Witt Vectors, Semirings, and Total Positivity 275

Total Page:16

File Type:pdf, Size:1020Kb

Witt Vectors, Semirings, and Total Positivity 275 Witt vectors, semirings, and total positivity James Borger∗ Abstract. We extend the big and p-typical Witt vector functors from commutative rings to commutative semirings. In the case of the big Witt vectors, this is a repackaging of some standard facts about monomial and Schur positivity in the combinatorics of symmetric functions. In the p-typical case, it uses positivity with respect to an apparently new basis of the p-typical symmetric functions. We also give explicit descriptions of the big Witt vectors of the natural numbers and of the nonnegative reals, the second of which is a restatement of Edrei’s theorem on totally positive power series. Finally we give some negative results on the relationship between truncated Witt vectors and k-Schur positivity, and we give ten open questions. 2010 Mathematics Subject Classification. Primary 13F35, 13K05; Secondary 16Y60, 05E05, 14P10. Keywords. Witt vector, semiring, symmetric function, total positivity, Schur positivity. Contents 1 Commutative algebra over N,thegeneraltheory 281 1.1 The category of N-modules ...................... 281 1.2 Submodulesandmonomorphisms . 281 1.3 Products,coproducts. 281 1.4 Internal equivalence relations, quotients, and epimorphisms . 282 1.5 Generatorsandrelations. 282 1.6 Hom and ⊗ ............................... 282 1.7 N-algebras................................ 283 1.8 Commutativityassumption . 283 1.9 A-modules and A-algebras....................... 283 1.10 HomA and ⊗A ............................. 284 1.11 Limits and colimits of A-modules and A-algebras . 284 1.12 Warning: kernelsandcokernels . 284 arXiv:1310.3013v2 [math.CO] 9 Sep 2015 1.13 Basechange,inducedandco-inducedmodules . 284 1.14 Limits and colimits of A-algebras................... 284 1.15 Basechangeforalgebras. 285 1.16 Flatmodulesandalgebras. 285 1.17 Examplesofflatmodules . 285 ∗Supported the Australian Research Council under a Discovery Project (DP120103541) and a Future Fellowship (FT110100728). 274 J. Borger 2 The flat topology over N 285 2.1 Flatcovers ............................... 286 2.2 Thefpqctopology ........................... 286 2.3 Faithfullyflatdescent ......................... 286 2.6 Algebraic geometry over N ....................... 287 2.7 Extending fibered categoriesto nonaffine schemes . 288 2.8 Additively idempotent elements . 288 2.9 Cancellativemodules.......................... 288 2.10 Strongandsubtractivemorphisms . 289 2.11 Additively invertible elements . 289 3 Plethystic algebra for N-algebras 290 3.1 Models of co-C objects in AlgK .................... 290 3.2 Co-L-algebra objects in AlgK ..................... 290 3.3 Plethysticalgebra............................ 291 3.4 Example: composition algebras and endomorphisms . 292 3.5 Models of co-C objects in AlgK .................... 292 3.6 Flat models of co-C-objects in AlgK ................. 292 3.7 Modelsofcompositionalgebras . 293 4 The composition structure on symmetric functions over N 293 4.1 Conventionsonpartitions . 293 4.2 ΨK .................................... 294 4.3 Symmetricfunctions .......................... 294 4.4 Remark: ΛN is not free as an N-algebra ............... 294 4.5 ElementaryandWittsymmetricfunctions . 295 4.8 Explicit description of a ΛN-action .................. 297 4.9 Example: the toric ΛN-structureon monoidalgebras . 298 4.10 Example:theChebyshevline . 298 4.11 Flatness for ΛN-semirings ....................... 298 4.12 Example: convergent exponential monoid algebras . 298 4.13 Example: convergentmonoidalgebras . 299 4.14 Remark: non-models for ΛZ over N .................. 299 5 The Schur model for ΛZ over N 300 5.1 Schur functions and ΛSch ....................... 300 5.3 Remark ................................. 301 5.4 Remark: ΛSch is not free as an N-algebra .............. 301 5.5 Remark: explicit description of a ΛSch-action ............ 302 5.6 Example................................. 302 5.7 Example................................. 302 5.8 Frobenius lifts and p-derivations ................... 302 5.9 Remark: thenecessityofnonlinearoperators . 303 5.10 Remark: composition algebras over number fields . 303 5.11 Remark: representation theory and K-theory . 304 Witt vectors, semirings, and total positivity 275 6 Witt vectors of N-algebras 305 6.1 W and W Sch .............................. 