Computational Complexity: a Modern Approach
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Computational Complexity and Intractability: an Introduction to the Theory of NP Chapter 9 2 Objectives
1 Computational Complexity and Intractability: An Introduction to the Theory of NP Chapter 9 2 Objectives . Classify problems as tractable or intractable . Define decision problems . Define the class P . Define nondeterministic algorithms . Define the class NP . Define polynomial transformations . Define the class of NP-Complete 3 Input Size and Time Complexity . Time complexity of algorithms: . Polynomial time (efficient) vs. Exponential time (inefficient) f(n) n = 10 30 50 n 0.00001 sec 0.00003 sec 0.00005 sec n5 0.1 sec 24.3 sec 5.2 mins 2n 0.001 sec 17.9 mins 35.7 yrs 4 “Hard” and “Easy” Problems . “Easy” problems can be solved by polynomial time algorithms . Searching problem, sorting, Dijkstra’s algorithm, matrix multiplication, all pairs shortest path . “Hard” problems cannot be solved by polynomial time algorithms . 0/1 knapsack, traveling salesman . Sometimes the dividing line between “easy” and “hard” problems is a fine one. For example, . Find the shortest path in a graph from X to Y (easy) . Find the longest path (with no cycles) in a graph from X to Y (hard) 5 “Hard” and “Easy” Problems . Motivation: is it possible to efficiently solve “hard” problems? Efficiently solve means polynomial time solutions. Some problems have been proved that no efficient algorithms for them. For example, print all permutation of a number n. However, many problems we cannot prove there exists no efficient algorithms, and at the same time, we cannot find one either. 6 Traveling Salesperson Problem . No algorithm has ever been developed with a Worst-case time complexity better than exponential . -
Quantum Computer: Quantum Model and Reality
Quantum Computer: Quantum Model and Reality Vasil Penchev, [email protected] Bulgarian Academy of Sciences: Institute of Philosophy and Sociology: Dept. of Logical Systems and Models Abstract. Any computer can create a model of reality. The hypothesis that quantum computer can generate such a model designated as quantum, which coincides with the modeled reality, is discussed. Its reasons are the theorems about the absence of “hidden variables” in quantum mechanics. The quantum modeling requires the axiom of choice. The following conclusions are deduced from the hypothesis. A quantum model unlike a classical model can coincide with reality. Reality can be interpreted as a quantum computer. The physical processes represent computations of the quantum computer. Quantum information is the real fundament of the world. The conception of quantum computer unifies physics and mathematics and thus the material and the ideal world. Quantum computer is a non-Turing machine in principle. Any quantum computing can be interpreted as an infinite classical computational process of a Turing machine. Quantum computer introduces the notion of “actually infinite computational process”. The discussed hypothesis is consistent with all quantum mechanics. The conclusions address a form of neo-Pythagoreanism: Unifying the mathematical and physical, quantum computer is situated in an intermediate domain of their mutual transformations. Key words: model, quantum computer, reality, Turing machine Eight questions: There are a few most essential questions about the philosophical interpretation of quantum computer. They refer to the fundamental problems in ontology and epistemology rather than philosophy of science or that of information and computation only. The contemporary development of quantum mechanics and the theory of quantum information generate them. -
Restricted Versions of the Two-Local Hamiltonian Problem
