Silkworms, Science, and Nation: a Sericultural History of Genetics in Modern Japan

Total Page:16

File Type:pdf, Size:1020Kb

Silkworms, Science, and Nation: a Sericultural History of Genetics in Modern Japan SILKWORMS, SCIENCE, AND NATION: A SERICULTURAL HISTORY OF GENETICS IN MODERN JAPAN A Dissertation Presented to the Faculty of the Graduate School of Cornell University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Lisa Aiko Onaga January 2012 © 2012 Lisa Aiko Onaga SILKWORMS, SCIENCE, AND NATION: A SERICULTURAL HISTORY OF GENETICS IN MODERN JAPAN Lisa Aiko Onaga, Ph.D. Cornell University 2012 This dissertation describes how and why the source of raw silk, the domesticated silkworm (Bombyx mori), emerged as an organism that scientists in Japan researched intensively during the late nineteenth and early twentieth centuries. People invested in and exploited the lucrative silkworm in order to produce a delicate fiber, as well as to help impart universal claims and ideas about the governing patterns of inheritance at a time when uncertainties abounded about the principles of what we today call genetics. Silkworm inheritance studies such as those by scientists Toyama Kametarō (1867– 1918) and Tanaka Yoshimarō (1884–1972) contributed to ideas developing among geneticists internationally about the biological commonalities of different living organisms. Silkworm studies also interacted with the registration of silkworm varieties in and beyond East Asia at a time when the rising Imperial agenda intertwined with the silk industry. Different motivations drove silkworm science, apparent in the growth of Japanese understandings of natural order alongside the scientific pursuits of universality. Tōitsu, a “unification” movement around 1910, notably involved discussions about improving silk and decisions about the use of particular silkworms to generate export-bound Japanese silk. I show why the reasons for classifying silkworms within Japan had as much to do with the connection between textiles, power, and social order as it did with the turn toward experiment-based biological articulations of inheritance, which together interacted with ideas about Japanese nationhood. BIOGRAPHICAL SKETCH Lisa Aiko Onaga was born Lisa Yen-Chen in Brookfield, Connecticut, USA, in 1978. She grew up in Pittsburgh, Pennsylvania, and Kobe, Japan, where she attended the Canadian Academy for three years. She graduated from Brown University in 2000 with a Sc.B. in biology with honors, where she conducted research in marine ecology and evolution and cultivated her interests in science writing. She worked at the American Association for the Advancement of Science in Washington, D.C., for three years as a communications officer for Science. She has also been a freelance science writer and worked as a media relations contractor for Burness Communications, representing major international nonprofit organizations. At Cornell University, Lisa was in the first cohort of recipients of the Cornell Presidential Genomics (now Life Sciences) Fellowship. Since returning from her dissertation fieldwork in Japan, Lisa has resided in the Bay Area, California, and was been a visiting researcher of the Office for History of Science and Technology at the University of California, Berkeley, from 2009 to 2011. While completing her dissertation, Lisa co-founded Teach 3.11, a participant-powered digital resource that helps educators and scholars locate and share information related to the history of science and technology concerning the triple earthquake, tsunami, and nuclear disasters in Japan. After receiving her Ph.D., she will join the Center for Society and Genetics at University of California, Los Angeles, as a lecturer and postdoctoral fellow with support from the D. Kim Foundation for History of Science and Technology in East Asia. She will join Nanyang Technological University in Singapore as an assistant professor in the history division. iii DEDICATION To Yoko and Eimei / Xiurong and Yung-Ming iv ACKNOWLEDGMENTS Many have been instrumental to the completion of this dissertation. That I had not imagined one iota that I would work on the history of the science of silkworms before entering graduate school makes this particularly so. I first owe deep thanks to my committee members. My advisor, Bruce Lewenstein, helped me transition from the world of popular science writing to academia. With incredible patience and understanding, he coaxed out of me a cogent academic project that continued to relate to core questions I had about the production and communication of science across cultures and international borders. I know that his guidance and teaching will continue to inform my work for years to come. Suman Seth’s graduate course on the relationships among science, race, and colonialism played a critical role in spurring my exploration of the history of Mendelism in Japan; I am also grateful for conversations that have continued since then that have helped me sharpen the questions that this project asks and strives to answer. I thank Will Provine for granting generous access to his library and reprints collection, for his demand for specificity and conciseness in