305 6.2 Theghostmapandsimilarones. 306 6.4 Remark ................................. 307 6.5 CoordinatesforWittvectorsofrings . 307 6.6 Witt vectors for semirings contained in rings . 308 6.7 Example: some explicit effectivity conditions . 308 6.8 Coordinates for Witt vectors of semirings . 309 6.9 Topologyandpro-structure . 309 6.10 Teichm¨uller and anti-Teichm¨uller elements . 310 6.11 The involution and the forgotten symmetric functions . 310 6.12 Example: the map N → W Sch(A) is injective unless A =0..... 311 7 Total positivity 311 7.2 Totalpositivity ............................. 312 Sch 7.6 Remark: W (R+) and W (R+) as convergent monoid algebras . 313 7.7 Remark: W (R+)andentirefunctions . 313 7.9 Remark ................................. 314 7.10 Counterexample: W doesnotpreservesurjectivity . 314 7.11Remark ................................. 314 8 A model for the p-typical symmetric functions over N 314 8.1 p-typical Witt vectors and general truncation sets. 314 8.2 Positive p-typicalsymmetricfunctions . 315 8.5 p-typical Witt vectors and Λ-structures for semirings . 317 8.6 Remark: a partition-like interpretation of the bases . 318 8.7 Relation to the multiple-prime theory . 318 8.8 Some explicit descriptions of W(p),k(A)................ 319 8.9 W(p),k(A) when A is contained in a ring . 319 8.10 Counterexample: The canonical map W(p),k+1(A) → W(p),k(A) is notgenerallysurjective. 320 8.11 Semirings and the infinite prime . 320 9 On the possibility of other models 321 10 k-Schur functions and truncated Witt vectors 321 Sch 10.1 k-Schur functions and Λk ...................... 322 10.3Remark ................................. 323 10.4 Truncated Schur–Witt vectorsfor semirings . 323 Sch 10.5 Counterexample: Λk is not a co-N-algebraobject . 323 11Remarksonabsolutealgebraicgeometry 324 276 J. Borger Introduction Witt vector functors are certain functors from the category of rings (always com- mutative) to itself. They come in different flavors, but each of the ones we will consider sends a ring A to a product A × A × · · · with certain addition and multi- plication laws of an exotic arithmetic nature. For example, for each prime p, there is the p-typical Witt vector functor W(p),n of length n ∈ N ∪ {∞}. As sets, we n+1 have W(p),n(A)= A . When n = 1, the ring operations are defined as follows: p−1 1 p (a ,a ) + (b ,b ) = (a + b , a + b − ai bp−i) 0 1 0 1 0 0 1 1 p i 0 0 i=1 p p X (a0,a1)(b0,b1) = (a0b0, a0b1 + a1b0 + pa1b1) 0=(0, 0) 1=(1, 0). For n ≥ 2, the formulas in terms of coordinates are too complicated to be worth writing down. Instead we will give some simple examples: ∼ n+1 W(p),n(Z/pZ) = Z/p Z, ∼ n+1 i+1 W(p),n(Z) = hx0,...,xni ∈ Z | xi ≡ xi+1 mod p . In the second example, the ring operations are performed componentwise; in par- ticular, the coordinates are not the same as the coordinates above. For another example, if A is a Z[1/p]-algebra, then W(p),n(A) is isomorphic after a change of coordinates to the usual product ring An+1. This phenomenon holds for other kinds of Witt vectors—when all relevant primes are invertible in A, then the Witt vector ring of A splits up as a product ring. The p-typical Witt vector functors were discovered by Witt in 1937 [46] and have since become a central construction in p-adic number theory, especially in p-adic Hodge theory, such as in the construction of Fontaine’s period rings [16] and, via the de Rham–Witt complex of Bloch–Deligne–Illusie, in crystalline coho- mology [20]. Also notable, and related, is their role in the algebraic K-theory of p-adic rings, following Hesselholt–Madsen [19]. There is also the big Witt vector functor. For most of this chapter, we will think about it from the point of view of symmetric functions, but for the moment, what is important is that it is formed by composing all the p-typical functors in an inverse limit: W (A) = lim W(p ),∞(W(p ),∞(··· (W(p ),∞(A)) ··· )), (0.0.1) n 1 2 n where p1,...,pn are the first n primes, and the transition maps are given by projections W(p),∞(A) → A onto the first component. (A non-obvious fact is that the p-typical functors commute with each other, up to canonical isomorphism; so in fact the ordering of the primes here is unimportant.) This has an adelic flavor, and indeed it is possible to unify the crystalline cohomologies for all primes Witt vectors, semirings, and total positivity 277 using a (“relative”) de