversary of the discovery of Supergravity (SGR) [1], an extension of Einstein’s General Relativity [2] (GR) where Supersymme- try, promoted to a gauge symmetry, accompanies general coordinate transformations.
    [Show full text]
  • TRINITY COLLEGE Cambridge Trinity College Cambridge College Trinity Annual Record Annual
    2016 TRINITY COLLEGE cambridge trinity college cambridge annual record annual record 2016 Trinity College Cambridge Annual Record 2015–2016 Trinity College Cambridge CB2 1TQ Telephone: 01223 338400 e-mail: [email protected] website: www.trin.cam.ac.uk Contents 5 Editorial 11 Commemoration 12 Chapel Address 15 The Health of the College 18 The Master’s Response on Behalf of the College 25 Alumni Relations & Development 26 Alumni Relations and Associations 37 Dining Privileges 38 Annual Gatherings 39 Alumni Achievements CONTENTS 44 Donations to the College Library 47 College Activities 48 First & Third Trinity Boat Club 53 Field Clubs 71 Students’ Union and Societies 80 College Choir 83 Features 84 Hermes 86 Inside a Pirate’s Cookbook 93 “… Through a Glass Darkly…” 102 Robert Smith, John Harrison, and a College Clock 109 ‘We need to talk about Erskine’ 117 My time as advisor to the BBC’s War and Peace TRINITY ANNUAL RECORD 2016 | 3 123 Fellows, Staff, and Students 124 The Master and Fellows 139 Appointments and Distinctions 141 In Memoriam 155 A Ninetieth Birthday Speech 158 An Eightieth Birthday Speech 167 College Notes 181 The Register 182 In Memoriam 186 Addresses wanted CONTENTS TRINITY ANNUAL RECORD 2016 | 4 Editorial It is with some trepidation that I step into Boyd Hilton’s shoes and take on the editorship of this journal. He managed the transition to ‘glossy’ with flair and panache. As historian of the College and sometime holder of many of its working offices, he also brought a knowledge of its past and an understanding of its mysteries that I am unable to match.
    [Show full text]
  • Black Holes and Qubits
    Subnuclear Physics: Past, Present and Future Pontifical Academy of Sciences, Scripta Varia 119, Vatican City 2014 www.pas.va/content/dam/accademia/pdf/sv119/sv119-duff.pdf Black Holes and Qubits MICHAEL J. D UFF Blackett Labo ratory, Imperial C ollege London Abstract Quantum entanglement lies at the heart of quantum information theory, with applications to quantum computing, teleportation, cryptography and communication. In the apparently separate world of quantum gravity, the Hawking effect of radiating black holes has also occupied centre stage. Despite their apparent differences, it turns out that there is a correspondence between the two. Introduction Whenever two very different areas of theoretical physics are found to share the same mathematics, it frequently leads to new insights on both sides. Here we describe how knowledge of string theory and M-theory leads to new discoveries about Quantum Information Theory (QIT) and vice-versa (Duff 2007; Kallosh and Linde 2006; Levay 2006). Bekenstein-Hawking entropy Every object, such as a star, has a critical size determined by its mass, which is called the Schwarzschild radius. A black hole is any object smaller than this. Once something falls inside the Schwarzschild radius, it can never escape. This boundary in spacetime is called the event horizon. So the classical picture of a black hole is that of a compact object whose gravitational field is so strong that nothing, not even light, can escape. Yet in 1974 Stephen Hawking showed that quantum black holes are not entirely black but may radiate energy, due to quantum mechanical effects in curved spacetime. In that case, they must possess the thermodynamic quantity called entropy.