my writing, and for treating me as if I had already met his high expectations, which continues to make me only more appreciative of the learning that lies before me. I am grateful to Vic Koschmann for introducing me to a new literature and for helping me articulate how biology in Japan relates to concepts and developments important to modern Japanese history. Serving as my field-appointed reader, Margaret Rossiter shared key insights and remarks that have helped improve the quality of the dissertation, especially its readability. The language study and research for this project, conducted from 2006 to 2009, was made possible with generous support from the U.S. National Science Foundation Dissertation Improvement Grant (#0646370), a Social Sciences Research Council–International Dissertation Research Fellowship, a Cornell East Asia Program v research travel grant, and a Fulbright/YKK Graduate Research Fellowship, for which I especially thank Mizuho Iwata and Miyuki Ito, who coordinated many of my logistics at the Japan–U.S. Educational Commission. A Foreign Language and Area Studies fellowship also made it possible for me to study Japanese intensively at the Inter- University Center for Japanese Studies. The Max Planck Institute for the History of Science generously funded some final months of dissertation writing in Berlin. At the University of Tokyo, I owe great thanks to Miwao Matsumoto and the Graduate School of Humanities and Sociology for generously hosting my 2007–2009 research sojourn. Opportunities to present research in the Matsumoto zemi and at a colloquium of the Japan Association for Science, Technology, & Society generated much useful feedback for my project. Special thanks is granted to Kohta Juraku, who went beyond the call of duty as a tutor in helping me gain reading familiarity with Meiji Japanese and assisting with an important field trip to key locations in Gunma Prefecture. I have deeply appreciated the opportunity to continue to discuss research with Kohta and Etsuko Juraku at U.C. Berkeley during the 2010–2011 academic year. I also thank Naomi Kaida for tutorial help and Yuji Tateishi for thoughtful sociological discussions. I am greatly indebted to Michihiro Kobayashi of the Japanese Society of Sericultural Science for his support of my project and for introducing me to key people in the field. Toru Shimada of the Laboratory of Insect Genetics and Bioscience on the Yayoi campus of the University of Tokyo has been instrumental to the success of this project for providing much-appreciated office space, access to historical texts, and stimulating conversations, in addition to orienting me in the field of silkworm science. I have benefited tremendously from conversations with the students, professors, and postdocs in the lab, who always made me feel welcome as I tagged along with them to learn about silkworms. Office manager Munetaka Kawamoto made vi sure that all went smoothly. I am incredibly indebted to Professor Shimada for the introduction to IGB alumnus Amornrat Promboon of Kasetsart University, who, along with her graduate students Netnapa Chingkitti and Warangkana Narksen, hosted me during my research visit to the National Archives in Bangkok, Thailand. I also thank Pornpinee Boonbundal, Prateep Meesilpa, and Wiroje Kaewruang of the Queen Sirikit Institute of Sericulture and colleagues for making it possible for me to visit the Khorat region where Japanese sericulturists worked. Praveen Anansongvit coordinated translation assistance. Research on Tanaka Yoshimarō was made possible through the kindness of scientists who have worked in his former laboratory spaces. Yutaka Banno, at the University of Kyushu, made it possible for me to research primary source materials. Emeritus professor Bungo Sakaguchi also kindly permitted access to his former laboratory. The family of Tanaka Katsumi, especially Tanaka Yasuko, has been very kind to permit my viewing of a selection of the diaries of Tanaka Yoshimarō. I am hugely indebted to the late Yatarō Tazima for meeting with me on multiple occasions to explain his research, for lending me key texts, for serving as a willing resource to discuss Tanaka Yoshimarō’s work, and for key introductions to his former laboratory at the Institute of Sericulture–Dainippon Silk Association. I am grateful to director Hajimu Inoue for permitting me to conduct research at the Institute’s library and for access to primary source materials in the former Tazima lab. I thank silkworm breeders and researchers Akio Ohnuma, Yoko Takemura,
Recommended publications
  • Introduction to Genetics Bios 225