Rham–Witt complex for the big Witt vectors. However the cohomology of this complex is determined by the crystalline cohomologies and the comparison maps to algebraic de Rham cohomology; so the big de Rham–Witt cohomology does not, on its own, provide any new information. But because of this adelic flavor, it is natural to ask whether the infinite prime plays a role. The answer is yes—big Witt vectors naturally accommodate positiv- ity, which we will regard as p-adic integrality at the infinite prime. On the other hand, we will have little to say about other aspects of the infinite prime, such as archimedean norms or a Frobenius operator at p = ∞. To explain this in more detail, we need to recall some basics of the theory of symmetric functions. The big Witt vector functor is represented, as a set-valued functor, by the free polynomial ring ΛZ = Z[h1,h2,... ]. So as sets, we have W (A) = HomAlgZ (ΛZ, A)= A × A × · · · . If we think of ΛZ as the usual ring of symmetric functions in infinitely many formal variables x1, x2,... by writing hn = xi1 ··· xin , i1≤···≤X in then the ring operations on W (A) are determined by two well-known coproducts in the theory of symmetric functions. The addition law is determined by the + n coproduct ∆ on ΛZ for which the power-sum symmetric functions ψn = i xi are primitive, + P ∆ (ψn)= ψn ⊗ 1+1 ⊗ ψn, and the multiplication law is determined by the coproduct for which the power sums are group-like, × ∆ (ψn) = (ψn ⊗ 1)(1 ⊗ ψn)= ψn ⊗ ψn.
Recommended publications
  • Center and Composition Conditions for Abel Equation
    Center and Comp osition conditions for Ab el Equation Thesis for the degree of Do ctor of Philosophy by Michael Blinov Under the Sup ervision of professor Yosef Yomdin Department of Theoretical Mathematics The Weizmann Institute of Science Submitted to the Feinb erg Graduate Scho ol of the Weizmann Institute of Science Rehovot Israel June Acknowledgments I would like to thank my advisor Professor Yosef Yomdin for his great sup ervision constant supp ort and encouragement for guiding and stimulat ing my mathematical work I should also mention that my trips to scien tic meetings were supp orted from Y Yomdins Minerva Science Foundation grant I am grateful to JP Francoise F Pakovich E Shulman S Yakovenko and V Katsnelson for interesting discussions I thank Carla Scapinello Uruguay Jonatan Gutman Israel Michael Kiermaier Germany and Oleg Lavrovsky Canada for their results obtained during summer pro jects that I sup ervised I am also grateful to my mother for her patience supp ort and lo ve I wish to thank my mathematical teacher V Sap ozhnikov who gave the initial push to my mathematical research Finally I wish to thank the following for their friendship and in some cases love Lili Eugene Bom Elad Younghee Ira Rimma Yulia Felix Eduard Lena Dima Oksana Olga Alex and many more Abstract We consider the real vector eld f x y gx y on the real plane IR This vector eld describ es the dynamical system x f x y y g x y A classical CenterFo cus problem whichwas stated byHPoincare in s is nd conditions on f g under which all tra jectories
    [Show full text]
  • Ring Homomorphisms Definition
    4-8-2018 Ring Homomorphisms Definition. Let R and S be rings. A ring homomorphism (or a ring map for short) is a function f : R → S such that: (a) For all x,y ∈ R, f(x + y)= f(x)+ f(y). (b) For all x,y ∈ R, f(xy)= f(x)f(y). Usually, we require that if R and S are rings with 1, then (c) f(1R) = 1S. This is automatic in some cases; if there is any question, you should read carefully to find out what convention is being used. The first two properties stipulate that f should “preserve” the ring structure — addition and multipli- cation. Example. (A ring map on the integers mod 2) Show that the following function f : Z2 → Z2 is a ring map: f(x)= x2. First, f(x + y)=(x + y)2 = x2 + 2xy + y2 = x2 + y2 = f(x)+ f(y). 2xy = 0 because 2 times anything is 0 in Z2. Next, f(xy)=(xy)2 = x2y2 = f(x)f(y). The second equality follows from the fact that Z2 is commutative. Note also that f(1) = 12 = 1. Thus, f is a ring homomorphism. Example. (An additive function which is not a ring map) Show that the following function g : Z → Z is not a ring map: g(x) = 2x. Note that g(x + y)=2(x + y) = 2x + 2y = g(x)+ g(y). Therefore, g is additive — that is, g is a homomorphism of abelian groups. But g(1 · 3) = g(3) = 2 · 3 = 6, while g(1)g(3) = (2 · 1)(2 · 3) = 12.