The Pennsylvania State University The Graduate School Eberly College of Science RESTRICTED VERSIONS OF THE TWO-LOCAL HAMILTONIAN PROBLEM A Dissertation in Physics by Sandeep Narayanaswami c 2013 Sandeep Narayanaswami Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy August 2013 The dissertation of Sandeep Narayanaswami was reviewed and approved* by the following: Sean Hallgren Associate Professor of Computer Science and Engineering Dissertation Adviser, Co-Chair of Committee Nitin Samarth Professor of Physics Head of the Department of Physics Co-Chair of Committee David S Weiss Professor of Physics Jason Morton Assistant Professor of Mathematics *Signatures are on file in the Graduate School. Abstract The Hamiltonian of a physical system is its energy operator and determines its dynamics. Un- derstanding the properties of the ground state is crucial to understanding the system. The Local Hamiltonian problem, being an extension of the classical Satisfiability problem, is thus a very well-motivated and natural problem, from both physics and computer science perspectives. In this dissertation, we seek to understand special cases of the Local Hamiltonian problem in terms of algorithms and computational complexity. iii Contents List of Tables vii List of Tables vii Acknowledgments ix 1 Introduction 1 2 Background 6 2.1 Classical Complexity . .6 2.2 Quantum Computation . .9 2.3 Generalizations of SAT . 11 2.3.1 The Ising model . 13 2.3.2 QMA-complete Local Hamiltonians . 13 2.3.3 Projection Hamiltonians, or Quantum k-SAT . 14 2.3.4 Commuting Local Hamiltonians . 14 2.3.5 Other special cases . 15 2.3.6 Approximation Algorithms and Heuristics . -
Algorithms and Computational Complexity: an Overview
Algorithms and Computational Complexity: an Overview Winter 2011 Larry Ruzzo Thanks to Paul Beame, James Lee, Kevin Wayne for some slides 1 goals Design of Algorithms – a taste design methods common or important types of problems analysis of algorithms - efficiency 2 goals Complexity & intractability – a taste solving problems in principle is not enough algorithms must be efficient some problems have no efficient solution NP-complete problems important & useful class of problems whose solutions (seemingly) cannot be found efficiently 3 complexity example Cryptography (e.g. RSA, SSL in browsers) Secret: p,q prime, say 512 bits each Public: n which equals p x q, 1024 bits In principle there is an algorithm that given n will find p and q:" try all 2512 possible p’s, but an astronomical number In practice no fast algorithm known for this problem (on non-quantum computers) security of RSA depends on this fact (and research in “quantum computing” is strongly driven by the possibility of changing this) 4 algorithms versus machines Moore’s Law and the exponential improvements in hardware... Ex: sparse linear equations over 25 years 10 orders of magnitude improvement! 5 algorithms or hardware? 107 25 years G.E. / CDC 3600 progress solving CDC 6600 G.E. = Gaussian Elimination 106 sparse linear CDC 7600 Cray 1 systems 105 Cray 2 Hardware " 104 alone: 4 orders Seconds Cray 3 (Est.) 103 of magnitude 102 101 Source: Sandia, via M. Schultz! 100 1960 1970 1980 1990 6 2000 algorithms or hardware? 107 25 years G.E. / CDC 3600 CDC 6600 G.E. = Gaussian Elimination progress solving SOR = Successive OverRelaxation 106 CG = Conjugate Gradient sparse linear CDC 7600 Cray 1 systems 105 Cray 2 Hardware " 104 alone: 4 orders Seconds Cray 3 (Est.) 103 of magnitude Sparse G.E. -
STRONGLY UNIVERSAL QUANTUM TURING MACHINES and INVARIANCE of KOLMOGOROV COMPLEXITY (AUGUST 11, 2007) 2 Such That the Aforementioned Halting Conditions Are Satisfied
STRONGLY UNIVERSAL QUANTUM TURING MACHINES AND INVARIANCE OF KOLMOGOROV COMPLEXITY (AUGUST 11, 2007) 1 Strongly Universal Quantum Turing Machines and Invariance of Kolmogorov Complexity Markus M¨uller Abstract—We show that there exists a universal quantum Tur- For a compact presentation of the results by Bernstein ing machine (UQTM) that can simulate every other QTM until and Vazirani, see the book by Gruska [4]. Additional rele- the other QTM has halted and then halt itself with probability one. vant literature includes Ozawa and Nishimura [5], who gave This extends work by Bernstein and Vazirani who have shown that there is a UQTM that can simulate every other QTM for necessary and sufficient conditions that a QTM’s transition an arbitrary, but preassigned number of time steps. function results in unitary time evolution. Benioff [6] has As a corollary to this result, we give a rigorous proof that worked out a slightly different definition which is based on quantum Kolmogorov complexity as defined by Berthiaume et a local Hamiltonian instead of a local transition amplitude. al. is invariant, i.e. depends on the choice of the UQTM only up to an additive constant. Our proof is based on a new mathematical framework for A. Quantum Turing Machines and their Halting Conditions QTMs, including a thorough analysis of their halting behaviour. Our discussion will rely on the definition by Bernstein and We introduce the notion of mutually orthogonal halting spaces and show that the information encoded in an input qubit string Vazirani. We describe their model in detail in Subsection II-B. -
