Situation Analysis Study on Geothermal Development in Africa

Total Page:16

File Type:pdf, Size:1020Kb

Situation Analysis Study on Geothermal Development in Africa Situation Analysis Study on Geothermal Development in Africa October 2010 JAPAN INTERNATIONAL COOPERATION AGENCY WEST JAPAN ENGINEERING CONSULTANTS, INC. AFD JR 10-015 Table of Contents Volume 1 Current Situation of Geothermal Energy Development in Africa Chapter 1 Introduction ··················································································································· 1-1 Chapter 2 Expectations for Geothermal Energy Development in Africa········································· 2-1 Chapter 3 Overview of the East African Rift Countries ·································································· 3-1 Chapter 4 Kenya ···························································································································· 4-1 Chapter 5 Ethiopia ························································································································· 5-1 Chapter 6 Djibouti ··························································································································· 6-1 Chapter 7 Tanzania ·························································································································· 7-1 Chapter 8 Uganda ···························································································································· 8-1 Chapter 9 Assistance of Other Donor Organizations to Geothermal Development in the Region ·· 9-1 Volume 2 Promotion of Geothermal Energy Development in Africa Chapter 10 Expectations for Geothermal Energy in the Power Source Mix ··································· 10-1 Chapter 11 Road Maps for Geothermal Development····································································· 11-1 Chapter 12 The Importance of the Governmental Leading Role····················································· 12-1 Chapter 13 Necessity of Technical Capacity Enhancement····························································· 13-1 Chapter 14 Expected Government Action ······················································································· 14-1 Chapter 15 Recommendations to JICA ··························································································· 15-1 Chapter 16········································································································································ 16-1 Reference .............................................................................................................................................. R-1 Appendix 1 Country Index .....................................................................................................Appex-1-1 Appendix 2 Geothermal Resources by Country .....................................................................Appex-2-1 Annex The Evaluation Sheet of Geothermal Field .................................................................ANNEX-1-1 Situation Analysis Study on Geothermal Energy Development in Africa Final Report List of Figures Fig.-1.5-1 Study Flow Chart........................................................................ 1-6 Fig.-2.2-1 Distribution of Volcanoes in the World ......................................... 2-2 Fig.-2.2-2 Geothermal Potential in the East African Rift System Countries ...... 2-3 Fig.-3.1-1 Population and GDP of the East African Rift Countries (2005) ........ 3-2 Fig.-3.1-2 Breakdown of GDP of the East African Rift Countries .................... 3-3 Fig.-3.1-3 Breakdown of Workforce of the East African Rift Countries ............ 3-3 Fig.-3.2-1 GNI, Energy Consumption and Electricity consumption per Capita (2005, 2008)...................................... 3-6 Fig.