    INTRODUCTION TO GENETICS BIOS 225 Course Description This course introduces the student to the basic concepts of inheritance, populations, mutations, and techniques used to assess each of these. Credit: 2 credits Repeatable: No Course Structure The course will be presented in different formats: Lectures with PowerPoints, self-directed learning, discussions and student assignments etc. Competencies This course emphasizes competencies to enhance skills essential for a future health care professional. • Knowledge o Demonstrate content knowledge and skills in foundational courses required by biomedical professionals o Demonstrate information literacy o Demonstrate quantitative reasoning o Demonstrate longitudinal learning through coursework • Critical Thinking o Develop the skills of self-reflection and peer assessment to improve personal performance. o Demonstrate the ability to analyze literature and written material o Demonstrate the ability to distinguish between well-reasoned and poorly reasoned arguments • Communication Skills o Demonstrate effective presentation skills to faculty and peers. o Demonstrate effective listening skills o Demonstrate effective written communication 1 Objectives: Upon completion of BIOS 225 course, the student should be able to describe: • The structure and function of purines, pyrimidines, nucleosides and nucleotides • The structure and functions of nucleic acids (DNA and RNA) • The chromosome anatomy and human karyotypes • The concepts of prokaryotic and eukaryotic DNA replication • The concepts of prokaryotic and eukaryotic RNA transcription and post-transcriptional modifications • The concepts of prokaryotic and eukaryotic protein translation and post-translational modifications • The regulations of prokaryotic and eukaryotic gene expressions • The process of genomic, chromosomal and gene mutations; and its repair mechanism • The Mendel’ hypothesis and molecular mechanisms of genetic inheritance Schedule: Dates and times to be posted at the beginning of the term on the online calendar.
    [Show full text]
  • Redacted for Privacy Abstract Approved: Mary Jo Nye
    AN ABSTRACT OF THE THESIS OF Linda Hahn for the degree of Master of Science in History of Science presented on February 4. 2000. Title: In the Midst of a Revolution: Science, Fish Culture and the Oregon Game Commission. 1935-1949. Redacted for privacy Abstract approved: Mary Jo Nye This thesis will address the transformation of biological sciences during the 1930s and 1940s and it effects on fisheries science. It will focus on Oregon State College and specifically the Department of Fish and Game Management and the interaction with the Oregon Game Commission. Support for mutation theory and neo- Lamarckism lasted throughout this study's time frame. The resulting belief that the environment can directly affect species fitness could have been a factor in fisheries managers' support for fish hatcheries. Throughout this time frame the science of ecology was emerging, but the dominant science of agricultural breeding science within wildlife management took precedence over ecology. Two case studies show changing ideas about agricultural breeding science as applied to wildlife management. In the first case study, the debate concerning fishways over Bonneville Dam shows that fish hatcheries were counted on to mitigate the loss of salmon habitat due to construction, and to act as a failsafe should the fishways fail. When the 1934 Oregon Game Commission members failed to enthusiastically support the construction of the dam and the fishway plans, this thesis argues that the commission members were dismissed in 1935. The second case study addresses the actions of the Oregon Game Commission in placing some high dams on tributaries of the Willameue River, the Willamette Valley project.
    [Show full text]
  • Cumulated Bibliography of Biographies of Ocean Scientists Deborah Day, Scripps Institution of Oceanography Archives Revised December 3, 2001
    Cumulated Bibliography of Biographies of Ocean Scientists Deborah Day, Scripps Institution of Oceanography Archives Revised December 3, 2001. Preface This bibliography attempts to list all substantial autobiographies, biographies, festschrifts and obituaries of prominent oceanographers, marine biologists, fisheries scientists, and other scientists who worked in the marine environment published in journals and books after 1922, the publication date of Herdman’s Founders of Oceanography. The bibliography does not include newspaper obituaries, government documents, or citations to brief entries in general biographical sources. Items are listed alphabetically by author, and then chronologically by date of publication under a legend that includes the full name of the individual, his/her date of birth in European style(day, month in roman numeral, year), followed by his/her place of birth, then his date of death and place of death. Entries are in author-editor style following the Chicago Manual of Style (Chicago and London: University of Chicago Press, 14th ed., 1993). Citations are annotated to list the language if it is not obvious from the text. Annotations will also indicate if the citation includes a list of the scientist’s papers, if there is a relationship between the author of the citation and the scientist, or if the citation is written for a particular audience. This bibliography of biographies of scientists of the sea is based on Jacqueline Carpine-Lancre’s bibliography of biographies first published annually beginning with issue 4 of the History of Oceanography Newsletter (September 1992). It was supplemented by a bibliography maintained by Eric L. Mills and citations in the biographical files of the Archives of the Scripps Institution of Oceanography, UCSD.