    [Show full text]
  • Is String Theory Holographic? 1 Introduction
    Holography and large-N Dualities Is String Theory Holographic? Lukas Hahn 1 Introduction1 2 Classical Strings and Black Holes2 3 The Strominger-Vafa Construction3 3.1 AdS/CFT for the D1/D5 System......................3 3.2 The Instanton Moduli Space.........................6 3.3 The Elliptic Genus.............................. 10 1 Introduction The holographic principle [1] is based on the idea that there is a limit on information content of spacetime regions. For a given volume V bounded by an area A, the state of maximal entropy corresponds to the largest black hole that can fit inside V . This entropy bound is specified by the Bekenstein-Hawking entropy A S ≤ S = (1.1) BH 4G and the goings-on in the relevant spacetime region are encoded on "holographic screens". The aim of these notes is to discuss one of the many aspects of the question in the title, namely: "Is this feature of the holographic principle realized in string theory (and if so, how)?". In order to adress this question we start with an heuristic account of how string like objects are related to black holes and how to compare their entropies. This second section is exclusively based on [2] and will lead to a key insight, the need to consider BPS states, which allows for a more precise treatment. The most fully understood example is 1 a bound state of D-branes that appeared in the original article on the topic [3]. The third section is an attempt to review this construction from a point of view that highlights the role of AdS/CFT [4,5].
    [Show full text]
  • Arxiv:1410.1486V2 [Gr-Qc] 26 Aug 2015
    October 2014 Black Hole Thermodynamics S. Carlip∗ Department of Physics University of California Davis, CA 95616 USA Abstract The discovery in the early 1970s that black holes radiate as black bodies has radically affected our understanding of general relativity, and offered us some early hints about the nature of quantum gravity. In this chapter I will review the discovery of black hole thermodynamics and summarize the many indepen- dent ways of obtaining the thermodynamic and (perhaps) statistical mechanical properties of black holes. I will then describe some of the remaining puzzles, including the nature of the quantum microstates, the problem of universality, and the information loss paradox. arXiv:1410.1486v2 [gr-qc] 26 Aug 2015 ∗email: [email protected] 1 Introduction The surprising discovery that black holes behave as thermodynamic objects has radically affected our understanding of general relativity and its relationship to quantum field theory. In the early 1970s, Bekenstein [1, 2] and Hawking [3, 4] showed that black holes radiate as black bodies, with characteristic temperatures and entropies ~κ Ahor kTH = ;SBH = ; (1.1) 2π 4~G where κ is the surface gravity and Ahor is the area of the horizon. These quantities appear to be inherently quantum gravitational, in the sense that they depend on both Planck's constant ~ and Newton's constant G. The resulting black body radiation, Hawking radiation, has not yet been directly observed: the temperature of an astrophysical black hole is on the order of a microkelvin, far lower than the cosmic microwave background temperature. But the Hawking temperature and the Bekenstein-Hawking entropy have been derived in so many independent ways, in different settings and with different assumptions, that it seems extraordinarily unlikely that they are not real.
    [Show full text]
  • Arxiv:1202.4545V2 [Physics.Hist-Ph] 23 Aug 2012
    The Relativity of Existence Stuart B. Heinrich [email protected] October 31, 2018 Abstract Despite the success of modern physics in formulating mathematical theories that can predict the outcome of experiments, we have made remarkably little progress towards answering the most fundamental question of: why is there a universe at all, as opposed to nothingness? In this paper, it is shown that this seemingly mind-boggling question has a simple logical answer if we accept that existence in the universe is nothing more than mathematical existence relative to the axioms of our universe. This premise is not baseless; it is shown here that there are indeed several independent strong logical arguments for why we should believe that mathematical existence is the only kind of existence. Moreover, it is shown that, under this premise, the answers to many other puzzling questions about our universe come almost immediately. Among these questions are: why is the universe apparently fine-tuned to be able to support life? Why are the laws of physics so elegant? Why do we have three dimensions of space and one of time, with approximate locality and causality at macroscopic scales? How can the universe be non-local and non-causal at the quantum scale? How can the laws of quantum mechanics rely on true randomness? 1 Introduction can seem astonishing that anything exists” [73, p.24]. Most physicists and cosmologists are equally perplexed. Over the course of modern history, we have seen advances in Richard Dawkins has called it a “searching question that biology, chemistry, physics and cosmology that have painted rightly calls for an explanatory answer” [26, p.155], and Sam an ever-clearer picture of how we came to exist in this uni- Harris says that “any intellectually honest person will admit verse.