-3.2-2 Installed Generation Capacity by Energy Source ............................ 3-7 Fig.-3.2-3 Electric Power Supply System in the East African Rift Countries..... 3-8 Fig.-3.3-1 The Great East African Rift System .............................................. 3-13 Fig.-3.3-2 Location of Geothermal Prospect areas in Kenya............................ 3-14 Fig.-3.3-3 Location of Geothermal Prospect areas in Ethiopia......................... 3-15 Fig.-3.3-4 Location of Geothermal Prospect areas in Djibouti......................... 3-16 Fig.-3.3-5 Location of Geothermal Prospect areas in Tanzania ........................ 3-16 Fig.-3.3-6 Location of Geothermal Prospect areas in Uganda .......................... 3-17 Fig.-3.4-1 Official Development Assistance of Major Donor Countries (gross disbursement base)................................... 3-19 Fig.-3.4-2 Japanese ODA Amount by Regions (net disbursement base) ............. 3-19 Fig.-3.4-3 Japanese ODA Amount by Regions in 2007 (net disbursement base) . 3-20 Fig.-3.4-4 Japanese ODA Amount to the World and the East African Rift Countries (net disbursement base)................. 3-20 Fig.-3.4-5 Cumulated Japanese ODA Amount to the East African Rift Countries (1998-2007) ............................... 3-21 Fig.-3.5-1 Geothermal Projects funded by Japanese ODA ............................... 3-22 Fig.-4.3-1 Legal and Regulatory Environment ............................................... 4-4 Fig.-4.3-2 Current Kenya Power Sub-Sector Structure.................................... 4-5 Fig.-4.4-1 Location of Geothermal Prospect areas in Kenya............................ 4-24 Fig.-4.4-2 Map of the Greater Olkaria geothermal area showing the locations of the fields ...................................................... 4-25 Fig.-4.5-1 KenGen Organizational structure.................................................. 4-28 Fig.-4.5-2 GDC Organizational structure ...................................................... 4-29 Fig.-4.7-1 EIA Report Preparation and Approval Process................................ 4-35 JICA i West JEC Situation Analysis Study on Geothermal Energy Development in Africa Final Report Fig.-5.3-1 Electric Power Sector Players in Ethiopia ..................................... 5-4 Fig.-5.3-2 EEPCO Projected Electricity Demand ........................................... 5-10 Fig.-5.4-1 Geologic Map of Ethiopia............................................................ 5-18 Fig.-5.4-2 Regional Geological Structure in Ethiopian Rift Valley................... 5-19 Fig.-5.4-3 Location of Geothermal Prospect areas in Ethiopia......................... 5-20 Fig.-6.3-1 Power Sector in Djibouti ............................................................. 6-4 Fig.-6.4-1 Geology and hydrothermal activity of the Republic of Djibouti ....... 6-16 Fig.-6.4-2 Location of Geothermal Prospect areas in Djibouti......................... 6-17 Fig.-6.4-3 Temperatures profiles of well Asal-3, Asal-4 and Asal-5 ................. 6-17 Fig.-6.4-4 A conceptual model of geothermal activity in the Asal rift .............. 6-18 Fig.-7.3-1 Tanzanian Transition to an Emerging Market ................................. 7-7 Fig.-7.4-1 Location of Mbeya (Tanzania) geothermal field ............................. 7-16 Fig.-7.4-2 Distribution of faults, hot springs and volcanos in the Mbeya region 7-16 Fig.-7.4-3 Delta-D / Delta 18O diagram of hot spring water in Mbeya region .... 7-16 Fig.-7.4-4 Trilinear diagram of Na-K-Mg of hot spring water in Mbeya region . 7-17 Fig.-7.4-5 TEM survey result in Mbeya region .............................................. 7-17 Fig.-7.4-6 Fluid flow model (plain) of Mbeya region ..................................... 7-18 Fig.-7.4-7 Geothermal conceptual model (section) in Mbeya region................. 7-18 Fig.-7.5-1 Ministry of Energy and Minerals of Tanzania Organizational structure........................ 