A Short History of Computational Complexity
The Computational Complexity Column by Lance FORTNOW NEC Laboratories America 4 Independence Way, Princeton, NJ 08540, USA [email protected] http://www.neci.nj.nec.com/homepages/fortnow/beatcs Every third year the Conference on Computational Complexity is held in Europe and this summer the University of Aarhus (Denmark) will host the meeting July 7-10. More details at the conference web page http://www.computationalcomplexity.org This month we present a historical view of computational complexity written by Steve Homer and myself. This is a preliminary version of a chapter to be included in an upcoming North-Holland Handbook of the History of Mathematical Logic edited by Dirk van Dalen, John Dawson and Aki Kanamori. A Short History of Computational Complexity Lance Fortnow1 Steve Homer2 NEC Research Institute Computer Science Department 4 Independence Way Boston University Princeton, NJ 08540 111 Cummington Street Boston, MA 02215 1 Introduction It all started with a machine. In 1936, Turing developed his theoretical com- putational model. He based his model on how he perceived mathematicians think. As digital computers were developed in the 40's and 50's, the Turing machine proved itself as the right theoretical model for computation. Quickly though we discovered that the basic Turing machine model fails to account for the amount of time or memory needed by a computer, a critical issue today but even more so in those early days of computing. The key idea to measure time and space as a function of the length of the input came in the early 1960's by Hartmanis and Stearns. -
Interactions of Computational Complexity Theory and Mathematics
Interactions of Computational Complexity Theory and Mathematics Avi Wigderson October 22, 2017 Abstract [This paper is a (self contained) chapter in a new book on computational complexity theory, called Mathematics and Computation, whose draft is available at https://www.math.ias.edu/avi/book]. We survey some concrete interaction areas between computational complexity theory and different fields of mathematics. We hope to demonstrate here that hardly any area of modern mathematics is untouched by the computational connection (which in some cases is completely natural and in others may seem quite surprising). In my view, the breadth, depth, beauty and novelty of these connections is inspiring, and speaks to a great potential of future interactions (which indeed, are quickly expanding). We aim for variety. We give short, simple descriptions (without proofs or much technical detail) of ideas, motivations, results and connections; this will hopefully entice the reader to dig deeper. Each vignette focuses only on a single topic within a large mathematical filed. We cover the following: • Number Theory: Primality testing • Combinatorial Geometry: Point-line incidences • Operator Theory: The Kadison-Singer problem • Metric Geometry: Distortion of embeddings • Group Theory: Generation and random generation • Statistical Physics: Monte-Carlo Markov chains • Analysis and Probability: Noise stability • Lattice Theory: Short vectors • Invariant Theory: Actions on matrix tuples 1 1 introduction The Theory of Computation (ToC) lays out the mathematical foundations of computer science. I am often asked if ToC is a branch of Mathematics, or of Computer Science. The answer is easy: it is clearly both (and in fact, much more). Ever since Turing's 1936 definition of the Turing machine, we have had a formal mathematical model of computation that enables the rigorous mathematical study of computational tasks, algorithms to solve them, and the resources these require. -
Computational Complexity: a Modern Approach
