Foundations of Quantum Computing and Complexity
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Computational Complexity and Intractability: an Introduction to the Theory of NP Chapter 9 2 Objectives
1 Computational Complexity and Intractability: An Introduction to the Theory of NP Chapter 9 2 Objectives . Classify problems as tractable or intractable . Define decision problems . Define the class P . Define nondeterministic algorithms . Define the class NP . Define polynomial transformations . Define the class of NP-Complete 3 Input Size and Time Complexity . Time complexity of algorithms: . Polynomial time (efficient) vs. Exponential time (inefficient) f(n) n = 10 30 50 n 0.00001 sec 0.00003 sec 0.00005 sec n5 0.1 sec 24.3 sec 5.2 mins 2n 0.001 sec 17.9 mins 35.7 yrs 4 “Hard” and “Easy” Problems . “Easy” problems can be solved by polynomial time algorithms . Searching problem, sorting, Dijkstra’s algorithm, matrix multiplication, all pairs shortest path . “Hard” problems cannot be solved by polynomial time algorithms . 0/1 knapsack, traveling salesman . Sometimes the dividing line between “easy” and “hard” problems is a fine one. For example, . Find the shortest path in a graph from X to Y (easy) . Find the longest path (with no cycles) in a graph from X to Y (hard) 5 “Hard” and “Easy” Problems . Motivation: is it possible to efficiently solve “hard” problems? Efficiently solve means polynomial time solutions. Some problems have been proved that no efficient algorithms for them. For example, print all permutation of a number n. However, many problems we cannot prove there exists no efficient algorithms, and at the same time, we cannot find one either. 6 Traveling Salesperson Problem . No algorithm has ever been developed with a Worst-case time complexity better than exponential . -
Algorithms and Computational Complexity: an Overview
Algorithms and Computational Complexity: an Overview Winter 2011 Larry Ruzzo Thanks to Paul Beame, James Lee, Kevin Wayne for some slides 1 goals Design of Algorithms – a taste design methods common or important types of problems analysis of algorithms - efficiency 2 goals Complexity & intractability – a taste solving problems in principle is not enough algorithms must be efficient some problems have no efficient solution NP-complete problems important & useful class of problems whose solutions (seemingly) cannot be found efficiently 3 complexity example Cryptography (e.g. RSA, SSL in browsers) Secret: p,q prime, say 512 bits each Public: n which equals p x q, 1024 bits In principle there is an algorithm that given n will find p and q:" try all 2512 possible p’s, but an astronomical number In practice no fast algorithm known for this problem (on non-quantum computers) security of RSA depends on this fact (and research in “quantum computing” is strongly driven by the possibility of changing this) 4 algorithms versus machines Moore’s Law and the exponential improvements in hardware... Ex: sparse linear equations over 25 years 10 orders of magnitude improvement! 5 algorithms or hardware? 107 25 years G.E. / CDC 3600 progress solving CDC 6600 G.E. = Gaussian Elimination 106 sparse linear CDC 7600 Cray 1 systems 105 Cray 2 Hardware " 104 alone: 4 orders Seconds Cray 3 (Est.) 103 of magnitude 102 101 Source: Sandia, via M. Schultz! 100 1960 1970 1980 1990 6 2000 algorithms or hardware? 107 25 years G.E. / CDC 3600 CDC 6600 G.E. = Gaussian Elimination progress solving SOR = Successive OverRelaxation 106 CG = Conjugate Gradient sparse linear CDC 7600 Cray 1 systems 105 Cray 2 Hardware " 104 alone: 4 orders Seconds Cray 3 (Est.) 103 of magnitude Sparse G.E. -
A Short History of Computational Complexity
The Computational Complexity Column by Lance FORTNOW NEC Laboratories America 4 Independence Way, Princeton, NJ 08540, USA [email protected] http://www.neci.nj.nec.com/homepages/fortnow/beatcs Every third year the Conference on Computational Complexity is held in Europe and this summer the University of Aarhus (Denmark) will host the meeting July 7-10. More details at the conference web page http://www.computationalcomplexity.org This month we present a historical view of computational complexity written by Steve Homer and myself. This is a preliminary version of a chapter to be included in an upcoming North-Holland Handbook of the History of Mathematical Logic edited by Dirk van Dalen, John Dawson and Aki Kanamori. A Short History of Computational Complexity Lance Fortnow1 Steve Homer2 NEC Research Institute Computer Science Department 4 Independence Way Boston University Princeton, NJ 08540 111 Cummington Street Boston, MA 02215 1 Introduction It all started with a machine. In 1936, Turing developed his theoretical com- putational model. He based his model on how he perceived mathematicians think. As digital computers were developed in the 40's and 50's, the Turing machine proved itself as the right theoretical model for computation. Quickly though we discovered that the basic Turing machine model fails to account for the amount of time or memory needed by a computer, a critical issue today but even more so in those early days of computing. The key idea to measure time and space as a function of the length of the input came in the early 1960's by Hartmanis and Stearns. -
Interactions of Computational Complexity Theory and Mathematics