7-20 Fig.-7.5-2 Geological Survey (Ministry of Energy and Minerals) of Tanzania Organizational structure.................... 7-21 Fig.-8.3-1 Power Supply Situation in Uganda................................................ 8-5 Fig.-8.3-2 Fluctuations to Lake Victoria Water Levels 2004 – 2009 ................. 8-8 Fig.-8.3-3 Fluctuations in Energy Generated by Eskom 2006 – 2008................ 8-8 Fig.-8.4-1 Geothermal areas in Uganda( Katwe, Kibiro, Buranga) ................ 8-15 Fig.-8.4-2 Geological map and lineament map of Buranga area( Uganda) ...... 8-15 Fig.-8.4-3 Trilinear diagram of the major anions and Na-K-Mg of hot spring water in the Buranga area ................ 8-15 Fig.-8.4-4 Cl-SO4 diagram of hot spring water in the Buranga area................ 8-16 Fig.-8.4-5 Delta-D-Delta 18O diagram of hot spring and river water in the Buranga area ........................................... 8-16 Fig.-8.4-6 Geothermal conceptual model of Buranga area ............................ 8-16 Fig.-8.4-7 3-D model of Buranga area .......................................................... 8-17 Fig.-8.4-8 Craters in the Katwe-Kikorongo( Uganda) volcanic area............... 8-18 JICA ii West JEC Situation Analysis Study on Geothermal Energy Development in Africa Final Report Fig.-8.4-9 Geological map of Katwe-Kikoro area........................................... 8-18 Fig.-8.4-10 Resistivity map based on the TEM survey in the Katwe-Kikorongo area............................... 8-19 Fig.-8.4-11 Chosen heat flow hole points( yellow) and actual drilled points ( black squares) in the Katwe-Kikorongo area..... 8-19 Fig.-8.4-12 Geothermal structure of Katwe-Kikorongo area ............................ 8-20 Fig.-8.4-13 Geology and geothermal manifestations in the Kibiro area( Uganda) ............................. 8-21 Fig.-8.4-14 Geological map of Kibiro area.................................................... 8-21 Fig.-8.4-15 Resistivity
Recommended publications
  • An Analysis of the Afar-Somali Conflict in Ethiopia and Djibouti
    Regional Dynamics of Inter-ethnic Conflicts in the Horn of Africa: An Analysis of the Afar-Somali Conflict in Ethiopia and Djibouti DISSERTATION ZUR ERLANGUNG DER GRADES DES DOKTORS DER PHILOSOPHIE DER UNIVERSTÄT HAMBURG VORGELEGT VON YASIN MOHAMMED YASIN from Assab, Ethiopia HAMBURG 2010 ii Regional Dynamics of Inter-ethnic Conflicts in the Horn of Africa: An Analysis of the Afar-Somali Conflict in Ethiopia and Djibouti by Yasin Mohammed Yasin Submitted in partial fulfilment of the requirements for the degree PHILOSOPHIAE DOCTOR (POLITICAL SCIENCE) in the FACULITY OF BUSINESS, ECONOMICS AND SOCIAL SCIENCES at the UNIVERSITY OF HAMBURG Supervisors Prof. Dr. Cord Jakobeit Prof. Dr. Rainer Tetzlaff HAMBURG 15 December 2010 iii Acknowledgments First and foremost, I would like to thank my doctoral fathers Prof. Dr. Cord Jakobeit and Prof. Dr. Rainer Tetzlaff for their critical comments and kindly encouragement that made it possible for me to complete this PhD project. Particularly, Prof. Jakobeit’s invaluable assistance whenever I needed and his academic follow-up enabled me to carry out the work successfully. I therefore ask Prof. Dr. Cord Jakobeit to accept my sincere thanks. I am also grateful to Prof. Dr. Klaus Mummenhoff and the association, Verein zur Förderung äthiopischer Schüler und Studenten e. V., Osnabruck , for the enthusiastic morale and financial support offered to me in my stay in Hamburg as well as during routine travels between Addis and Hamburg. I also owe much to Dr. Wolbert Smidt for his friendly and academic guidance throughout the research and writing of this dissertation. Special thanks are reserved to the Department of Social Sciences at the University of Hamburg and the German Institute for Global and Area Studies (GIGA) that provided me comfortable environment during my research work in Hamburg.