    [Show full text]
  • Karl Jordan: a Life in Systematics
    AN ABSTRACT OF THE DISSERTATION OF Kristin Renee Johnson for the degree of Doctor of Philosophy in History of SciencePresented on July 21, 2003. Title: Karl Jordan: A Life in Systematics Abstract approved: Paul Lawrence Farber Karl Jordan (1861-1959) was an extraordinarily productive entomologist who influenced the development of systematics, entomology, and naturalists' theoretical framework as well as their practice. He has been a figure in existing accounts of the naturalist tradition between 1890 and 1940 that have defended the relative contribution of naturalists to the modem evolutionary synthesis. These accounts, while useful, have primarily examined the natural history of the period in view of how it led to developments in the 193 Os and 40s, removing pre-Synthesis naturalists like Jordan from their research programs, institutional contexts, and disciplinary homes, for the sake of synthesis narratives. This dissertation redresses this picture by examining a naturalist, who, although often cited as important in the synthesis, is more accurately viewed as a man working on the problems of an earlier period. This study examines the specific problems that concerned Jordan, as well as the dynamic institutional, international, theoretical and methodological context of entomology and natural history during his lifetime. It focuses upon how the context in which natural history has been done changed greatly during Jordan's life time, and discusses the role of these changes in both placing naturalists on the defensive among an array of new disciplines and attitudes in science, and providing them with new tools and justifications for doing natural history. One of the primary intents of this study is to demonstrate the many different motives and conditions through which naturalists came to and worked in natural history.
    [Show full text]
  • Simplification, Innateness, and the Absorption of Meaning from Context: How Novelty Arises from Gradual Network Evolution
    Evol Biol DOI 10.1007/s11692-017-9407-x SYNTHESIS PAPER Simplification, Innateness, and the Absorption of Meaning from Context: How Novelty Arises from Gradual Network Evolution Adi Livnat1 Received: 25 May 2016 / Accepted: 6 January 2017 © The Author(s) 2017. This article is published with open access at Springerlink.com Abstract How does new genetic information arise? Tra- leads to complexity; and that evolution and learning are ditional thinking holds that mutation happens by accident conceptually linked. and then spreads in the population by either natural selec- tion or random genetic drift. There have been at least two Keywords Evolvability · Novelty · Cooption · fundamental conceptual problems with imagining an alter- Parsimony · Gene fusion · Instinct native. First, it seemed that the only alternative is a muta- tion that responds “smartly” to the immediate environment; [C]hange is taking place on many scales at the same but in complex multicellulars, it is hard to imagine how time, and ... it is the interaction among phenomena this could be implemented. Second, if there were mecha- on different scales that must occupy our attention. nisms of mutation that “knew” what genetic changes would —Simon A. Levin (1992). be favored in a given environment, this would have only begged the question of how they acquired that particular knowledge to begin with. This paper offers an alternative 1 Introduction that avoids these problems. It holds that mutational mecha- nisms act on information that is in the genome, based on There have been two main ways of thinking about the considerations of simplicity, parsimony, elegance, etc. nature of mutation and how it allows for adaptive evolution.