Interactions of Computational Complexity Theory and Mathematics Avi Wigderson October 22, 2017 Abstract [This paper is a (self contained) chapter in a new book on computational complexity theory, called Mathematics and Computation, whose draft is available at https://www.math.ias.edu/avi/book]. We survey some concrete interaction areas between computational complexity theory and different fields of mathematics. We hope to demonstrate here that hardly any area of modern mathematics is untouched by the computational connection (which in some cases is completely natural and in others may seem quite surprising). In my view, the breadth, depth, beauty and novelty of these connections is inspiring, and speaks to a great potential of future interactions (which indeed, are quickly expanding). We aim for variety. We give short, simple descriptions (without proofs or much technical detail) of ideas, motivations, results and connections; this will hopefully entice the reader to dig deeper. Each vignette focuses only on a single topic within a large mathematical filed. We cover the following: • Number Theory: Primality testing • Combinatorial Geometry: Point-line incidences • Operator Theory: The Kadison-Singer problem • Metric Geometry: Distortion of embeddings • Group Theory: Generation and random generation • Statistical Physics: Monte-Carlo Markov chains • Analysis and Probability: Noise stability • Lattice Theory: Short vectors • Invariant Theory: Actions on matrix tuples 1 1 introduction The Theory of Computation (ToC) lays out the mathematical foundations of computer science. I am often asked if ToC is a branch of Mathematics, or of Computer Science. The answer is easy: it is clearly both (and in fact, much more). Ever since Turing's 1936 definition of the Turing machine, we have had a formal mathematical model of computation that enables the rigorous mathematical study of computational tasks, algorithms to solve them, and the resources these require. -
Computational Complexity: a Modern Approach
i Computational Complexity: A Modern Approach Sanjeev Arora and Boaz Barak Princeton University http://www.cs.princeton.edu/theory/complexity/ [email protected] Not to be reproduced or distributed without the authors’ permission ii Chapter 10 Quantum Computation “Turning to quantum mechanics.... secret, secret, close the doors! we always have had a great deal of difficulty in understanding the world view that quantum mechanics represents ... It has not yet become obvious to me that there’s no real problem. I cannot define the real problem, therefore I suspect there’s no real problem, but I’m not sure there’s no real problem. So that’s why I like to investigate things.” Richard Feynman, 1964 “The only difference between a probabilistic classical world and the equations of the quantum world is that somehow or other it appears as if the probabilities would have to go negative..” Richard Feynman, in “Simulating physics with computers,” 1982 Quantum computing is a new computational model that may be physically realizable and may provide an exponential advantage over “classical” computational models such as prob- abilistic and deterministic Turing machines. In this chapter we survey the basic principles of quantum computation and some of the important algorithms in this model. One important reason to study quantum computers is that they pose a serious challenge to the strong Church-Turing thesis (see Section 1.6.3), which stipulates that every physi- cally reasonable computation device can be simulated by a Turing machine with at most polynomial slowdown. As we will see in Section 10.6, there is a polynomial-time algorithm for quantum computers to factor integers, whereas despite much effort, no such algorithm is known for deterministic or probabilistic Turing machines. -
CS221: Algorithms and Data Structures Lecture #4 Sorting
Today’s Outline CS221: Algorithms and • Categorizing/Comparing Sorting Algorithms Data Structures – PQSorts as examples Lecture #4 • MergeSort Sorting Things Out • QuickSort • More Comparisons Steve Wolfman • Complexity of Sorting 2014W1 1 2 Comparing our “PQSort” Categorizing Sorting Algorithms Algorithms • Computational complexity • Computational complexity – Average case behaviour: Why do we care? – Selection Sort: Always makes n passes with a – Worst/best case behaviour: Why do we care? How “triangular” shape. Best/worst/average case (n2) often do we re-sort sorted, reverse sorted, or “almost” – Insertion Sort: Always makes n passes, but if we’re sorted (k swaps from sorted where k << n) lists? lucky and search for the maximum from the right, only • Stability: What happens to elements with identical keys? constant work is needed on each pass. Best case (n); worst/average case: (n2) How much extra memory is used? • Memory Usage: – Heap Sort: Always makes n passes needing O(lg n) on each pass. Best/worst/average case: (n lg n). Note: best cases assume distinct elements. 3 With identical elements, Heap Sort can get (n) performance.4 Comparing our “PQSort” Insertion Sort Best Case Algorithms 0 1 2 3 4 5 6 7 8 9 10 11 12 13 • Stability 1 2 3 4 5 6 7 8 9 10 11 12 13 14 – Selection: Easily made stable (when building from the PQ left, prefer the left-most of identical “biggest” keys). 1 2 3 4 5 6 7 8 9 10 11 12 13 14 – Insertion: Easily made stable (when building from the left, find the rightmost slot for a new element). -
Quantum Computing Methods for Supervised Learning Arxiv