    [Show full text]
  • Intergovernmental Authority on Development and East African
    Intergovernmental Authority on Development & East African Community: Viability of Merger Andualem Zewdie, Ethiopian Civil Service University Abstract Constituting a regional economic community has immense benefits to the societies within a given region. Regional Economic Communities (RECs) would play an inevitable role in increasing people to people interactions and gradually forging interdependence in different sectors, which used to limit government to government. Often, such bondage within given RECs among states in general and societies in particular paves the way to address the ills of the respective societies in a collaborative manner. In fact, it is plausible to argue that there is a conducive environment to constitute and build up RECs in the present globalizing world. Parallel to the global trend, Pan Africanism promotes the integration of economies and people under RECs. The establishment and development of RECs in different parts of Africa is among other things tantamount to laying the founding blocs for the aspired United States of Africa. Merging the Intergovernmental Authority on Development (IGAD) and East African Community (EAC) into the larger East African Community like it has been happening in the Southern African Development Community (SADC) and Economic Community of Western African States (ECOWAS) is a novel idea. Such a merger would serve as a vehicle for a prosperous and peaceful larger East African Community and consequently would facilitate the integration of Africa. Given that, the research is designed to scrutinize the viability of a merger between the IGAD and EAC. To meet this objective, the study has set out two basic research questions: What are the viable conditions to merge the IGAD and EAC? What are the possible challenges to the merger of the IGAD and EAC? Finally, the study, to achieve its objective, employed a qualitative research approach which used a wider review of secondary data.
    [Show full text]
  • The Sustainable Development Impact of Two Wind Farms in Ethiopia
    YANNING CHEN A COMPARATIVE ANALYSIS: THE SUSTAINABLE DEVELOPMENT IMPACT OF TWO WIND FARMS IN ETHIOPIA WORKING PAPER 7 November 2016 SAIS China-Africa Research Initiative Working Paper Series Abstract This paper evaluates the sustainable development impact of Chinese energy projects in Africa, focusing specifically on HydroChina’s involvement in the Adama Wind Farm project in Ethiopia. It compares HydroChina’s practice to that of Vergnet, a French firm involved in the construction and financing of the Ashegoda Wind Farm. Sustainable development impact is evaluated along three dimensions: environmental and social impact, technology transfer, and employment creation. Since the exponential growth of Chinese-financed energy projects in Africa, the international media and politicians have singled out Chinese companies for their involvement in projects with poor sustainable development benefits. Many attribute the poor delivery and outcomes to donor country characteristics. Yet, little research has explored how stakeholders can influence sustainable development impact. This paper aims to fill in this gap. Through interviews with key stakeholders and detailed analysis of the negotiation and construction processes in both projects, the research presented here shows that the Chinese- financed and constructed Adama Wind Farm provided similar sustainable development benefits as the French-financed and constructed Ashegoda Wind Farm. Moreover, I find that donor country characteristics are not the main determinants of sustainable development impact. Rather, the host country has can play a crucial role in maximizing sustainable development benefits through targeted policy action. The research for this publication was funded by a fellowship from the China-Africa Research Initiative at Johns Hopkins University’s School of Advanced International Studies (SAIS-CARI).
    [Show full text]
  • Imagining Outer Space Also by Alexander C
    Imagining Outer Space Also by Alexander C. T. Geppert FLEETING CITIES Imperial Expositions in Fin-de-Siècle Europe Co-Edited EUROPEAN EGO-HISTORIES Historiography and the Self, 1970–2000 ORTE DES OKKULTEN ESPOSIZIONI IN EUROPA TRA OTTO E NOVECENTO Spazi, organizzazione, rappresentazioni ORTSGESPRÄCHE Raum und Kommunikation im 19. und 20. Jahrhundert NEW DANGEROUS LIAISONS Discourses on Europe and Love in the Twentieth Century WUNDER Poetik und Politik des Staunens im 20. Jahrhundert Imagining Outer Space European Astroculture in the Twentieth Century Edited by Alexander C. T. Geppert Emmy Noether Research Group Director Freie Universität Berlin Editorial matter, selection and introduction © Alexander C. T. Geppert 2012 Chapter 6 (by Michael J. Neufeld) © the Smithsonian Institution 2012 All remaining chapters © their respective authors 2012 All rights reserved. No reproduction, copy or transmission of this publication may be made without written permission. No portion of this publication may be reproduced, copied or transmitted save with written permission or in accordance with the provisions of the Copyright, Designs and Patents Act 1988, or under the terms of any licence permitting limited copying issued by the Copyright Licensing Agency, Saffron House, 6–10 Kirby Street, London EC1N 8TS. Any person who does any unauthorized act in relation to this publication may be liable to criminal prosecution and civil claims for damages. The authors have asserted their rights to be identified as the authors of this work in accordance with the Copyright, Designs and Patents Act 1988. First published 2012 by PALGRAVE MACMILLAN Palgrave Macmillan in the UK is an imprint of Macmillan Publishers Limited, registered in England, company number 785998, of Houndmills, Basingstoke, Hampshire RG21 6XS.