    [Show full text]
  • Animal Traditions: Behavioural Inheritance in Evolution
    Animal Traditions: Behavioural Inheritance in Evolution Eytan Avital and Eva Jablonka CAMBRIDGE UNIVERSITY PRESS Animal Traditions Behavioural Inheritance in Evolution Animal Traditions maintains that the assumption that the selection of genes supplies both a sufficient explanation of the evolution of behav- iour and a true description of its course is, despite its almost univer- sal acclaim, wrong. Eytan Avital and Eva Jablonka contend that evolutionary explanations must take into account the well-established fact that, in mammals and birds, the transfer of learnt information across generations is both ubiquitous and indispensable. The introduc- tion of the behavioural inheritance system into the Darwinian explanatory scheme enables the authors to offer new interpretations for common behaviours such as maternal behaviours, behavioural conflicts within families, adoption and helping. This approach offers a richer view of heredity and evolution, integrates developmental and evolutionary processes, suggests new lines for research and provides a constructive alternative to both the selfish gene and meme views of the world. It will make stimulating reading for all those interested in evolutionary biology, sociobiology, behavioural ecology and psychology. eytan avital is a lecturer in Zoology in the Department of Natural Sciences at David Yellin College of Education in Jerusalem. He is a highly experienced field biologist, and has written one zoology text and edited several others on zoology and evolution for the Israel Open university. eva jablonka is a senior lecturer in the Cohn Institute for the History and Philosophy of Science and Ideas, at Tel-Aiv University. She is the author of three books on heredity and evolution, most recently Epigenetic Inheritance and Evolution with Marion Lamb.
    [Show full text]
  • Jennifer Robertson Curriculum Vitae (October 2018)
    Jennifer Robertson Curriculum Vitae (October 2018) Department of Anthropology, 101 West Hall 1085 South University Avenue, University of Michigan, Ann Arbor, Michigan 48109-1107 and Department of the History of Art, 110 Tappan Hall 855 South University Avenue, University of Michigan Ann Arbor, MI 48109-1357 Tel. (W) 734.764.7274 or (W) 734.764.5400 and (H) 734.995.9006 (tel/fax) E-mail: [email protected] http:// www.jenniferrobertson.info/ Artwork: www.biwahamistudio.com/ ACADEMIC EXPERIENCE (ADMINISTRATIVE WORK AT END OF CV) Professor, 1997- Department of Anthropology (1997-) and Department of the History of Art (2010-) Non-budgeted appointments as Professor of Women's Studies (1991-) and Professor of Art & Design (UM School of Art & Design, 2010-) Faculty Associate, Program in Anthropology and History (1991-) Affiliate Faculty, Robotics Institute (2015-) Affiliate, Institute for Research on Women and Gender (IRWG) (2018-) University of Michigan, Ann Arbor, MI Associate Chair, Department of Anthropology, 1998-1999 University of Michigan, Ann Arbor, MI Chair, Socio-Cultural Anthropology Subfield, Department of Anthropology, 1998-1999; 2007-2008; 2009-2010 University of Michigan, Ann Arbor, MI Coordinator, Integration of Anthropology and the Life Sciences under the auspices of the Life Sciences and Society Program, 2002-2006 University of Michigan, Ann Arbor, MI Member, Core Faculty, Sloan Center for the Ethnography of Everyday Life, 1998-2002 University of Michigan, Ann Arbor, MI Associate Professor (with tenure), 1991-1997 Department
    [Show full text]
  • Detailed Course Matrix and Scheme of Evaluation for Integrated B.Sc. – M.Sc. in Biological Sciences (Revised) SEMESTER –
    Detailed course matrix and scheme of evaluation for Integrated B.Sc. – M.Sc. in Biological Sciences (Revised) SEMESTER – I Total Duration of Maximum *Internal Course code Course Title Hrs / week Total marks credits examination (hrs) marks Assessment Theory Systematics and diversity of Non- IBS101T 4 4 3 70 30 100 vascular Plants (core) Systematics and diversity of IBS102T 4 4 3 70 30 100 Invertebrates (core) IBS103T Biophysical chemistry(core) 4 4 3 70 30 100 IBS104T Computer applications & IT (SEC) 2 2 2 35 15 50 Language I-1 IBS105T 2 2 3 70 30 100 (Kannada / Hindi) IBS106T Language I-1 (English) 2 2 3 70 30 100 Practical Systematics and diversity of Non- IBS107P 4 2 4 35 15 50 vascular