i Computational Complexity: A Modern Approach Sanjeev Arora and Boaz Barak Princeton University http://www.cs.princeton.edu/theory/complexity/ [email protected] Not to be reproduced or distributed without the authors’ permission ii Chapter 10 Quantum Computation “Turning to quantum mechanics.... secret, secret, close the doors! we always have had a great deal of difficulty in understanding the world view that quantum mechanics represents ... It has not yet become obvious to me that there’s no real problem. I cannot define the real problem, therefore I suspect there’s no real problem, but I’m not sure there’s no real problem. So that’s why I like to investigate things.” Richard Feynman, 1964 “The only difference between a probabilistic classical world and the equations of the quantum world is that somehow or other it appears as if the probabilities would have to go negative..” Richard Feynman, in “Simulating physics with computers,” 1982 Quantum computing is a new computational model that may be physically realizable and may provide an exponential advantage over “classical” computational models such as prob- abilistic and deterministic Turing machines. In this chapter we survey the basic principles of quantum computation and some of the important algorithms in this model. One important reason to study quantum computers is that they pose a serious challenge to the strong Church-Turing thesis (see Section 1.6.3), which stipulates that every physi- cally reasonable computation device can be simulated by a Turing machine with at most polynomial slowdown. As we will see in Section 10.6, there is a polynomial-time algorithm for quantum computers to factor integers, whereas despite much effort, no such algorithm is known for deterministic or probabilistic Turing machines. -
On the Simulation of Quantum Turing Machines
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Theoretical Computer Science 304 (2003) 103–128 www.elsevier.com/locate/tcs On the simulation ofquantum turing machines Marco Carpentieri Universita di Salerno, 84081 Baronissi (SA), Italy Received 20 March 2002; received in revised form 11 December 2002; accepted 12 December 2002 Communicated by G. Ausiello Abstract In this article we shall review several basic deÿnitions and results regarding quantum compu- tation. In particular, after deÿning Quantum Turing Machines and networks the paper contains an exposition on continued fractions and on errors in quantum networks. The topic of simulation ofQuantum Turing Machines by means ofobvious computation is introduced. We give a full discussion ofthe simulation ofmultitape Quantum Turing Machines in a slight generalization of the class introduced by Bernstein and Vazirani. As main result we show that the Fisher-Pippenger technique can be used to give an O(tlogt) simulation ofa multi-tape Quantum Turing Machine by another belonging to the extended Bernstein and Vazirani class. This result, even ifregarding a slightly restricted class ofQuantum Turing Machines improves the simulation results currently known in the literature. c 2003 Published by Elsevier B.V. 1. Introduction Even ifthe present technology does consent realizing only very simple devices based on the principles ofquantum mechanics, many authors considered to be worth it ask- ing whether a theoretical model ofquantum computation could o:er any substantial beneÿts over the correspondent theoretical model based on the assumptions ofclas- sical physics. Recently, this question has received considerable attention because of the growing beliefthat quantum mechanical processes might be able to performcom- putation that traditional computing machines can only perform ine;ciently. -
A Quantum Computer Foundation for the Standard Model and Superstring Theories*