    [Show full text]
  • Martian Crater Morphology
    ANALYSIS OF THE DEPTH-DIAMETER RELATIONSHIP OF MARTIAN CRATERS A Capstone Experience Thesis Presented by Jared Howenstine Completion Date: May 2006 Approved By: Professor M. Darby Dyar, Astronomy Professor Christopher Condit, Geology Professor Judith Young, Astronomy Abstract Title: Analysis of the Depth-Diameter Relationship of Martian Craters Author: Jared Howenstine, Astronomy Approved By: Judith Young, Astronomy Approved By: M. Darby Dyar, Astronomy Approved By: Christopher Condit, Geology CE Type: Departmental Honors Project Using a gridded version of maritan topography with the computer program Gridview, this project studied the depth-diameter relationship of martian impact craters. The work encompasses 361 profiles of impacts with diameters larger than 15 kilometers and is a continuation of work that was started at the Lunar and Planetary Institute in Houston, Texas under the guidance of Dr. Walter S. Keifer. Using the most ‘pristine,’ or deepest craters in the data a depth-diameter relationship was determined: d = 0.610D 0.327 , where d is the depth of the crater and D is the diameter of the crater, both in kilometers. This relationship can then be used to estimate the theoretical depth of any impact radius, and therefore can be used to estimate the pristine shape of the crater. With a depth-diameter ratio for a particular crater, the measured depth can then be compared to this theoretical value and an estimate of the amount of material within the crater, or fill, can then be calculated. The data includes 140 named impact craters, 3 basins, and 218 other impacts. The named data encompasses all named impact structures of greater than 100 kilometers in diameter.
    [Show full text]
  • Widespread Crater-Related Pitted Materials on Mars: Further Evidence for the Role of Target Volatiles During the Impact Process ⇑ Livio L
    Icarus 220 (2012) 348–368 Contents lists available at SciVerse ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Widespread crater-related pitted materials on Mars: Further evidence for the role of target volatiles during the impact process ⇑ Livio L. Tornabene a, , Gordon R. Osinski a, Alfred S. McEwen b, Joseph M. Boyce c, Veronica J. Bray b, Christy M. Caudill b, John A. Grant d, Christopher W. Hamilton e, Sarah Mattson b, Peter J. Mouginis-Mark c a University of Western Ontario, Centre for Planetary Science and Exploration, Earth Sciences, London, ON, Canada N6A 5B7 b University of Arizona, Lunar and Planetary Lab, Tucson, AZ 85721-0092, USA c University of Hawai’i, Hawai’i Institute of Geophysics and Planetology, Ma¯noa, HI 96822, USA d Smithsonian Institution, Center for Earth and Planetary Studies, Washington, DC 20013-7012, USA e NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA article info abstract Article history: Recently acquired high-resolution images of martian impact craters provide further evidence for the Received 28 August 2011 interaction between subsurface volatiles and the impact cratering process. A densely pitted crater-related Revised 29 April 2012 unit has been identified in images of 204 craters from the Mars Reconnaissance Orbiter. This sample of Accepted 9 May 2012 craters are nearly equally distributed between the two hemispheres, spanning from 53°Sto62°N latitude. Available online 24 May 2012 They range in diameter from 1 to 150 km, and are found at elevations between À5.5 to +5.2 km relative to the martian datum. The pits are polygonal to quasi-circular depressions that often occur in dense clus- Keywords: ters and range in size from 10 m to as large as 3 km.