    [Show full text]
  • Embedding Two Ordered Rings in One Ordered Ring. Part I1
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector JOURNAL OF ALGEBRA 2, 341-364 (1966) Embedding Two Ordered Rings in One Ordered Ring. Part I1 J. R. ISBELL Department of Mathematics, Case Institute of Technology, Cleveland, Ohio Communicated by R. H. Bruck Received July 8, 1965 INTRODUCTION Two (totally) ordered rings will be called compatible if there exists an ordered ring in which both of them can be embedded. This paper concerns characterizations of the ordered rings compatible with a given ordered division ring K. Compatibility with K is equivalent to compatibility with the center of K; the proof of this depends heavily on Neumann’s theorem [S] that every ordered division ring is compatible with the real numbers. Moreover, only the subfield K, of real algebraic numbers in the center of K matters. For each Ks , the compatible ordered rings are characterized by a set of elementary conditions which can be expressed as polynomial identities in terms of ring and lattice operations. A finite set of identities, or even iden- tities in a finite number of variables, do not suffice, even in the commutative case. Explicit rules will be given for writing out identities which are necessary and sufficient for a commutative ordered ring E to be compatible with a given K (i.e., with K,). Probably the methods of this paper suffice for deriving corresponding rules for noncommutative E, but only the case K,, = Q is done here. If E is compatible with K,, , then E is embeddable in an ordered algebra over Ks and (obviously) E is compatible with the rational field Q.
    [Show full text]
  • Math 250A: Groups, Rings, and Fields. H. W. Lenstra Jr. 1. Prerequisites
    Math 250A: Groups, rings, and fields. H. W. Lenstra jr. 1. Prerequisites This section consists of an enumeration of terms from elementary set theory and algebra. You are supposed to be familiar with their definitions and basic properties. Set theory. Sets, subsets, the empty set , operations on sets (union, intersection, ; product), maps, composition of maps, injective maps, surjective maps, bijective maps, the identity map 1X of a set X, inverses of maps. Relations, equivalence relations, equivalence classes, partial and total orderings, the cardinality #X of a set X. The principle of math- ematical induction. Zorn's lemma will be assumed in a number of exercises. Later in the course the terminology and a few basic results from point set topology may come in useful. Group theory. Groups, multiplicative and additive notation, the unit element 1 (or the zero element 0), abelian groups, cyclic groups, the order of a group or of an element, Fermat's little theorem, products of groups, subgroups, generators for subgroups, left cosets aH, right cosets, the coset spaces G=H and H G, the index (G : H), the theorem of n Lagrange, group homomorphisms, isomorphisms, automorphisms, normal subgroups, the factor group G=N and the canonical map G G=N, homomorphism theorems, the Jordan- ! H¨older theorem (see Exercise 1.4), the commutator subgroup [G; G], the center Z(G) (see Exercise 1.12), the group Aut G of automorphisms of G, inner automorphisms. Examples of groups: the group Sym X of permutations of a set X, the symmetric group S = Sym 1; 2; : : : ; n , cycles of permutations, even and odd permutations, the alternating n f g group A , the dihedral group D = (1 2 : : : n); (1 n 1)(2 n 2) : : : , the Klein four group n n h − − i V , the quaternion group Q = 1; i; j; ij (with ii = jj = 1, ji = ij) of order 4 8 { g − − 8, additive groups of rings, the group Gl(n; R) of invertible n n-matrices over a ring R.