Quantum Computing Methods for Supervised Learning Viraj Kulkarni1, Milind Kulkarni1, Aniruddha Pant2 1 Vishwakarma University 2 DeepTek Inc June 23, 2020 Abstract The last two decades have seen an explosive growth in the theory and practice of both quantum computing and machine learning. Modern machine learning systems process huge volumes of data and demand massive computational power. As silicon semiconductor miniaturization approaches its physics limits, quantum computing is increasingly being considered to cater to these computational needs in the future. Small-scale quantum computers and quantum annealers have been built and are already being sold commercially. Quantum computers can benefit machine learning research and application across all science and engineering domains. However, owing to its roots in quantum mechanics, research in this field has so far been confined within the purview of the physics community, and most work is not easily accessible to researchers from other disciplines. In this paper, we provide a background and summarize key results of quantum computing before exploring its application to supervised machine learning problems. By eschewing results from physics that have little bearing on quantum computation, we hope to make this introduction accessible to data scientists, machine learning practitioners, and researchers from across disciplines. 1 Introduction Supervised learning is the most commonly applied form of machine learning. It works in two arXiv:2006.12025v1 [quant-ph] 22 Jun 2020 stages. During the training stage, the algorithm extracts patterns from the training dataset that contains pairs of samples and labels and converts these patterns into a mathematical representation called a model. During the inference stage, this model is used to make predictions about unseen samples. -
Quantum Computational Complexity Theory Is to Un- Derstand the Implications of Quantum Physics to Computational Complexity Theory
Quantum Computational Complexity John Watrous Institute for Quantum Computing and School of Computer Science University of Waterloo, Waterloo, Ontario, Canada. Article outline I. Definition of the subject and its importance II. Introduction III. The quantum circuit model IV. Polynomial-time quantum computations V. Quantum proofs VI. Quantum interactive proof systems VII. Other selected notions in quantum complexity VIII. Future directions IX. References Glossary Quantum circuit. A quantum circuit is an acyclic network of quantum gates connected by wires: the gates represent quantum operations and the wires represent the qubits on which these operations are performed. The quantum circuit model is the most commonly studied model of quantum computation. Quantum complexity class. A quantum complexity class is a collection of computational problems that are solvable by a cho- sen quantum computational model that obeys certain resource constraints. For example, BQP is the quantum complexity class of all decision problems that can be solved in polynomial time by a arXiv:0804.3401v1 [quant-ph] 21 Apr 2008 quantum computer. Quantum proof. A quantum proof is a quantum state that plays the role of a witness or certificate to a quan- tum computer that runs a verification procedure. The quantum complexity class QMA is defined by this notion: it includes all decision problems whose yes-instances are efficiently verifiable by means of quantum proofs. Quantum interactive proof system. A quantum interactive proof system is an interaction between a verifier and one or more provers, involving the processing and exchange of quantum information, whereby the provers attempt to convince the verifier of the answer to some computational problem. -
Computational Complexity
Computational Complexity The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Vadhan, Salil P. 2011. Computational complexity. In Encyclopedia of Cryptography and Security, second edition, ed. Henk C.A. van Tilborg and Sushil Jajodia. New York: Springer. Published Version http://refworks.springer.com/mrw/index.php?id=2703 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:33907951 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#OAP Computational Complexity Salil Vadhan School of Engineering & Applied Sciences Harvard University Synonyms Complexity theory Related concepts and keywords Exponential time; O-notation; One-way function; Polynomial time; Security (Computational, Unconditional); Sub-exponential time; Definition Computational complexity theory is the study of the minimal resources needed to solve computational problems. In particular, it aims to distinguish be- tween those problems that possess efficient algorithms (the \easy" problems) and those that are inherently intractable (the \hard" problems). Thus com- putational complexity provides a foundation for most of modern cryptogra- phy, where the aim is to design cryptosystems that are \easy to use" but \hard to break". (See security (computational, unconditional).) Theory Running Time. The most basic resource studied in computational com- plexity is running time | the number of basic \steps" taken by an algorithm. (Other resources, such as space (i.e., memory usage), are also studied, but they will not be discussed them here.) To make this precise, one needs to fix a model of computation (such as the Turing machine), but here it suffices to informally think of it as the number of \bit operations" when the input is given as a string of 0's and 1's. -
Quantum Information Science