A Quantum Computer Foundation for the Standard Model and SuperString Theories* By Stephen Blaha** * Excerpted from the book Cosmos and Consciousness by Stephen Blaha (1stBooks Library, Bloomington, IN, 2000) available from amazon.com and bn.com. ** Associate of the Harvard University Physics Department. ABSTRACT 1. SuperString Theory can naturally be based on a Quantum Computer foundation. This provides a totally new view of SuperString Theory. 2. The Standard Model of elementary particles can be viewed as defining a Quantum Computer Grammar and language. 3. A Quantum Computer can be represented in part as a second-quantized Fermi field. 4. A Quantum Computer in a certain limit naturally forms a Superspace upon which Supersymmetry rotations can be defined – a Continuum Quantum Computer. 5. A representation of Quantum Computers exists that is similar to Turing Machines - a Quantum Turing Machine. As part of this development we define various types of Quantum Grammars. 6. High level Quantum Computer languages are described for the first time. New linguistic views of the most fundamental theories of Physics, the Standard Model and SuperString Theory are described. In these new linguistic representations particles become literally symbols or letters, and particle interactions become grammar rules. This view is NOT the same as the often-expressed view that Mathematics is the language of Physics. The linguistic representation is a specific new mathematical construct. We show how to create a SuperString Quantum Computer that naturally provides a framework for SuperStrings in general and heterotic SuperStrings in particular. There are also a number of new developments relating to Quantum Computers and Quantum Turing Machines that are of interest to Computer Science. -
Quantum Computing : a Gentle Introduction / Eleanor Rieffel and Wolfgang Polak
QUANTUM COMPUTING A Gentle Introduction Eleanor Rieffel and Wolfgang Polak The MIT Press Cambridge, Massachusetts London, England ©2011 Massachusetts Institute of Technology All rights reserved. No part of this book may be reproduced in any form by any electronic or mechanical means (including photocopying, recording, or information storage and retrieval) without permission in writing from the publisher. For information about special quantity discounts, please email [email protected] This book was set in Syntax and Times Roman by Westchester Book Group. Printed and bound in the United States of America. Library of Congress Cataloging-in-Publication Data Rieffel, Eleanor, 1965– Quantum computing : a gentle introduction / Eleanor Rieffel and Wolfgang Polak. p. cm.—(Scientific and engineering computation) Includes bibliographical references and index. ISBN 978-0-262-01506-6 (hardcover : alk. paper) 1. Quantum computers. 2. Quantum theory. I. Polak, Wolfgang, 1950– II. Title. QA76.889.R54 2011 004.1—dc22 2010022682 10987654321 Contents Preface xi 1 Introduction 1 I QUANTUM BUILDING BLOCKS 7 2 Single-Qubit Quantum Systems 9 2.1 The Quantum Mechanics of Photon Polarization 9 2.1.1 A Simple Experiment 10 2.1.2 A Quantum Explanation 11 2.2 Single Quantum Bits 13 2.3 Single-Qubit Measurement 16 2.4 A Quantum Key Distribution Protocol 18 2.5 The State Space of a Single-Qubit System 21 2.5.1 Relative Phases versus Global Phases 21 2.5.2 Geometric Views of the State Space of a Single Qubit 23 2.5.3 Comments on General Quantum State Spaces -
Computational Power of Observed Quantum Turing Machines
Computational Power of Observed Quantum Turing Machines Simon Perdrix PPS, Universit´eParis Diderot & LFCS, University of Edinburgh New Worlds of Computation, January 2009 Quantum Computing Basics State space in a classical world of computation: countable A. inaquantumworld: Hilbertspace CA ket map . : A CA | i → s.t. x , x A is an orthonormal basis of CA {| i ∈ } Arbitrary states Φ = αx x | i x A X∈ 2 s.t. x A αx =1 ∈ | | P Quantum Computing Basics bra map . : A L(CA, C) h | → s.t. x, y A, ∀ ∈ 1 if x = y y x = “ Kronecker ” h | | i (0 otherwise v,t A, v t : CA CA: ∀ ∈ | ih | → v if t = x ( v t ) x = v ( t x )= | i “ v t t v ” | ih | | i | i h | | i (0 otherwise | ih |≈ 7→ Evolution of isolated systems: Linear map U L(CA, CA) ∈ U = ux,y y x | ih | x,y A X∈ which is an isometry (U †U = I). Observation Let Φ = αx x | i x A X∈ (Full) measurement in standard basis: 2 The probability to observe a A is αa . ∈ | | If a A is observed, the state becomes Φa = a . ∈ | i Partial measurement in standard basis: Let K = Kλ, λ Λ be a partition of A. { ∈ } 2 The probability to observe λ Λ is pλ = a Kλ αa ∈ ∈ | | If λ Λ is observed, the state becomes P ∈ 1 1 Φλ = PλΦ = αa a √pλ √pλ | i a Kλ X∈ where Pλ = a Kλ a a . ∈ | ih | P Observation Let Φ = αx x | i x A X∈ (Full) measurement in standard basis: 2 The probability to observe a A is αa .