    [Show full text]
  • 5 Lecture 5: Huber Rings and Continuous Valuations
    5 Lecture 5: Huber rings and continuous valuations 5.1 Introduction The aim of this lecture is to introduce a special class of topological commutative rings, which we shall call Huber rings. These have associated spaces of valuations satisfying suitable continuity assumptions that will lead us to adic spaces later. We start by discussing some basic facts about Huber rings. Notation: If S; S0 are subsets of ring, we write S · S0 to denote the set of finite sums of products ss0 0 0 n for s 2 S and s 2 S . We define S1 ··· Sn similarly for subsets S1;:::;Sn, and likewise for S (with Si = S for 1 ≤ i ≤ n). For ideals in a ring this agrees with the usual notion of product among finitely many such. 5.2 Huber rings: preliminaries We begin with a definition: Definition 5.2.1 Let A be a topological ring. We say A is non-archimedean if it admits a base of neighbourhoods of 0 consisting of subgroups of the additive group (A; +) underlying A. Typical examples of non-archimedean rings are non-archimedean fields k and more generally k-affinoid algebras for such k. Example 5.2.2 As another example, let A := W (OF ), where OF is the valuation ring of a non- archimedean field of characteristic p > 0. A base of open neighbourhoods of 0 required in Definition 5.2.1 is given by n p A = f(0; ··· ; 0; OF ; OF ; ··· ); zeros in the first n slotsg; Q the p-adic topology on A is given by equipping A = n≥0 OF with the product topology in which each factor is discrete.
    [Show full text]
  • Mel Hochster's Lecture Notes
    MATH 614 LECTURE NOTES, FALL, 2017 by Mel Hochster Lecture of September 6 We assume familiarity with the notions of ring, ideal, module, and with the polynomial ring in one or finitely many variables over a commutative ring, as well as with homomor- phisms of rings and homomorphisms of R-modules over the ring R. As a matter of notation, N ⊆ Z ⊆ Q ⊆ R ⊆ C are the non-negative integers, the integers, the rational numbers, the real numbers, and the complex numbers, respectively, throughout this course. Unless otherwise specified, all rings are commutative, associative, and have a multiplica- tive identity 1 (when precision is needed we write 1R for the identity in the ring R). It is possible that 1 = 0, in which case the ring is f0g, since for every r 2 R, r = r ·1 = r ·0 = 0. We shall assume that a homomorphism h of rings R ! S preserves the identity, i.e., that h(1R) = 1S. We shall also assume that all given modules M over a ring R are unital, i.e., that 1R · m = m for all m 2 M. When R and S are rings we write S = R[θ1; : : : ; θn] to mean that S is generated as a ring over its subring R by the elements θ1; : : : ; θn. This means that S contains R and the elements θ1; : : : ; θn, and that no strictly smaller subring of S contains R and the θ1; : : : ; θn. It also means that every element of S can be written (not necessarily k1 kn uniquely) as an R-linear combination of the monomials θ1 ··· θn .
    [Show full text]
  • Lifting Defects for Nonstable K 0-Theory of Exchange Rings And
    LIFTING DEFECTS FOR NONSTABLE K0-THEORY OF EXCHANGE RINGS AND C*-ALGEBRAS FRIEDRICH WEHRUNG Abstract. The assignment (nonstable K0-theory), that to a ring R associates the monoid V(R) of Murray-von Neumann equivalence classes of idempotent infinite matrices with only finitely nonzero entries over R, extends naturally to a functor. We prove the following lifting properties of that functor: (i) There is no functor Γ, from simplicial monoids with order-unit with nor- malized positive homomorphisms to exchange rings, such that V ◦ Γ =∼ id. (ii) There is no functor Γ, from simplicial monoids with order-unit with normalized positive embeddings to C*-algebras of real rank 0 (resp., von Neumann regular rings), such that V ◦ Γ =∼ id. 3 (iii) There is a {0, 1} -indexed commutative diagram D~ of simplicial monoids that can be lifted, with respect to the functor V, by exchange rings and by C*-algebras of real rank 1, but not by semiprimitive exchange rings, thus neither by regular rings nor by C*-algebras of real rank 0. By using categorical tools (larders, lifters, CLL) from a recent book from the author with P. Gillibert, we deduce that there exists a unital exchange ring of cardinality ℵ3 (resp., an ℵ3-separable unital C*-algebra of real rank 1) R, with stable rank 1 and index of nilpotence 2, such that V(R) is the positive cone of a dimension group but it is not isomorphic to V(B) for any ring B which is either a C*-algebra of real rank 0 or a regular ring.