    [Show full text]
  • Recent Channel Systems Emanating from Hale Crater Ejecta: Implications for the Noachian Landscape Evolution of Mars
    Lunar and Planetary Science XXXIX (2008) 2180.pdf RECENT CHANNEL SYSTEMS EMANATING FROM HALE CRATER EJECTA: IMPLICATIONS FOR THE NOACHIAN LANDSCAPE EVOLUTION OF MARS. L. L. Tornabene1, 2, A. S. McEwen1, and the HiRISE Team1, 1Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721, [email protected] Introduction: Impact cratering is a fundamental into linear elements that do not appear to be typical crater geologic process that dominated the distant geologic past rays, but like rays lie radial to Hale (e.g., 315°E, 32°S; of the terrestrial planets. Thereby, impacts played a 323.6°E, 35.7°S). Further, Hale has pristine morphologic significant role in the formation and evolution of planetary features at the decameter scale such as a sharp but crusts in the form of impact effects and byproducts (e.g., complexly terraced rim, a prominent central peak and only ejecta, breccias, impact melts, etc.). On Mars, impacts may small (<1 km) and few superimposed craters. The ejecta have liberated subsurface volatiles that, in the form of and secondaries from Hale are superimposed over liquid water, modified both surface morphology and surrounding terrains covering a large expanse of Mars, composition (e.g., phyllosilicates [e.g., 1]), and possibly with one swath of secondaries spanning >500 km wide. influenced early habitable environments. Although such an Hale also possesses ponded materials and channelized interaction has been inferred by studies of crater flows, which is an indication of the presence of impact- morphology [e.g., 2] and impact models [e.g., 3], direct melt bearing materials, as well as a testament to the evidence for the release of liquid water or other volatiles youthfulness and excellent state of preservation of the by Martian impacts was lacking [4].
    [Show full text]
  • Cetacean Rapid Assessment: an Approach to Fill Knowledge Gaps and Target Conservation Across Large Data Deficient Areas
    Received: 9 January 2017 Revised: 19 June 2017 Accepted: 17 July 2017 DOI: 10.1002/aqc.2833 RESEARCH ARTICLE Cetacean rapid assessment: An approach to fill knowledge gaps and target conservation across large data deficient areas Gill T. Braulik1,2 | Magreth Kasuga1 | Anja Wittich3 | Jeremy J. Kiszka4 | Jamie MacCaulay2 | Doug Gillespie2 | Jonathan Gordon2 | Said Shaib Said5 | Philip S. Hammond2 1 Wildlife Conservation Society Tanzania Program, Tanzania Abstract 2 Sea Mammal Research Unit, Scottish Oceans 1. Many species and populations of marine megafauna are undergoing substantial declines, while Institute, University of St Andrews, St many are also very poorly understood. Even basic information on species presence is unknown Andrews, Fife, UK for tens of thousands of kilometres of coastline, particularly in the developing world, which is a 3 23 Adamson Terrace, Leven, Fife, UK major hurdle to their conservation. 4 Department of Biological Sciences, Florida 2. Rapid ecological assessment is a valuable tool used to identify and prioritize areas for International University, North Miami, FL, USA conservation; however, this approach has never been clearly applied to marine cetaceans. Here 5 Institute of Marine Science, University of Dar es Salaam, Tanzania a rapid assessment protocol is outlined that will generate broad‐scale, quantitative, baseline Correspondence data on cetacean communities and potential threats, that can be conducted rapidly and cost‐ Gill T. Braulik, Wildlife Conservation Society effectively across whole countries, or regions. Tanzania Program, Zanzibar, Tanzania. Email: [email protected] 3. The rapid assessment was conducted in Tanzania, East Africa, and integrated collection of data on cetaceans from visual, acoustic, and interview surveys with existing information from multiple Funding information sources, to provide low resolution data on cetacean community relative abundance, diversity, and Pew Marine Fellows, Grant/Award Number: threats.
