Undecidability of the Spectral Gap in One Dimension
Undecidability of the Spectral Gap in One Dimension Johannes Bausch CQIF, DAMTP, University of Cambridge, UK Toby S. Cubitt Department of Computer Science, University College London, UK Angelo Lucia QMATH, Department of Mathematical Sciences and NBIA, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, DK and Walter Burke Institute for Theoretical Physics and Institute for Quantum Information & Matter, California Institute of Technology, Pasadena, CA 91125, USA David Perez-Garcia Dept. An´alisisy Matem´atica Aplicada,Universidad Complutense de Madrid, 28040 Madrid, Spain and Instituto de Ciencias Matem´aticas, 28049 Madrid, Spain The spectral gap problem|determining whether the energy spectrum of a system has an energy gap above ground state, or if there is a continuous range of low-energy excitations|pervades quantum many-body physics. Recently, this important problem was shown to be undecidable for quantum spin systems in two (or more) spatial dimensions: there exists no algorithm that determines in general whether a system is gapped or gapless, a result which has many unexpected consequences for the physics of such systems. However, there are many indications that one dimensional spin systems are simpler than their higher-dimensional counterparts: for example, they cannot have thermal phase transitions or topological order, and there exist highly-effective numerical algorithms such as DMRG|and even provably polynomial-time ones|for gapped 1D systems, exploiting the fact that such systems obey an entropy area-law. Furthermore, the spectral gap undecidability construction crucially relied on aperiodic tilings, which are not possible in 1D. So does the spectral gap problem become decidable in 1D? In this paper we prove this is not the case, by constructing a family of 1D spin chains with translationally-invariant nearest neighbour interactions for which no algorithm can determine the presence of a spectral gap.
[Show full text]