Plant (core) Systematics and diversity of IBS108P 4 2 4 35 15 50 Invertebrates (core) IBS109P Biophysical chemistry (core) 4 2 4 35 15 50 Co-curricular & Extra-curricular - Pass/Fail - - 50 50 activities SEMESTER – II Total Duration of Maximum *Internal Course code Course Title Hrs / week Total marks credits examination (hrs) marks Assessment Theory Systematics and diversity of IBS201T 4 4 3 70 30 100 Vascular Plants (core) Systematics and diversity of 4 IBS202T 4 3 70 30 100 Vertebrates (core) 4 IBS203T Bio-organic chemistry (core) 4 3 70 30 100 2 IBS204T Communicative English (AEC) 2 2 35 15 50 Language I-2 2 IBS205T 2 3 70 30 100 (Kannada / Hindi) 2 IBS206T Language I-2 (English) 2 3 70 30 100 Practical Systematics and diversity of 4 IBS207P 2 4 35 15 50 Vascular Plant(core) Systematics and diversity of 4 IBS208P 2 4 35 15 50 Vertebrates(core) 4 IBS209P
    [Show full text]
  • INTRODUCTION to GENETICS Table of Contents Heredity, Historical
    INTRODUCTION TO GENETICS Table of Contents Heredity, historical perspectives | The Monk and his peas | Principle of segregation Dihybrid Crosses | Mutations | Genetic Terms | Links Heredity, Historical Perspective | Back to Top For much of human history people were unaware of the scientific details of how babies were conceived and how heredity worked. Clearly they were conceived, and clearly there was some hereditary connection between parents and children, but the mechanisms were not readily apparent. The Greek philosophers had a variety of ideas: Theophrastus proposed that male flowers caused female flowers to ripen; Hippocrates speculated that "seeds" were produced by various body parts and transmitted to offspring at the time of conception, and Aristotle thought that male and female semen mixed at conception. Aeschylus, in 458 BC, proposed the male as the parent, with the female as a "nurse for the young life sown within her". During the 1700s, Dutch microscopist Anton van Leeuwenhoek (1632-1723) discovered "animalcules" in the sperm of humans and other animals. Some scientists speculated they saw a "little man" (homunculus) inside each sperm. These scientists formed a school of thought known as the "spermists". They contended the only contributions of the female to the next generation were the womb in which the homunculus grew, and prenatal influences of the womb. An opposing school of thought, the ovists, believed that the future human was in the egg, and that sperm merely stimulated the growth of the egg. Ovists thought women carried eggs containing boy and girl children, and that the gender of the offspring was determined well before conception.
    [Show full text]
  • The Biological Bulletin
    THE MARINE BIOLOGICAL LABORATORY TWENTY-FIRST REPORT; FOR THE YEAR 1918 THIRTY-FIRST YEAR I. TRUSTEES (AS OF AUGUST, 1918) 345 II. ACT OF INCORPORATION 346 III. BY-LAWS OF THE CORPORATION 347 IV. THE TREASURER'S REPORT 349 V. THE LIBRARIAN'S REPORT 352 VI. THE DIRECTOR'S REPORT 352 Statement 352 1. The Staff 356 2. Investigators and Students 358 3. Tabular View of Attendance 362 4. Subscribing Institutions 363 5. Evening Lectures 364 6. Members of the Corporation 364 I. TRUSTEES EX OFFICIO FRANK R. LILLIE, Director, The University of Chicago. GILMAN A. DREW, Assistant Director, Marine Biological Laboratory. D. BLAKELY HOAR, Treasurer, 161 Devonshire Street, Boston, Mass. GARY N. CALKINS, Clerk of the Corporation, Columbia University. TO SERVE UNTIL IQ22 CORNELIA M. CLAPP, Mount Holyoke College. E. G. CONKLIN, Princeton University. Ross G. HARRISON, Yale University. CAMILLUS G. KIDDER, 27 William Street, New York City. M. M. METCALF. Oberlin, Ohio. WILLIAM PATTEN, Dartmouth College. JACOB REIGHARD, University of Michigan. W. B. SCOTT, Princeton University. TO SERVE UNTIL 192! S. F. CLARKE, Williamstown, Mass. CHARLES A. COOLIDGE, Ames Building, Boston, Mass. 345 346 MARINE BIOLOGICAL LABORATORY. C. R. CRANE, Woods Hole, Mass., President of the Corporation. ALFRED G. MAYOR, Carnegie Institution. C. E. McCLUNG, University of Pennsylvania. T. H. MORGAN, Columbia University. ERWIN F. SMITH, United States Department of Agriculture. E. B. WILSON, Columbia University. TO SERVE UNTIL 1920 H. H. DONALDSON, Wistar Institute of Anatomy and Biology. M. J. GREENMAN, Wistar Institute of Anatomy and Biology. C. W. HARGITT, Syracuse University. H. S. JENNINGS, Johns Hopkins University.