    [Show full text]
  • Crater Geometry and Ejecta Thickness of the Martian Impact Crater Tooting
    Meteoritics & Planetary Science 42, Nr 9, 1615–1625 (2007) Abstract available online at http://meteoritics.org Crater geometry and ejecta thickness of the Martian impact crater Tooting Peter J. MOUGINIS-MARK and Harold GARBEIL Hawai‘i Institute of Geophysics and Planetology, University of Hawai‘i, Honolulu, Hawai‘i 96822, USA (Received 25 October 2006; revision accepted 04 March 2007) Abstract–We use Mars Orbiter Laser Altimeter (MOLA) topographic data and Thermal Emission Imaging System (THEMIS) visible (VIS) images to study the cavity and the ejecta blanket of a very fresh Martian impact crater ~29 km in diameter, with the provisional International Astronomical Union (IAU) name Tooting crater. This crater is very young, as demonstrated by the large depth/ diameter ratio (0.065), impact melt preserved on the walls and floor, an extensive secondary crater field, and only 13 superposed impact craters (all 54 to 234 meters in diameter) on the ~8120 km2 ejecta blanket. Because the pre-impact terrain was essentially flat, we can measure the volume of the crater cavity and ejecta deposits. Tooting crater has a rim height that has >500 m variation around the rim crest and a very large central peak (1052 m high and >9 km wide). Crater cavity volume (i.e., volume below the pre-impact terrain) is ~380 km3 and the volume of materials above the pre-impact terrain is ~425 km3. The ejecta thickness is often very thin (<20 m) throughout much of the ejecta blanket. There is a pronounced asymmetry in the ejecta blanket, suggestive of an oblique impact, which has resulted in up to ~100 m of additional ejecta thickness being deposited down-range compared to the up-range value at the same radial distance from the rim crest.
    [Show full text]
  • Investment Opportunities in Africa
    A PUBLICATION BY THE AFRICAN AMBASSADORS GROUP IN CAIRO INVESTMENT OPPORTUNITIES IN AFRICA In collaboration with the African Export-Import Bank (Afreximbank) A PUBLICATION BY THE AFRICAN AMBASSADORS GROUP IN CAIRO INVESTMENT OPPORTUNITIES IN AFRICA © Copyright African Ambassadors Group in Cairo, 2018. All rights reserved. African Ambassadors Group in Cairo Email: [email protected] This publication was produced by the African Ambassadors Group in Cairo in collaboration with the African Export-Import Bank (Afreximbank) TABLE OF CONTENTS FOREWORD 8 VOTE OF THANKS 10 INTRODUCTION 12 THE PEOPLE’S DEMOCRATIC REPUBLIC OF ALGERIA 14 THE REPUBLIC OF ANGOLA 18 BURKINA FASO 22 THE REPUBLIC OF BURUNDI 28 THE REPUBLIC OF CAMEROON 32 THE REPUBLIC OF CHAD 36 THE UNION OF COMOROS 40 THE DEMOCRATIC REPUBLIC OF THE CONGO 44 THE REPUBLIC OF CONGO 50 THE REPUBLIC OF CÔTE D’IVOIRE 56 THE REPUBLIC OF DJIBOUTI 60 THE ARAB REPUBLIC OF EGYPT 66 THE STATE OF ERITREA 70 THE FEDERAL DEMOCRATIC REPUBLIC OF ETHIOPIA 74 THE REPUBLIC OF EQUATORIAL GUINEA 78 THE GABONESE REPUBLIC 82 THE REPUBLIC OF GHANA 86 THE REPUBLIC OF GUINEA 90 THE REPUBLIC OF KENYA 94 THE REPUBLIC OF LIBERIA 98 THE REPUBLIC OF MALAWI 102 THE REPUBLIC OF MALI 108 THE REPUBLIC OF MAURITIUS 112 THE KINGDOM OF MOROCCO 116 THE REPUBLIC OF MOZAMBIQUE 120 THE REPUBLIC OF NAMIBIA 126 THE REPUBLIC OF NIGER 130 THE FEDERAL REPUBLIC OF NIGERIA 134 THE REPUBLIC OF RWANDA 138 THE REPUBLIC OF SIERRA LEONE 144 THE FEDERAL REPUBLIC OF SOMALIA 148 THE REPUBLIC OF SOUTH AFRICA 152 THE REPUBLIC OF SOUTH SUDAN 158 THE REPUBLIC OF THE SUDAN 162 THE UNITED REPUBLIC OF TANZANIA 166 THE REPUBLIC OF TUNISIA 170 THE REPUBLIC OF UGANDA 174 THE REPUBLIC OF ZAMBIA 178 THE REPUBLIC OF ZIMBABWE 184 ABOUT AFREXIMBANK 188 FOREWORD Global perception on Africa has positively evolved.