    [Show full text]
  • Arxiv:1711.00219V2 [Math.OA] 9 Aug 2019 R,Fe Rbblt,Glbr Coefficients
    CUMULANTS, SPREADABILITY AND THE CAMPBELL-BAKER-HAUSDORFF SERIES TAKAHIRO HASEBE AND FRANZ LEHNER Abstract. We define spreadability systems as a generalization of exchangeability systems in order to unify various notions of independence and cumulants known in noncommutative probability. In particular, our theory covers monotone independence and monotone cumulants which do not satisfy exchangeability. To this end we study generalized zeta and M¨obius functions in the context of the incidence algebra of the semilattice of ordered set partitions and prove an appropriate variant of Faa di Bruno’s theorem. With the aid of this machinery we show that our cumulants cover most of the previously known cumulants. Due to noncommutativity of independence the behaviour of these cumulants with respect to independent random variables is more complicated than in the exchangeable case and the appearance of Goldberg coefficients exhibits the role of the Campbell-Baker-Hausdorff series in this context. In a final section we exhibit an interpretation of the Campbell-Baker-Hausdorff series as a sum of cumulants in a particular spreadability system, thus providing a new derivation of the Goldberg coefficients. Contents 1. Introduction 2 2. Ordered set partitions 4 2.1. Set partitions 4 2.2. Ordered set partitions 5 2.3. Incidence algebras and multiplicative functions 8 2.4. Special functions in the poset of ordered set partitions 10 3. A generalized notion of independence related to spreadability systems 11 3.1. Notation and terminology 11 3.2. Spreadability systems 13 3.3. Examples from natural products of linear maps 14 3.4. E-independence 15 3.5.
    [Show full text]
  • Math 395: Category Theory Northwestern University, Lecture Notes
    Math 395: Category Theory Northwestern University, Lecture Notes Written by Santiago Can˜ez These are lecture notes for an undergraduate seminar covering Category Theory, taught by the author at Northwestern University. The book we roughly follow is “Category Theory in Context” by Emily Riehl. These notes outline the specific approach we’re taking in terms the order in which topics are presented and what from the book we actually emphasize. We also include things we look at in class which aren’t in the book, but otherwise various standard definitions and examples are left to the book. Watch out for typos! Comments and suggestions are welcome. Contents Introduction to Categories 1 Special Morphisms, Products 3 Coproducts, Opposite Categories 7 Functors, Fullness and Faithfulness 9 Coproduct Examples, Concreteness 12 Natural Isomorphisms, Representability 14 More Representable Examples 17 Equivalences between Categories 19 Yoneda Lemma, Functors as Objects 21 Equalizers and Coequalizers 25 Some Functor Properties, An Equivalence Example 28 Segal’s Category, Coequalizer Examples 29 Limits and Colimits 29 More on Limits/Colimits 29 More Limit/Colimit Examples 30 Continuous Functors, Adjoints 30 Limits as Equalizers, Sheaves 30 Fun with Squares, Pullback Examples 30 More Adjoint Examples 30 Stone-Cech 30 Group and Monoid Objects 30 Monads 30 Algebras 30 Ultrafilters 30 Introduction to Categories Category theory provides a framework through which we can relate a construction/fact in one area of mathematics to a construction/fact in another. The goal is an ultimate form of abstraction, where we can truly single out what about a given problem is specific to that problem, and what is a reflection of a more general phenomenom which appears elsewhere.