Quantum Information Science Seth Lloyd Professor of Quantum-Mechanical Engineering Director, WM Keck Center for Extreme Quantum Information Theory (xQIT) Massachusetts Institute of Technology Article Outline: Glossary I. Definition of the Subject and Its Importance II. Introduction III. Quantum Mechanics IV. Quantum Computation V. Noise and Errors VI. Quantum Communication VII. Implications and Conclusions 1 Glossary Algorithm: A systematic procedure for solving a problem, frequently implemented as a computer program. Bit: The fundamental unit of information, representing the distinction between two possi- ble states, conventionally called 0 and 1. The word ‘bit’ is also used to refer to a physical system that registers a bit of information. Boolean Algebra: The mathematics of manipulating bits using simple operations such as AND, OR, NOT, and COPY. Communication Channel: A physical system that allows information to be transmitted from one place to another. Computer: A device for processing information. A digital computer uses Boolean algebra (q.v.) to processes information in the form of bits. Cryptography: The science and technique of encoding information in a secret form. The process of encoding is called encryption, and a system for encoding and decoding is called a cipher. A key is a piece of information used for encoding or decoding. Public-key cryptography operates using a public key by which information is encrypted, and a separate private key by which the encrypted message is decoded. Decoherence: A peculiarly quantum form of noise that has no classical analog. Decoherence destroys quantum superpositions and is the most important and ubiquitous form of noise in quantum computers and quantum communication channels. -
Scalable Quantum Cryptography Network for Protected Automation Communication Making Quantum Key Distribution (QKD) Available to Critical Energy Infrastructure
Scalable Quantum Cryptography Network for Protected Automation Communication Making quantum key distribution (QKD) available to critical energy infrastructure Background changes the key in an immediate and Benefits measurable way, reducing the risk that The power grid is increasingly more reliant information thought to be securely • QKD lets the operator know, in real- on a distributed network of automation encrypted has actually been compromised. time, if a secret key has been stolen components such as phasor measurement units (PMUs) and supervisory control and Objectives • Reduces the risk that a “man-in-the- data acquisition (SCADA) systems, to middle” cyber-attack might allow In the past, QKD solutions have been unauthorized access to energy manage the generation, transmission and limited to point-to-point communications sector data distribution of electricity. As the number only. To network many devices required of deployed components has grown dedicated QKD systems to be established Partners rapidly, so too has the need for between every client on the network. This accompanying cybersecurity measures that resulted in an expensive and complex • Qubitekk, Inc. (lead) enable the grid to sustain critical functions network of multiple QKD links. To • Oak Ridge National Laboratory even during a cyber-attack. To protect achieve multi-client communications over (ORNL) against cyber-attacks, many aspects of a single quantum channel, Oak Ridge cybersecurity must be addressed in • Schweitzer Engineering Laboratories National Laboratory (ORNL) developed a parallel. However, authentication and cost-effective solution that combined • EPB encryption of data communication between commercial point-to-point QKD systems • University of Tennessee distributed automation components is of with a new, innovative add-on technology particular importance to ensure resilient called Accessible QKD for Cost-Effective energy delivery systems. -
Quantum Error Correcting Codes and the Security Proof of the BB84 Protocol
Quantum Error Correcting Codes and the Security Proof of the BB84 Protocol Ramesh Bhandari Laboratory for Telecommunication Sciences 8080 Greenmead Drive, College Park, Maryland 20740, USA [email protected] (Dated: December 2011) We describe the popular BB84 protocol and critically examine its security proof as presented by Shor and Preskill. The proof requires the use of quantum error-correcting codes called the Calderbank-Shor- Steanne (CSS) quantum codes. These quantum codes are constructed in the quantum domain from two suitable classical linear codes, one used to correct for bit-flip errors and the other for phase-flip errors. Consequently, as a prelude to the security proof, the report reviews the essential properties of linear codes, especially the concept of cosets, before building the quantum codes that are utilized in the proof. The proof considers a security entanglement-based protocol, which is subsequently reduced to a “Prepare and Measure” protocol similar in structure to the BB84 protocol, thus establishing the security of the BB84 protocol. The proof, however, is not without assumptions, which are also enumerated. The treatment throughout is pedagogical, and this report, therefore, serves as a useful tutorial for researchers, practitioners and students, new to the field of quantum information science, in particular quantum cryptography, as it develops the proof in a systematic manner, starting from the properties of linear codes, and then advancing to the quantum error-correcting codes, which are critical to the understanding