    [Show full text]
  • J.E.Afr.Nat.Hist.Soc. Vol.XXV No.3 (112) January 1966 CHECK LIST of ELOPOID and CLUPEOID FISHES in EAST AFRICAN COASTAL WATERS B
    J.E.Afr.Nat.Hist.Soc. Vol.XXV No.3 (112) January 1966 CHECK LIST OF ELOPOID AND CLUPEOID FISHES IN EAST AFRICAN COASTAL WATERS By G.F. LOOSE (East African Marine Fisheries Research Organization, Zanzibar.) Introduction During preliminary biological studies of the economically important fishes of the suborders Elopoidei and Clupeoidei in East African coastal waters, it was found that due to considerable confusion in the existing literature and the taxonomy of many genera, accurate identifi• cations were often difficult. A large collection of elopoid and clupeoid fishes has been made. Specimens have been obtained from purse-seine catches, by trawling in estuaries and shallow bays, by seining, handnetting under lamps at night, and from the catches of indigenous fishermen. A representative fartNaturalof thisHistory),collectionLondon,haswherenow beenI wasdepositedable to examinein the Britishfurther Museummaterial from the Western Indian Ocean during the summer of 1964. Based on these collections this check list has been prepared; a review on the taxonomy, fishery and existing biological knowledge of elopoid and clupeoid species in the East African area is in preparation. Twenty-one species, representing seven families are listed here; four not previously published distributional records are indicated by asterisks. Classification to familial level is based on Whitehead, P.J.P. (1963 a). Keys refer only to species listed and adult fishes. In the synonymy reference is made only to the original description and other subsequent records from the area. Only those localities are listed from which I have examined specimens. East Africa refers to the coastal waters of Kenya and Tanzania and the offshore islands of Pemba, Zanzibar and Mafia; Eastern Africa refers to the eastern side of the African continent, i.e.
    [Show full text]
  • Regional Marine and Coastal Projects in the Western Indian Ocean; an Overview
    Participating countries Regional Marine and Coastal Projects in the Western Indian Ocean; an overview WORKING DOCUMENT DATE: 27 May 2009 The purpose of this document is to provide a reference for coastal and marine-related institutions and projects in the Western Indian Ocean region. Content has been included as provided by regional projects or institutions active in more than one country in the Western Indian Ocean. The body of the text describes the activities of 25 projects, but a longer list may be found in Appendix I. Twelve chapters are presented on a thematic or geographic basis, to allow interested projects and parties to interact and coordinate activities around their particular areas of interest. The order of projects is in the order of information received; they are not listed alphabetically or reformatting would have been required after every addition. Sections for which information is pending, or sections that are not applicable have been left blank, also to avoid formatting problems. Much of the text has been extracted from other documents, websites and reports, and no claims are made to originality. This reference document should be used as a guide only. Some information has been based on online sources or project documents that may be outdated. For the most up-to-date, verified and accurate information about any project, please contact them directly. We hope to improve this draft, and so further comments or contributions of any kind are welcome. Compiled by Lucy Scott (ASCLME), with contributions from Tommy Bornman, Juliet
    [Show full text]