    [Show full text]
  • 2014-2015 and Is Accurate and Current, to the Greatest Extent Possible, As of June 2014
    Cover Cover 1 University’s Mission Statement James B. Duke’s founding Indenture of Duke University directed the members of the University to “provide real leadership in the educational world” by choosing individuals of “outstanding character, ability and vision” to serve as its officers, trustees and faculty; by carefully selecting students of “character, determination and application;” and by pursuing those areas of teaching and scholarship that would “most help to develop our resources, increase our wisdom and promote human happiness.” To these ends, the mission of Duke University is to provide a superior liberal education to undergraduate students, attending not only to their intellectual growth but also to their development as adults committed to high ethical standards and full participation as leaders in their communities; to prepare future members of the learned professions for lives of skilled and ethical service by providing excellent graduate and professional education; to advance the frontiers of knowledge and contribute boldly to the international community of scholarship; to promote an intellectual environment built on a commitment to free and open inquiry; to help those who suffer, cure disease and promote health, through sophisticated medical research and thoughtful patient care; to provide wide ranging educational opportunities, on and beyond our campuses, for traditional students, active professionals and life-long learners using the power of information technologies; and to promote a deep appreciation for the range of human difference and potential, a sense of the obligations and rewards of citizenship, and a commitment to learning, freedom and truth. By pursuing these objectives with vision and integrity, Duke University seeks to engage the mind, elevate the spirit, and stimulate the best effort of all who are associated with the University; to contribute in diverse ways to the local community, the state, the nation and the world; and to attain and maintain a place of real leadership in all that we do.
    [Show full text]
  • Ethology and the Origins of Behavioral Endocrinology
    Hormones and Behavior 47 (2005) 493–502 www.elsevier.com/locate/yhbeh Historical Review Ethology and the origins of behavioral endocrinology Peter MarlerT Section of Neurobiology, Physiology and Behavior, Animal Communication Lab, University of California, Davis, Davis, CA 95616, USA Received 28 September 2004; revised 30 December 2004; accepted 4 January 2005 Abstract The neurosciences embrace many disciplines, some long established, others of more recent origin. Behavioral endocrinology has only recently been fully acknowledged as a branch of neuroscience, distinctive for the determination of some of its exponents to remain integrative in the face of the many pressures towards reductionism that so dominate modern biology. One of its most characteristic features is a commitment to research at the whole-animal level on the physiological basis of complex behaviors, with a particular but by no means exclusive focus on reproductive behavior in all its aspects. The search for rigorously defined principles of behavioral organization that apply across species and the hormonal and neural mechanisms that sustain them underlies much of the research. Their aims are much like those put forth in the classical ethology of Lorenz and Tinbergen, one of the roots from which behavioral endocrinology has sprung. But there are others that can be traced back a century or more. Antecedents can be found in the work of such pioneers as Jakob von Uexkqll, Jacques Loeb, Herbert Spencer Jennings, and particularly Charles Otis Whitman who launched a tradition that culminated in the classical contributions of Robert Hinde and Daniel Lehrman. William C. Young was another pioneer. His studies revolutionized thinking about the physiological mechanisms by which hormones influence behavior.
    [Show full text]