    [Show full text]
  • MATH 615 LECTURE NOTES, WINTER, 2010 by Mel Hochster
    MATH 615 LECTURE NOTES, WINTER, 2010 by Mel Hochster ZARISKI'S MAIN THEOREM, STRUCTURE OF SMOOTH, UNRAMIFIED, AND ETALE´ HOMOMORPHISMS, HENSELIAN RINGS AND HENSELIZATION, ARTIN APPROXIMATION, AND REDUCTION TO CHARACTERISTIC p Lecture of January 6, 2010 Throughout these lectures, unless otherwise indicated, all rings are commutative, asso- ciative rings with multiplicative identity and ring homomorphisms are unital, i.e., they are assumed to preserve the identity. If R is a ring, a given R-module M is also assumed to be unital, i.e., 1 · m = m for all m 2 M. We shall use N, Z, Q, and R and C to denote the nonnegative integers, the integers, the rational numbers, the real numbers, and the complex numbers, respectively. Our focus is very strongly on Noetherian rings, i.e., rings in which every ideal is finitely generated. Our objective will be to prove results, many of them very deep, that imply that many questions about arbitrary Noetherian rings can be reduced to the case of finitely generated algebras over a field (if the original ring contains a field) or over a discrete valuation ring (DVR), by which we shall always mean a Noetherian discrete valuation domain. Such a domain V is characterized by having just one maximal ideal, which is principal, say pV , and is such that every nonzero element can be written uniquely in the form upn where u is a unit and n 2 N. The formal power series ring K[[x]] in one variable over a field K is an example in which p = x. Another is the ring of p-adic integers for some prime p > 0, in which case the prime used does, in fact, generate the maximal ideal.
    [Show full text]
  • RING THEORY 1. Ring Theory a Ring Is a Set a with Two Binary Operations
    CHAPTER IV RING THEORY 1. Ring Theory A ring is a set A with two binary operations satisfying the rules given below. Usually one binary operation is denoted `+' and called \addition," and the other is denoted by juxtaposition and is called \multiplication." The rules required of these operations are: 1) A is an abelian group under the operation + (identity denoted 0 and inverse of x denoted x); 2) A is a monoid under the operation of multiplication (i.e., multiplication is associative and there− is a two-sided identity usually denoted 1); 3) the distributive laws (x + y)z = xy + xz x(y + z)=xy + xz hold for all x, y,andz A. Sometimes one does∈ not require that a ring have a multiplicative identity. The word ring may also be used for a system satisfying just conditions (1) and (3) (i.e., where the associative law for multiplication may fail and for which there is no multiplicative identity.) Lie rings are examples of non-associative rings without identities. Almost all interesting associative rings do have identities. If 1 = 0, then the ring consists of one element 0; otherwise 1 = 0. In many theorems, it is necessary to specify that rings under consideration are not trivial, i.e. that 1 6= 0, but often that hypothesis will not be stated explicitly. 6 If the multiplicative operation is commutative, we call the ring commutative. Commutative Algebra is the study of commutative rings and related structures. It is closely related to algebraic number theory and algebraic geometry. If A is a ring, an element x A is called a unit if it has a two-sided inverse y, i.e.
    [Show full text]
  • Dynatomic Polynomials, Necklace Operators, and Universal Relations for Dynamical Units
    DYNATOMIC POLYNOMIALS, NECKLACE OPERATORS, AND UNIVERSAL RELATIONS FOR DYNAMICAL UNITS JOHN R. DOYLE, PAUL FILI, AND TREVOR HYDE 1. INTRODUCTION Let f(x) 2 K[x] be a polynomial with coefficients in a field K. For an integer k ≥ 0, we denote by f k(x) the k-fold iterated composition of f with itself. The dth dynatomic polynomial Φf;d(x) 2 K[x] of f is defined by the product Y d=e µ(e) Φf;d(x) := (f (x) − x) ; ejd where µ is the standard number-theoretic Möbius function on N. We refer the reader to [12, §4.1] for background on dynatomic polynomials. For generic f(x), the dth dynatomic polyno- mial Φf;d(x) vanishes at precisely the periodic points of f with primitive period d. In this paper we consider the polynomial equation Φf;d(x) = 1 and show that it often has f-preperiodic solu- tions determined by arithmetic properties of d, independent of f. Moreover, these f-preperiodic solutions are detected by cyclotomic factors of the dth necklace polynomial: 1 X M (x) = µ(e)xd=e 2 [x]: d d Q ejd Our results extend earlier work of Morton and Silverman [8], but our techniques are quite dif- ferent and apply more broadly. We begin by recalling some notation and terminology. The cocore of a positive integer d is d=d0 where d0 is the largest squarefree factor of d. If m ≥ 0 and n ≥ 1, then the (m; n)th generalized dynatomic polynomial Φf;m;n(x) of f(x) is defined by Φf;0;n(x) := Φf;n(x) and m Φf;n(f (x)) Φf;m;n(x) := m−1 Φf;n(f (x)) for m ≥ 1.
    [Show full text]