    [Show full text]
  • Review of the Year 2009/10
    Invest in future scientific leaders and in innovation Review of the year 2009/10 1 Celebrating 350 years Review of the year 2009/10 02 Review of the year 2009/10 President’s foreword Executive Secretary’s report Review of the year 2009/10 03 Contents President’s foreword ..............................................................02 Inspire an interest in the joy, wonder Executive Secretary’s report ..................................................03 and excitement of scientific discovery ..................................16 Invest in future scientific leaders and in innovation ..............04 Seeing further: the Royal Society celebrates 350 years .......20 Influence policymaking with the best scientific advice ........08 Summarised financial statements .........................................22 Invigorate science and mathematics education ...................10 Income and expenditure statement ......................................23 Increase access to the best science internationally ..............12 Fundraising and support ........................................................24 List of donors ..........................................................................25 President’s Executive foreword Secretary’s report This year we have focused on the excellent This has been a remarkable year for the Society, our opportunity afforded by our 350th anniversary 350th, and we have mounted a major programme not only to promote the work of the Society to inspire minds, young and old alike, with the but to raise the profile of science
    [Show full text]
  • Soft Hair on Black Holes Arxiv:1601.00921V1 [Hep-Th] 5 Jan
    Soft Hair on Black Holes Stephen W. Hawkingy, Malcolm J. Perryy and Andrew Strominger∗ yDAMTP, Centre for Mathematical Sciences, University of Cambridge, Cambridge, CB3 0WA UK ∗ Center for the Fundamental Laws of Nature, Harvard University, Cambridge, MA 02138, USA Abstract It has recently been shown that BMS supertranslation symmetries imply an infinite number of conservation laws for all gravitational theories in asymptotically Minkowskian spacetimes. These laws require black holes to carry a large amount of soft (i:e: zero- energy) supertranslation hair. The presence of a Maxwell field similarly implies soft electric hair. This paper gives an explicit description of soft hair in terms of soft gravitons or photons on the black hole horizon, and shows that complete information about their quantum state is stored on a holographic plate at the future boundary of the horizon. Charge conservation is used to give an infinite number of exact relations between the evaporation products of black holes which have different soft hair but are otherwise identical. It is further argued that soft hair which is spatially localized to arXiv:1601.00921v1 [hep-th] 5 Jan 2016 much less than a Planck length cannot be excited in a physically realizable process, giving an effective number of soft degrees of freedom proportional to the horizon area in Planck units. Contents 1 Introduction 1 2 Electromagnetic conservation laws and soft symmetries 4 3 Conservation laws in the presence of black holes 7 4 Black hole evaporation 9 5 Quantum hair implants 12 6 Gauge invariance 14 7 Supertranslations 15 8 Conclusion 17 1 Introduction Forty years ago, one of the authors argued [1] that information is destroyed when a black hole is formed and subsequently evaporates [2, 3].
    [Show full text]
  • MATTERS of GRAVITY Contents
    MATTERS OF GRAVITY The newsletter of the Division of Gravitational Physics of the American Physical Society Number 52 December 2018 Contents DGRAV News: we hear that . , by David Garfinkle ..................... 3 APS April Meeting, by David Garfinkle ................... 4 Editor David Garfinkle Department of Physics Oakland University Rochester, MI 48309 Phone: (248) 370-3411 Internet: garfinkl-at-oakland.edu WWW: http://www.oakland.edu/physics/Faculty/david-garfinkle Associate Editor Greg Comer Department of Physics and Center for Fluids at All Scales, St. Louis University, St. Louis, MO 63103 Phone: (314) 977-8432 Internet: comergl-at-slu.edu WWW: http://www.slu.edu/arts-and-sciences/physics/faculty/comer-greg.php ISSN: 1527-3431 DISCLAIMER: The opinions expressed in the articles of this newsletter represent the views of the authors and are not necessarily the views of APS. The articles in this newsletter are not peer reviewed. 1 Editorial The next newsletter is due June 2019. Issues 28-52 are available on the web at https://files.oakland.edu/users/garfinkl/web/mog/ All issues before number 28 are available at http://www.phys.lsu.edu/mog Any ideas for topics that should be covered by the newsletter should be emailed to me, or Greg Comer, or the relevant correspondent. Any comments/questions/complaints about the newsletter should be emailed to me. A hardcopy of the newsletter is distributed free of charge to the members of the APS Division of Gravitational Physics upon request (the default distribution form is via the web) to the secretary of the Division. It is considered a lack of etiquette to ask me to mail you hard copies of the newsletter unless you have exhausted all your resources to get your copy otherwise.
    [Show full text]